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Abstract
In this dissertation, we study the geometric character of structured Parseval

frames, which are families of vectors that provide perfect Hilbert space reconstruc-

tion. Equiangular Parseval frames (EPFs) satisfy that the magnitudes of the pairwise

inner products between frame vectors are constant. These types of frames are use-

ful in many applications. However, EPFs do not always exist and constructing them

is often difficult.

To address this problem, we consider two generalizations of EPFs, equidis-

tributed frames and Grassmannian equal-norm Parseval frames, which include EPFs

when they exist. We provide several examples of each type of Parseval frame. To

characterize and locate these classes of frames, we develop an optimization pro-

gram involving families of real analytic frame potentials, which are real-valued

functions of frames. With the help of the Łojasiewicz gradient inequality, we prove

that the gradient descent of these functions on the manifold of Gram matrices of

Parseval frames always converges to critical points. We then show that, under cer-

tain conditions, the frames corresponding to the Gram matrices of the critical points

for different frame potentials possess desirable geometric properties. These proper-

ties include the equal-norm, equiangular, non-orthodecomposable, equidistributed

and Grassmannian equal-norm cases.

We also discuss the history of EPFs and frame potentials and provide a new char-

acterization of EPFs in terms of the Fourier transform. Using this characterization,

we reprove a known result regarding cyclic EPFs and difference sets.
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Chapter 1

Introduction

1.1 Frame theory

Orthonormal bases have a long history in pure and applied mathematics. For ex-

ample, the orthonormal columns of discrete Fourier transform matrices are used

in signal processing [83], partial differential equations [2], and the representation

theory of finite abelian groups [90]. Although bases are essential tools in mathe-

matics, linear dependence is sometimes useful. A finite frame is a spanning set for a

finite dimensional Hilbert space that generalizes the notion of an orthonormal basis

by relaxing the need for linear independence.

A common example of when frames are useful occurs in signal analysis. If a

sender encodes a K-dimensional vector as its inner products with an orthonormal

basis and transmits them across a channel, then the loss or corruption of a single co-

efficient means an entire dimension of the data is lost and there is no guarantee that

the receiver can recover the signal. By encoding a signal with a well-conditioned
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frame instead, it is possible to guarantee recovery after such a loss by exploiting the

redundant representation of data that a frame allows [30, 22, 53].

Duffin and Schaeffer introduced frames to address problems in nonharmonic

Fourier series in 1952 [38]; however, the popularity of modern frame theory is gen-

erally attributed to Daubechies, Grossman, and Meyer’s seminal paper [36], where

they developed the class of tight frames for signal reconstruction. Today, the theory

of frames has proven useful for problems in pure mathematics [25, 66], applied

mathematics [49, 86], science [33], and engineering[65]. For more information on

the current state of frame theory, we refer to [31].

1.2 Equiangular frames and frame potentials

Since the earliest works, frames equipped with additional properties have been em-

phasized in research and applications [38, 36]. Some frame properties are spectral

in nature, like the Parseval property, which requires perfect reconstruction [10].

Sometimes they involve an underlying algebraic structure, for example, that the

frame is generated by a group representation [51]. Still other properties mani-

fest as geometric conditions on the frame’s vectors, for instance, requiring that the

vectors have the same norm [30].

A particularly interesting geometric property occurs when a frame is equian-

gular, which means the inner products between its vectors have the same magni-

tude. The study of these objects can be traced back to 1948, when Hanntjes posed

the problem of packing equiangular lines in real Euclidean space [50], a problem

which was more thoroughly investigated a few decades later by Lemmens, Seidel,

and other collaborators [63]. The introduction of this class of frames to the frame
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theory community is commonly attributed to the works of Heath and Strohmer

[86] and Holmes and Paulsen [53], where the authors highlighted a wide range

of applications for equiangular frames. In particular, equiangular frames that are

additionally tight, a slight generalization of the Parseval property, are valuable in

numerous settings. In coding theory, they are optimally resilient to one or two

erasures [53]. In physics, certain classes of complex equiangular tight frames are

ideal models for quantum measurement devices [75, 96]. Further applications oc-

cur in combinatorial design theory [86], speech recognition [69], and many other

areas. Besides their many applications, equiangular frames are also appealing to

the author of this work as instances of beauty in mathematics.

The problem with equiangular tight frames is that they do not always exist,

depending on the number of frame vectors. For example, an equiangular tight

frame in C3 can only exist if it is composed of 3, 4, 6, 7, or 9 vectors [58, 79, 86, 89].

Furthermore, while the case of C3 is well-understood thanks to a recent result [89],

the questions of when equiangular tight frames exist and how to construct them in

complex vector spaces of dimension greater than 3 are currently open problems and

the focus of much recent research [58, 79, 86, 89, 45, 87, 39].

An increasingly popular approach to locating structured frames involves the use

of frame potentials, which are real-valued functions of the vectors of frames. By

carefully defining such functions, desirable frames can be characterized as their

minimizers and then pursued with techniques from optimization theory. Benedetto

and Fickus introduced this idea to characterize tight frames whose vectors are all of

unit norm [14]. Subsequently, frame potentials have been used to characterize and

locate frames with various other properties [14, 26, 75, 72, 15, 20, 41], sometimes

addressing deeper questions as well [20].
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Of particular interest, the authors of [75] and [72] used a particular frame po-

tential to characterize equiangular tight frames as minimizers. Unfortunately, their

characterization depends on the assumption of existence, so it provides little infor-

mation about how to locate them. The author of [41] applied a gradient descent

for this potential on a matrix manifold, but she found that, apart from equiangular

tight frames, this potential allows undesirable frames as fixed points.

In this dissertation, we continue the study of geometric frame properties by

way of optimization techniques, with an emphasis on Parseval frames. In order

to address the problematic fixed points encountered in [41] and the broader is-

sue of existence for equiangular Parseval frames, we introduce two generalizations

of equiangularity, the equidistributed and Grassmannian equal-norm Parseval prop-

erties, and develop an optimization program based on frame potentials to char-

acterize and locate them. In order to do this, we also prove that the trajectories

corresponding to the gradient descent of an analytic function on a compact, real

analytic Riemannian manifold are guaranteed to converge to critical points. Along

the way, we explore the history and applications of both equiangular frames and

frame potentials, and we provide a characterization of equiangular frames in terms

of the Fourier transform.

1.3 Outline

The remaining chapters of this paper are structured as follows.

In Chapter 2, we present the basic notation, terminology, and facts of frame

theory. Because this paper focuses on Parseval frames, we also provide a few fun-

damental facts about this class of frames.
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In Chapter 3, we focus on equiangular Parseval frames (EPFs). Section 3.1

explores the history of the topic, beginning with its roots in the equiangular line

problem. In Section 3.2, we discuss the problem of existence and outline many of

the known construction principles for EPFs. In Section 3.3, we define the equidis-

tributed and Grassmannian equal-norm Parseval properties, which generalize the

equiangular property, and provide several examples of each. Finally, in Section 3.4,

we view frames from an operator theoretic viewpoint and characterize EPFs in terms

of the Fourier transform.

In Chapter 4, we introduce the topic of frame potentials and survey some of its

history. We exhibit many instances from frame literature where they are used to

characterize frames with desirable properties and conclude by describing how we

will use real analytic frame potentials to characterize and locate structured frames

on MN,K (see Definition 2.2.6), the set of Gram matrices for Parseval frames, via

gradient descent.

In Chapter 5, we analyze the gradient descent of real analytic functions on real

analytic Riemannian manifolds. By using a classical result from [64], we prove that

the flow induced by such a descent system is guaranteed to converge in Section 5.2.

In order to use this result, we first prove that MN,K is a real analytic Riemannian

manifold in Section 5.1. Finally, in Section 5.3, we provide a characterization of

fixed points in this setting.

In Chapter 6, we present the main results of this work. In Section 6.1, we de-

velop the one parameter family of frame potentials, {Φη
od}η>0 (see Definition 6.1.1),

and use a limiting procedure on the global minimizers of this family’s members

to characterize Grassmannian equal-norm Parseval frames. In Section 6.3, we de-

velop the four parameter family of frame potentials, {Φα,β,δ,η = Φη
sum + Φδ

diag +
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Φα,β
ch }α,β,δ,η∈(0,∞) (see Definitions 6.2.1, 6.3.5, 6.3.8 and 6.3.14). Each member of

this family is a sum of the nonnegative potentials Φη
sum, Φδ

diag, and Φα,β
ch , and the

parameters α, β, and δ induce weights that determine the proportionality of how

the diagonal versus the off-diagonal entries of the Gram matrices contribute to the

potential value. Certain results based on manifolds of equal-norm frames identify

undesirable critical points for frame potentials, the so-called orthodecomposable

frames [85, 84] (see Definition 6.3.3). In Section 6.3.1, we show that whenever

the value of Φη
sum(G) is sufficiently low, then G cannot contain zero entries, thereby

ruling out the orthodecomposable case. In Section 6.3.2, we see that whenever G

contains no zero entries and ∇Φδ
diag(G) = 0 for all δ in a positive open interval,

then G is equal norm. In Section 6.3.3, we show that whenever G contains no

zero entries, it is equal-norm, and ∇Φα,β
ch (G) = 0 for all α, β in positive open in-

tervals, then G must be what we call equidistributed. Combining these results in

Section 6.3.4 leads to a theorem which states that whenever the value Φα,β,δ,η(G)

is sufficiently low and ∇Φα,β,δ,η(G) = 0 for all α, β, δ in positive open intervals,

then G is equidistributed. This is followed by Theorem 6.3.23, where we provide

a characterization of equidistributed frames which do not exhibit orthogonality be-

tween any of the frame vectors. Finally, in Section 6.4, we see that another limiting

procedure gives rise to frames which are both Grassmannian equal-norm Parseval

and equidistributed. Along the way, we also provide a simple characterization of

equiangular Parseval frames in terms of frame potentials in Section 6.2.

Some of the results from Chapters 3, 5, and 6 were recently published in [19].
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Chapter 2

Preliminaries

2.1 Frame essentials

2.1.1 Definition. A family of vectors F = {fj}j∈J is a frame for a real or complex

Hilbert space H if there are constants 0 < A ≤ B <∞ such that for all x ∈ H,

A‖x‖2 ≤
∑
j∈J

|〈x, fj〉|2 ≤ B‖x‖2 .

We refer to the largest such A and the smallest such B as the lower and upper frame

bounds, respectively. In the case that A = B, we call F a tight frame, and whenever

A = B = 1, then F is a Parseval frame. If ‖fj‖ = ‖fl‖ for all j, l ∈ J , then F is an

equal-norm frame. If F is a an equal-norm frame and there exists a C ≥ 0 such that

|〈fj, fl〉| = C for all j, l ∈ J with j 6= l, then we say F is equiangular. Because they

are given special emphasis in Chapter 3, we refer to equiangular Parseval frames by

the acronym EPF.

The analysis operator of the frame is the map V : H → l2(J) given by (V x)j =
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〈x, fj〉. Its adjoint, V ∗, is the synthesis operator, which maps a ∈ l2(J) to V ∗(a) =∑
j∈J

ajfj. The frame operator is the positive, self-adjoint invertible operator S = V ∗V

on H and the Gramian is the operator G = V V ∗ on `2(J).

We focus on the case thatH = FK , where F = C or R, K is a positive integer, and

always choose the canonical sesquilinear inner product. Thus,K always denotes the

dimension of H over the field F. Furthermore, we restrict ourselves to finite frames

indexed by J = ZN , where N ≥ K, and reserve the letter N to refer to the number

of frame vectors in the frame(s) under consideration. When the group structure of

ZN is not important, we also number the frame vectors with {1, 2, . . . , N}, with the

tacit understanding that N ≡ 0 (modN).

2.2 Parseval frames

Since this paper is mostly concerned with finite Parseval frames, we call a Parseval

frame for FK consisting of N vectors an (N,K)-frame. If F is an (N,K)-frame with

analysis operator V , then V is an isometry, since ‖V x‖2
2 =

∑N
j=1 |〈x, fj〉|2 = ‖x‖2

holds for all x ∈ FK . Conversely, if an N × K matrix V is an isometry, then the

same argument shows that it is the analysis operator of the (N,K)-frame obtained

by taking the columns of V ∗ as the frame vectors. Hence, the (N,K)-frames are

in one-to-one correspondence with N × K isometry matrices, and they satisfy the

reconstruction identity x =
∑N

j=1〈x, fj〉fj, or in terms of the analysis and synthesis

operators, x = V ∗V x, or in terms of the frame operator, S = V ∗V = IK .
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An advantage to working with the space of Parseval frames is that every (N,K)-

frame can be identified as the projection of an orthonormal basis in an ambient N -

dimensional Hilbert space. This result is ascribed to Naimark [70] and a complete

proof can be found in [76]. Subsequently, this result has been generalized to other

settings, including Banach spaces [29] and non-Parseval frames[28].

2.2.1 Theorem. (Naimark, [70, 76].) IfF = {fj}j∈ZN is an (N,K)-frame forH, then

there exists an N -dimensional Hilbert space H ′ and an orthonormal basis {bj}j∈ZN ⊂

H′ such that H is a linear subspace of H′ and fj = PHbj for all j ∈ ZN , where PH

denotes the orthogonal projection of H′ onto H.

We prove the converse of this statement.

2.2.2 Theorem. If {bj}j∈ZN is an orthonormal basis for FN and H ⊂ FN is any K-

dimensional linear subspace, then F = {PHbj}j∈ZN is an (N,K)-frame for H, where

PH denotes the orthogonal projection of FN onto H.

Proof. Let x ∈ H so that x = PHx, then

‖x‖2 =
∑
j∈ZN

|〈bj, x〉|2 =
∑
j∈ZN

|〈bj, PHx〉|2 =
∑
j∈ZN

|〈PHbj, x〉|2 =
∑
j∈ZN

|〈fj, x〉|2,

which proves the claim.

By interpreting two arbitrary frames F = {fj}j∈ZN and F ′ = {f ′j}j∈ZN for FK as

vector-valued functions of the index set ZN , we endow the set of all such frames

with the l2-distance defined by

‖F − F ′‖ =

√∑
j∈ZN

‖fj − f ′j‖2,

9



which we square and reexpress in terms of the respective analysis operators, V and

V ′ as

‖F − F ′‖2 = tr((V − V ′)(V − V ′)∗) = tr(V V ∗) + tr(V ′V ′∗)− 2< tr(V V ′∗). (2.1)

With respect to this metric, we identify the closest (N,K)-frame to an arbitrary

frame.

2.2.3 Proposition. [8, 20] If F = {fj}j∈ZN is a frame over FK with analysis operator

V , then {S−1/2fj}j∈ZN minimizes the l2-distance between F and all possible choices of

(N,K)-frames, where S = V ∗V is the frame operator of F .

Proof. Since choosing an (N,K)-frame F ′ is equivalent to choosing the correspond-

ing N × K isometry V ′, we minimize (2.1) over all possible choices of V ′. Noting

that the first two terms in this expression are constant, we seek to maximize the

third term. After re-expressing V in its unique polar form V = UP , where U is an

isometry and P = (V ∗V )1/2 = S1/2, the strictly positivity of P (due to the frame

property) allows us to interpret the term

tr(V V ′∗) = tr(UPV ′∗) = tr(V ′∗UP )

as an inner product between V ′∗ and U . By the Cauchy Schwarz inequality,

| tr(V ′∗UP )|2 ≤ | tr(V ′∗V P )|| tr(U∗UP )| = tr(P )2,

so 2< tr(V V ′∗) is maximal when V ′ = U . This implies V = V ′S1/2, which is equiva-

lent to V ′∗ = S−1/2V ∗. The claim follows by taking the columns of V ′∗ as the frame

vectors.

10



2.2.1 Gram matrices of Parseval frames

Many geometric properties of frames discussed in this paper only depend on the

inner products between frame vectors and on their norms, which are collected in

the Gramian. For this reason, most of the main results refer to equivalence classes

of Parseval frames.

2.2.4 Definition. Two frames F = {fj}j∈J and F ′ = {f ′j}j∈J for a real or complex

Hilbert space H are called unitarily equivalent if there exists a unitary operator U

on H such that fj = Uf ′j for all j ∈ J .

Each equivalence class of frames is characterized by the corresponding Gram

matrix.

2.2.5 Proposition. The Gramians of two frames F = {fj}j∈J and F ′ = {f ′j}j∈J for

a finite dimensional real or complex Hilbert space H are identical if and only if the

frames are unitarily equivalent.

Proof. Assuming G is the Gramian for the frame F as well as for the frame F ′,

then G = V V ∗ = V ′(V ′)∗, where V and V ′ are the analysis operators belonging

to F and F ′, respectively. By the polar decomposition, V = (V V ∗)1/2U = G1/2U

and V ′ = (V ′(V ′)∗)1/2U ′ = G1/2U ′ with isometries U and U ′ from H to `2(J), thus

V ∗ = U∗U ′(V ′)∗. By the frame property, the range of U is identical to that of U ′

and that of G, so Q = U∗U ′ is unitary, which shows that V ∗ej = Q(V ′)∗ej for each

canonical basis vector ej in `2(J), or equivalently, fj = Qf ′j for all j ∈ J . Conversely,

if F and F ′ are unitarily equivalent, then it follows directly that the Gramians of

both frames are identical.

Special emphasis is given to the Gram matrices of (N,K)-frames. If G = V V ∗

11



is the Gramian of an (N,K)-frame with analysis operator V , then it is a rank-K

orthogonal projection, because G∗G = V V ∗V V ∗ = V V ∗ = G and the rank of G

equals the trace, tr(G) = K. Conversely, if P : FN → FN is a rank-K orthogonal

projection matrix, then, by the spectral theorem, it can be decomposed into block

form as

P = U

 IK 0K×N−K

0N−K×K 0N−K×N−K

U∗,

where the top-left block is the K ×K identity matrix and all other blocks are zero.

Thus, the N × K matrix V obtained by deleting the last N − K columns of U is

an isometry, so it is the analysis operator of an (N,K)-frame, and since P = V V ∗,

it follows that P is the Gram matrix of a Parseval frame. Therefore, the set of

Gramians of (N,K)-frames is precisely the set of rank-K orthogonal projections.

2.2.6 Definition. We define for F = R or C

MN,K = {G ∈ FN×N : G = G2 = G∗, tr(G) = K} .

2.2.7 Proposition. MN,K is compact with respect to the topology induced by the

Hilbert-Schmidt norm on FN×N .

Proof. Since tr(G) = K for every G ∈MN,K , it is a subset of the sphere with radius
√
K in FN×N , so it is bounded. If G = (Gj,l)

N
j,l=1 is a limit point ofMN,K , then there

exists a sequence
{
G(m) = (G(m)j,l)

N
j,l=1

}∞
m=1

⊂ MN,K such that lim
m→∞

Gm = G.

Since convergence in Hilbert-Schmidt norm implies convergence in the entries, the

12



diagonal entries of G are real and its off-diagonal entries satisfy

|Gj,l −Gl,j| = lim
m→∞

|Gj,l −Gl,j|

≤ lim
m→∞

|Gj,l −G(m)j,l|+ |G(m)j,l −Gl,j|

= lim
m→∞

|Gj,l −G(m)j,l|+ |G(m)l,j −Gl,j|

= 0,

so G is self-adjoint. The entry-wise convergence also implies

tr(G) = tr( lim
m→∞

Gm) = lim
m→∞

tr(Gm) = K.

Furthermore, since the entries of G2 are polynomial in the entries of of G, entry-

wise convergence also implies

G2 = ( lim
m→∞

G(m))2 = lim
m→∞

G(m)2 = lim
m→∞

G(m) = G,

so G is idempotent. Thus, G ∈ MN,K , soMN,K is closed and therefore compact by

the Heine-Borel theorem.

This subset of the HermitiansMN,K carries the structure of a real analytic sub-

manifold, which is proved in Section 5.1. Because the Gram matrices of (N,K)-

frames are the main focus of this paper, whenever an element G ∈ MN,K corre-

sponds to an equal-norm or equiangular frame, then we say that G is equal-norm or

equiangular, respectively.
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Chapter 3

Equiangular Parseval Frames

3.1 Historical overview

Near the middle of the twentieth century, the problem of determining the maxi-

mal number of equiangular lines through K-dimensional Euclidean space appeared

in the mathematical literature. Although this classical problem was not originally

interpreted from a frame-theoretic perspective, we rephrase it here as follows.

3.1.1 Problem. For each K ∈ N, what is the maximal value N ∈ N for which there

exists an equal-norm, equiangular frame F = {fj}j∈ZN over FK?

In the real case, by taking the norms of the frame vectors to be of unit length, the

elementary formula

| cos θ| = |〈x, y〉|
‖y‖‖y‖

, θ is the acute angle between x, y ∈ RK , (3.1)

reveals that the challenge is to find the largest possible set of lines (spanned by

the frame vectors) for which the (acute) angles between all pairs of distinct lines is
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constant. While this question is relatively simple to understand, it has proven to be

difficult to answer, as a general solution remains unknown.

Its investigation began at least as early as 1948 for the real case, when Hanntjes

determined the maximal number of equiangular lines through R2 and R3 [50]. A

few decades later, work in RK continued as Delsarte, Goethels, Lemmens, Seidel,

van Lint, and other collaborators solved N for most of the values of K ranging

between 4 and 23 (see [93, 63] and references therein). The following result is

attributed to Gerzon in [63], which establishes a (rarely sharp) bound for N .

3.1.2 Theorem. (Gerzon bound, [63].) If F = {fj}j∈ZN is an equal-norm, equiangu-

lar frame for RK , then

N ≤ K(K + 1)

2
.

Around this time, results in the literature also began to reflect an interest in

the problem of determining the maximal number of equiangular lines in CK . In

[37, 60], a similar bound is provided for this case.

3.1.3 Theorem. If F = {fj}j∈ZN is an equal-norm, equiangular frame for CK , then

N ≤ K2.

In [94], Welch established a lower bound on the maximal magnitude among

pairwise inner products occurring among a set of lines, which characterizes equian-

gularity in the case of sharpness. For the purpose of future reference in this paper,

we trivially rescale the frame vectors’ squared norms in this result by a factor of

K
N

; however, it is usually formulated for the case where the frame’s vectors are unit

norm.
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3.1.4 Theorem. (Welch Bound, [94].) If F = {fj}j∈ZN is an equal-norm frame with

‖fj‖2 = K
N

for all j ∈ ZN and µN,K := max
l,j∈ZN ,l 6=j

|〈fj, fl〉|, then

CN,K ≤ µN,K ,

where CN,K =
√

K(N−K)
N2(N−1)

. Moreover, equality holds if and only if F is equiangular.

In light of this result, if F = {fj}j∈ZN is a frame with ‖fj‖2 = K
N

for all j ∈ ZN

that satisfies equality in this theorem, then

∑
j,l∈ZN

|〈fj, fl〉|2 =
∑

j,l∈ZN ,j 6=l

C2
N,K +

∑
j∈ZN

(
K

N
)2 = K.

Combining this observation with Theorem 4.1.2 (see the next chapter for details),

we see that F is Parseval. We record the constant CN,K =
√

K(N−K)
N2(N−1)

for future use.

This prompts the following definition.

3.1.5 Definition. Let F = R or F = C. If F = {fj}j∈ZN is an equiangular (N,K)-

frame over FK for which

N = max{N ′ ∈ N : an equiangular (N ′, K)-frame over FK exists},

then we say that F is maximal.

In 1999, Zauner conjectured in his doctoral thesis that maximal EPFs over CK

always achieve the bound in Theorem 3.1.3 and therefore always consist of K2

vectors[96, 97]. Moreover, he conjectured that one can always find a so-called

fiducial vector whose orbit is a maximal EPF under the unitary action of the Weyl-

Heisenberg group, after identifying vectors that are unimodular multiples of each
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other [96], see also [75, 79, 24]. These objects are appealing to many communities,

ranging from quantum theory, where they are referred to as symmetric, informa-

tionally complete, positive operator valued measures (SIC-POVMs) [75, 79, 3, 4],

to combinatorial design theory, where they correspond to complex projective 2-

designs [81, 52, 75, 86]. For these and other reasons, the search for equiangular

(K2, K)-frames over CK remains an important open problem in mathematics today.

Shortly after the turn of the millennium, equiangularity was investigated in a

frame-theoretic context for the first time by Holmes and Paulsen in [53] and Heath

and Strohmer in [86]. By relaxing the emphasis on maximality, frame researchers

were able to focus more on the properties and potential applications of general

EPFs. For example, they are shown to yield error correction codes which are opti-

mally resilient against one or two channel erasures [53] and are useful for larger

numbers of erasures as well [22]. In [86], their connections to several areas of

mathematics, including Grassmanian line packings (see Section 6.1 for details), are

studied, while, in [18, 9], their value is established for the problem of reconstruct-

ing signals when only the magnitudes of the frame coefficients are known. As the

diverse applicability of EPFs has become clearer over the last decade, researchers

have directed much attention to the question of when they exist and how to con-

struct them. In the next section, we discuss the existence problem and describe

many of the known tools for constructing equiangular Parseval frames.
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3.2 Existence and constructions of equiangular Par-

seval frames

Although the study of EPFs has received increasing attention over the last fifteen

years, their existence remains a topic about which we know very little. Even with

the bounds on the number of frame vectors provided in the preceding section, there

are gaps where EPFs do not exist which these bounds do not preclude.

To clarify what we mean by gaps, consider an equiangular (N,K)-frame over

FK . In order to span FK , the number of frame vectors must satisfy N ≥ K. If F = C,

then N ≤ K2 by Theorem 3.1.3, or if F = R, then N ≤ K(K+1)
2

by Theorem 3.1.2.

Unfortunately, equiangular (N,K)-frames do not exist for all K ≤ N ≤ K2 when

F = C nor for all K ≤ N ≤ K(K+1)
2

when F = R. For example, although N =

5 falls within these necessary bounds for both the real and complex fields when

K = 3, equiangular (5, 3)-frames exist for neither case by considering the Naimark

complement of the case where K = 2 and N = 5 (see Theorem 3.2.1 and the

following example for the details of this argument). Our understanding of these

gaps is still very primitive.

Indeed, until 2014, it was not completely known for which values 3 ≤ N ≤ 9

that equiangular Parseval frames consisting of N vectors exist over C3. Due to

various works, we knew that EPFs exist for N = 3, 4, 6, 7, 9 [58, 79, 86]; however,

the case of N = 8 was only recently settled in [89], where the author used a

computer-aided technique from algebraic geometry to prove that complex (8, 3)-

frames are never equiangular.

Although this example illustrates that our knowledge of this topic is still in an
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early stage, researchers have made steady progress over the last fifteen years with

the aid of tools from various branches of mathematics, including the theories of

groups, graphs, and combinatorics. Some of these results manifest as proofs of

nonexistence, identifying pairs (N,K) for which EPFs cannot exist, while other

results do the opposite, providing algorithms for constructing EPFs.

Before we summarize these techniques, we note that the set equality CK =

span{cx : c ∈ C, x ∈ RK} implies that any real EPF can be viewed as a complex EPF

over CK , while the converse is not true; similarly, a proof of nonexistence for a real,

equiangular (N,K)-frame does not, in general, extend to the complex case. As we

outline these results, we specify when a given method holds only in the complex

setting.

Two examples of EPFs that always exist in the real case are orthonormal bases

and those corresponding to regular simplices. Orthonormal bases are, by defini-

tion, equiangular (K,K)-frames. Applying the Gram-Schmidt algorithm to any ba-

sis yields such a frame, and this obviously works in the complex setting as well.

Only slightly less trivially, one can always obtain an equiangular (K + 1, K)-frame

over RK by taking the frame vectors as the vertices of a regular K-simplex centered

at the origin [86]. In fact, every equal-norm (K + 1, K)-frame is equiangular and

unitarily equivalent to a version of this frame where the individual vertices of the

simplex are allowed to vary by a factor of ±1. [47].

Thanks to the work of early pioneers on the subject, the study of EPFs over

RK can be reformulated as a graph-theoretic problem. In [53, 86], the authors

exploit results from [80] to show that the existence of a real EPF is equivalent to the

existence of an object known as a regular two-graph, thereby converting the problem

of locating real equiangular Parseval frames to the problem of finding such graphs.
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Because many regular two graphs had already been established in the literature by

this time [80], this characterization provided many immediate examples of pairs

(N,K) for which real EPFs exist. Concrete examples for many of these frames can

be found in [91].

Several nonexistence proofs for real EPFs have also emerged over the years.

Some proofs manifest as improvements on Gerzon’s necessary bound, including

[73], which improves the bound when the equiangular constant satisfies certain

conditions, and [13], where the authors use semidefinite programming to improve

the bound for 24 ≤ K ≤ 136. Other proofs of nonexistence include [87], where the

authors assert necessary integrality conditions on the relationship between K and

N , and [12], where the possibility of certain real EPFs are excluded due to their

relationship with certain spherical designs.

One common approach to locating a complex EPF is to construct its correspond-

ing Gramian. If G is the Gramian of an equiangular (N,K)-frame, then

G =
K

N
I + CN,KQ,

where the Q is an N ×N self-adjoint matrix with a vanishing diagonal and unimod-

ular off-diagonal entries known as the signature matrix of G. In [53], the authors

showed that an arbitrary N × N self-adjoint matrix with a vanishing diagonal and

unimodular off-diagonal entries is the signature matrix for the Gramian of an EPF

if and only if it has exactly 2 distinct eigenvalues. Motivated by this characteriza-

tion, the community has produced a multitude of such matrices. In [82], the author

used special subsets of N -element abelian groups which satisfy certain properties,
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called signature sets, to generate signature matrices by the action of their left reg-

ular representations on the corresponding free vector spaces. Sometimes signature

matrices for EPFs are built up directly with roots of unity [21, 23, 39], while, in

other cases, authors focus on their relationship to Hadamard and conference matri-

ces to obtain them [42, 88, 86]. In [86], the authors used conference matrices to

prove the existence of two infinite families of equiangular (2K,K)-frames.

On the other hand, principles from group representation theory and combina-

torics have played an important role in constructing complex EPFs at the level of

the individual frame vectors.

Given an abelian group Γ with |Γ| = N , a broad class of equal-norm (N,K)-

frames, known as harmonic frames, can be obtained by choosing any K rows from

Γ’s character table, setting the remaining columns as frame vectors and rescaling

appropriately [48, 31]. If these K rows can be chosen to correspond to a difference

set, which is a subset of Γ satisfying certain combinatorial conditions, then the

generated harmonic frame is equiangular [58, 95]. Because difference sets are

well-studied [34], this construction gave rise to several infinite families of EPFs. In

the next two sections, we discuss harmonic frames in further detail, focusing on the

case where Γ = ZN .

Another construction that has led to several infinite families of EPFs is the

Steiner construction, which is also rooted in principles of combinatorial design the-

ory [45]. One can construct an equiangular (K + 1, K)-frame with unimodular

entries by setting the frame vectors as the columns of a (K + 1) × (K + 1) DFT

matrix with a single row removed. Such a frame has the intriguing property that

the magnitude of the inner products between its vectors is equal to the magnitude

of the product of any two entries of its vectors. By exploiting this, the authors were
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able to perform a tensor-like product with combinatorial objects called Steiner sys-

tems to generate EPFs. Similar to the cases of regular two graphs and difference

sets, this result produced extensive families of EPFs because Steiner systems are

well-studied [34]. Recently, a certain class of Steiner EPFs, called Kirkman EPFs,

were shown to be unitary equivalent to a certain subset of harmonic EPFs [56]. In

the next section, we generalize the Steiner construction to generate infinite families

of equidistributed frames

We remark once more that Zauner conjectured that maximal, complex EPFs can

always be obtained by the representation induced by the Weyl-Heisenberg group

[96, 24]. The challenge is that a generating vector, called a fiducial vector, cannot

be arbitrarily chosen, but must instead be carefully selected. It is believed that such

vectors exist for all K as an eigenvector of a specific element of the Clifford group,

which is the Heisenberg group’s normalizer. Fiducial vectors have been confirmed

analytically for many values between 2 ≤ K ≤ 48 and with high numerical precision

for all K ≤ 67 [79]. Their study remains an active topic of mathematical research

[34, 7, 59, 6, 5].

We conclude this section with the following valuable tool, often referred to as

the Naimark Complement, which, roughly speaking, halves the problem of studying

EPFs.

3.2.1 Theorem. (Naimark.) If F is an (N,K)-frame over FK , then F is equiangular

if and only if there exists an (N,N − K)-frame F ′ over FN−K such that F ′ is also

equiangular.

Proof. Since F is an (N,K)-frame, its Gram matrix G is an orthogonal projection
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onto some subspace of FN and IN −G is an orthogonal projection onto the comple-

mentary subspace, which corresponds to a class of unitarily equivalent (N,N −K)-

frames as described in Section 2.2.1. Since the magnitudes of the off-diagonal

entries of G and IN −G are identical, the claim follows.

For example, since neither real nor complex, equiangular (5, 2)-frames can exist

due to the bounds in Theorem 3.1.2 and Theorem 3.1.3, respectively, it follows from

Theorem 3.2.1 that equiangular (5, 3)-frames do not exist in these settings either.

Similarly, since complex, equiangular (7, 3)-frames exist due to a difference set con-

struction [58], taking the Naimark complement shows that complex, equiangular

(7, 4)-frames must also exist.

For a more thorough account of the current knowledge regarding the existence

and construction of equiangular Parseval frames, we refer to [44].

3.3 Generalizations of equiangular Parseval frames

To address the issue of nonexistence of equiangular Parseval frames, this section

presents two classes of equal-norm (N,K)-frames that include equiangular frames

whenever they exist. Both classes are nonempty for all pairs of positive integers K

and N ≥ K.
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3.3.1 Equidistributed frames

While studying frame potentials, it became apparent that a certain class of critical

points possess what we call the equidistributed property. This class of frames in-

cludes many structured frames that have already appeared in the literature: equian-

gular Parseval frames, mutually unbiased bases, and group frames. Surprisingly,

the numerical implementation of a relatively simple optimization problem based

on frame potentials led to frames with special structures, including Examples 3.3.4

and 3.3.5, as well as Examples 3.3.21 and 3.3.22 further below.

3.3.1 Definition. Let F = {fj}Nj=1 be an (N,K)-frame and letG be its Gramian. The

frame F is called equidistributed if for each pair p, q ∈ ZN , there exists a permutation

π on ZN such that |Gj,p| = |Gπ(j),q| for all j ∈ ZN . In this case, we also say that G is

equidistributed.

In other words, F is equidistributed if and only if the magnitudes in any column

of the Gram matrix repeat in any other column, up to a permutation of their posi-

tion. For Parseval frames, equidistribution implies that all frame vectors have the

same norm.

3.3.2 Proposition. If F is an equidistributed (N,K)-frame, then ‖fj‖2 = K/N for

each j ∈ ZN .

Proof. By assumption, for each p ∈ ZN there exists π such that |Gj,p| = |Gπ(j),1|

holds for the entries of the associated Gram matrix G for all j ∈ ZN and thus by the

Parseval identity

‖fp‖2 =
N∑
j=1

|〈fp, fj〉|2 =
N∑
j=1

|Gj,p|2 =
N∑
j=1

|Gπ(j),1|2 = ‖f1‖2 .
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The trace condition
∑N

j=1Gj,j =
∑N

j=1 ‖fj‖2 = K for the Gram matrices of Parseval

frames then implies that each vector has the claimed norm.

An equidistributed frame can be interpreted as a special case of an s-distance

set, which is an equal-norm (N,K)-frame, F = {fj}j∈ZN , for which s = |{|〈fj, fl〉| :

j, l ∈ ZN , j 6= l}|; that is, s is the number of distinct magnitudes of inner products

occurring between the frame vectors. These objects are interesting when s is small

relative to N(N−1)
2

, because they are difficult to construct and often exhibit more

geometric structure. If a frame is equidistributed, then it is an s-distance set with

1 ≤ s ≤ N − 1, because all possible magnitudes of inner products between its

distinct vectors occur on the first row of the Gram matrix. Gerzon-like bounds for

the maximal number of vectors that can be achieved for various values of s are

provided in [37, 71], while the special case s = 2 is emphasized in the study of

mutually unbiased bases [77, 54, 4], which we discuss more below.

To illustrate our definition of equidistributed frames, we provide several exam-

ples. To begin, every equiangular Parseval frame is equidistributed.

3.3.3 Example. Equiangular Parseval frames. Let G be the Gram matrix of an

equiangular (N,K)-frame. Since the magnitudes of the entries of any column of

G consist of N − 1 instances of CN,K and one instance of K
N

, G is equidistributed.

A set of mutually unbiased bases is union of orthonormal bases such that the

modulus of the inner product between any two vectors from distinct bases is con-

stant. Such frames share many properties with equiangular Parseval frames [78,

55]. A slightly more general class, mutually unbiased basic sequences, consists of

frames which are unions of orthonormal sequences such that the modulus of the in-

ner product between any two vectors from distinct sequences is constant. After an
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appropriate rescaling of the vectors’ norms, every mutually unbiased basic sequence

is equidistributed.

3.3.4 Example. Mutually Unbiased Basic Sequences. Let N = ML and G ∈ MN,K

be such that the matrix Q whose entries are Qj,l = |Gj,l| is the sum of Kronecker

products of the form Q = bIM ⊗ IL + c(JM − IM) ⊗ JL, where b > 0, c ≥ 0, the

matrices IM and IL are the M ×M and L×L identity matrices, and JM and JL are

the matrices of corresponding size whose entries are all 1. Each row of G has one

entry of magnitude b, L − 1 vanishing entries and (M − 1)L entries of magnitude

c, so G is equidistributed. We also provide a concrete nontrivial example of such a

(6, 4)-frame with M = 3 and L = 2.

Let ω = e2πi/8, a primitive 8-th root of unity, λ =
√

1
18

and let

G =



2
3

0 λ iλ λ λ

0 2
3

iλ λ −λ λ

λ −iλ 2
3

0 λω5 λω3

−iλ λ 0 2
3

λω λω3

λ −λ λω3 λω7 2
3

0

λ λ λω5 λω5 0 2
3


.

One can verify that G = G∗ = G2 and clearly tr(G) = 4. Thus, G ∈ M6,4. Since the

magnitudes of the entries of every column consist of one instance of 0, one instance

of 2
3
, and four instances of λ, it follows that G is equidistributed.

Next, we present an example for a type of frame that generalizes mutually

unbiased basic sequences and equiangular Parseval frames. We call it a block-

equiangular Parseval frame.
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3.3.5 Example. Block-equiangular Parseval frame. Let N = ML and G ∈ MN,K

be such that the matrix Q whose entries are Qj,l = |Gj,l| is the sum of Kronecker

products of the form Q = bIM⊗IL+cIM⊗ (JL−IL)+d(JM−IM)⊗JL, where b > 0,

c, d ≥ 0. Each row of G has one entry of magnitude b, L− 1 entries of magnitude c,

and (M − 1)L entries of magnitude d. We provide an example for the Gram matrix

of such a (8, 3)-frame with M = 4 and L = 2.

Let µ =

√
7/3

8
, ρ = 1

24
(−3 + 2

√
3i), ζ = arccos(

√
3/7/2), λ = 1

120
(
√

21 − 24e−iζ),

ν = 1
120

(7 + (8− 20eiπ/3)e2iζ), κ = 1
120

(7 + (8 + 20e2iπ/3)e2iζ), then

G =



3
8

1
8

µ µ µ µ µ µ

1
8

3
8

λ λ λ λ λ λ

µ λ 3
8

κ ρ ρ ν ρ

µ λ κ 3
8

ρ ν ρ ρ

µ λ ρ ρ 3
8

κ ρ ν

µ λ ρ ν κ 3
8

ρ ρ

µ λ ν ρ ρ ρ 3
8

κ

µ λ ρ ρ ν ρ κ 3
8


is seen to be equidistributed by checking |κ| = 1

8
and |ρ| = |ν| = |λ| = µ.

3.3.6 Example. Group frames. Let Γ be a finite group of size N = |Γ| and π : Γ →

B(H) be an orthogonal or unitary representation of Γ on the real or complex K-

dimensional Hilbert space H, respectively. Consider the orbit F = {fg = π(g)fe}g∈Γ

generated by a vector fe of norm ‖fe‖ =
√
K/N , indexed by the unit e of the

group. If F is a Parseval frame F = {fg}g∈Γ, then F is equidistributed, because

〈fg, fh〉 = 〈π(h−1g)fe, fe〉 and left multiplication by h−1 acts as a permutation on the

group elements.
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To have the Parseval property, it is sufficient for the representation to be irre-

ducible [92], but it is not necessary. For example, cyclic (N,K)-frames can be con-

structed with representations of (ZN ,+) onH, although irreducible representations

of abelian groups are always of degree 1.

Consider the Discrete Fourier Transform matrix, D = 1√
N

(e2πijl/N)Nj,l=1. It is a

rescaled matrix representation of the character table for ZN and its columns form

an orthonormal basis for CN . If A is a K × N matrix obtained by deleting any

choice of N − K rows from D, then its columns form a Parseval frame for CK

by Theorem 2.2.2, because the deletion of rows is isomorphically equivalent to an

application of a coordinate projection to the columns of D. This process produces a

harmonic frame as defined in the preceding section.

3.3.7 Definition. Let n1, n2, ..., nK ∈ {1, 2, ..., N} be any choice of distinct integers.

An (N,K)-frame F = {fj}j∈ZN , where fj = 1√
N

(e2πijnl/N)Kl=1 for all j ∈ ZN , is called

a cyclic (N,K)-frame generated by the sequence {n1, n2..., nK}. When the sequence

{n1, n2..., nK} is not important, we call F a cyclic frame.

If F = {fj}j∈ZN is a cyclic frame, then it is the orbit of the vector whose entries

are all 1√
N

under the unitary action of the representation for (ZN ,+) defined by

j 7→ diag(e2πijnl/N)Kj=1.

Thus, every cyclic frame is equidistributed, and, because the construction described

above works for every pair of positive integers K and N with K < N , the existence

of equidistributed frames is guaranteed in the complex setting.

3.3.8 Theorem. For every N > K, an equidistributed (N,K)-frame over CK exists.
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In the last section, we described two classes of EPFs with constructions based

on combinatorial design principles: harmonic EPFs generated by difference sets

and Steiner EPFs. In the upcoming example, we combine these ideas to produce

infinite families of equidistributed frames. To begin, we explain the difference set

construction for EPFs from [58, 95].

3.3.9 Definition. A (K,λ) -difference set for ZN is a subset of distinct elements

{n1, n2, ..., nK} ⊂ ZN such that every nonzero element x ∈ ZN can be expressed as

x = nj − nl in exactly λ ways, where λ is a positive integer.

3.3.10 Theorem. (Cyclic EPFs, [58, 95].) If F is a cyclic (N,K)-frame generated by

the sequence {n1, n2..., nK}, then F is equiangular if and only if {n1, n2, ..., nK} is a

(K,λ) -difference set for ZN where λ = K(K−1)
N−1

is a positive integer.

Proof. This is proved at the end of Section 3.4.2 with an approach based on the

Fourier transform.

For example, the set {1, 2, 4} is a (3, 1)-difference set of the additive group Z7,

since 1− 2 = 6, 2− 1 = 1, 1− 4 = 4, 4− 1 = 3, 2− 4 = 5 and 4− 2 = 2, so the cyclic

frame generated by this set is equiangular.

Now we turn to Steiner systems.

3.3.11 Definition. Let α and β be positive integers so that κ := α−1
β−1

and α
β
κ are also

positive integers. An ακ
β
× α matrix A whose entries consist entirely of zeros and

ones is an (α, β)-Steiner matrix if

1. A has exactly β ones in each row,

2. A has exactly κ ones in each column, and
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3. every two distinct columns of A have a dot product of one.

In [45], the authors used Steiner systems to generate EPFs. Here, we generalize

their approach to generate equidistributed frames

3.3.12 Example. Steiner equidistributed frames. Let A be an (α, β)-Steiner matrix

with κ := α−1
β−1

as above, let W ∗ be the synthesis matrix for an equiangular cyclic

(ν, κ)-frame C generated by a (κ, λ) -difference set, and let V be the αν × ακ
β

matrix

whose adjoint V ∗ is defined as follows:

1. For each j ∈ {1, .., α}, let Fj be the ακ
β
× ν matrix obtained by replacing each

one in the jth column of A with a distinct row from W ∗ and each zero entry

with a row of zeros.

2. Concatenate and rescale to obtain V ∗ = 1√
β
[F1F2 · · ·Fα].

Since the columns ofW ∗ are the frame vectors of C, the entries ofW ∗ are of constant

magnitude 1√
ν

by the definition of a cyclic frame. Using this fact along with property

(1) in the definition of a Steiner matrix, it is straightforward to verify that V ∗V =

Iακ/β, so the columns of V ∗ form an (αν, ακ
β

)-frame F , and by using this fact with

property (2), F is equal-norm. To see that F is equidistributed, let j ∈ {1, 2, ..., α},

s ∈ Zν and consider the frame vector f (j)
s corresponding to sth column of the block

Fj. Since C is equiangular, it follows that

|〈f (j)
s , f

(j)
t 〉| =

1

β
Cν,κ

for all s ∈ Zν with s 6= t. On the other hand, by the fact that the magnitudes of

the nonzero entries of W ∗ are 1√
ν

combined with property (3) in the definition of a
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Steiner matrix, we have

|〈f (j)
s , f

(l)
t 〉| =

1

νβ

for all t ∈ Zν and l ∈ {1, 2, ..., α} with j 6= l. In terms of the Gramian, this gives ν−1

instances of 1
β
Cν,κ and ν(α− 1) instances of 1

νβ
occurring among the magnitudes of

the off-diagonal entries of the column corresponding to the vector f (j)
s . Since j and

s were arbitrary, this shows that F is equidistributed.

For a concrete example, let ω7 = e2πi/7 and let

W ∗ =
1√
7


ω

1(1)
7 ω

2(1)
7 ω

3(1)
7 ω

4(1)
7 ω

5(1)
7 ω

6(1)
7 ω

7(1)
7

ω
1(2)
7 ω

2(2)
7 ω

3(2)
7 ω

4(2)
7 ω

5(2)
7 ω

6(2)
7 ω

7(2)
7

ω
1(4)
7 ω

2(4)
7 ω

3(4)
7 ω

4(4)
7 ω

5(4)
7 ω

6(4)
7 ω

7(4)
7

 .

This is the synthesis matrix for the cyclic (7, 3)-frame C generated by the (3, 1)-

difference set {1, 2, 4} described above, so C is equiangular by Theorem 3.3.10. Let

A =



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1


,

which is a (4, 2)-Steiner matrix with κ = 3. If r1, r2, r3 denote the rows of W ∗ and z
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denotes the 1× 7 zero matrix, then the above construction yields

V ∗ =
1

2



r1 r1 z z

r2 z r1 z

r3 z z r1

z r2 r2 z

z r3 z r2

z z r3 r3


,

which is the synthesis matrix for an equidistributed (28, 6)-frame with 6 instances of

1
2

√
2
49

and 21 instances of 1
14

occuring among the magnitudes of off-diagonal entries

for any choice of column from its Gram matrix.

Numerous examples of difference sets and Steiner matrices can be found in

combinatorial design literature [34], so this construction generates many infinite

families of equidistributed frames.

In the complex case, the Steiner EPFs introduced in [45] can be viewed as spe-

cial cases of Steiner equidistributed frames. It is easy to check that {1, 2, ..., κ}

always forms a (κ, κ − 1)-difference set for Zκ+1 and the cyclic EPF generated by

this sequence has the equiangular constant Cκ+1,κ = 1
κ+1

. In light of this, if the

equiangular cyclic frame C in Example 3.3.12 is generated by this sequence, then F

is a Steiner EPF.

As a final example, tensor products of equidistributed frames are again equidis-

tributed.

3.3.13 Example. Tensor Products of Equidistributed Frames. Let 1 ≤ K1 < N1 and

1 ≤ K2 < N2 be integers, let G1 ∈MN1,K1 and G2 ∈MN2,K2 be equidistributed, and
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consider the Kronecker product G = G1⊗G2. Then G is an N1N2×N1N2 Hermitian

matrix such that G2 = (G1 ⊗G2)2 = G2
1 ⊗G2

2 = G1 ⊗G2 = G, so it is an orthogonal

projection. Furthermore, Gj,j = K1K2

N1N2
for all j ∈ ZN1N2, so tr(G) = K1K2. Therefore,

G ∈ MN1N2,K1K2. Now let p, q ∈ ZN1N2 with p = p1N1 + p2 and q = q1N1 + q2, and

let Q,Q1, and Q2 denote the matrices whose entries are the absolute values of the

entries of G,G1, and G2, respectively. Since G1 and G2 are equidistributed, row p of

Q is of the form

ρp = ( (Q1)p1,1X (Q1)p1,2X · · · (Q1)p1,N1X ),

where X is row p2 of Q2 and row q of Q is of the form

ρq = ( (Q1)q1,1Y (Q1)q1,2Y · · · (Q1)q1,N1Y ),

where Y is row q2 of Q2. Since G1 and G2 are equidistributed, there is π1 such

that |(Q1)q1,j| = |(Q1)q2,π1(j)| for each j ∈ ZN1 and similarly, the magnitudes of the

entries in Y are obtained from those in X by applying a permutation π2 to the

indices. Thus, the magnitudes of the entries of ρq are a permutation of those of ρp,

so G is equidisributed.

In analogy to the Naimark complement for EPFs, a similar duality holds for

equidistributed frames.

3.3.14 Proposition. (Naimark complement for equidistributed frames.) IfF = {fj}j∈ZN

is an (N,K)-frame over FK , then F is equidistributed if and only if there exists an

equidistributed (N,N −K)-frame F ′ = {f ′j}j∈ZN over FN−K which satisfies

|〈f1, fj〉| = |〈f ′1, f ′j〉| for all j ∈ ZN .
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Proof. The proof is identical to that of Theorem 3.2.1.

To conclude this section, we characterize equidistributed frames in terms of fam-

ilies of sums of exponentials. This result is fundamental to the classification of crit-

ical points of the combined potential, Φα,β,δ,η, in Theorem 6.3.16. To prepare this,

we introduce the notion of a frame being α-equipartitioned.

3.3.15 Definition. Let F = {fj}Nj=1 be an (N,K)-frame and fix α ∈ (0,∞). For any

x ∈ ZN , define Aαx :=
∑
j∈ZN

eα|〈fj ,fx〉|
2. If Aαx = Aαy for all x, y ∈ ZN , then we say that

F is α-equipartitioned. If G is the Gram matrix of F , then we also say that G is

α-equipartitioned.

3.3.16 Proposition. Let G = (Gj,l)
N
j,l=1 be the Gramian of an (N,K)-frame F , and

let I ⊆ (0,∞) be any open interval, then G is equidistributed if and only G is α-

equipartitioned for all α ∈ I.

Proof. If G is equidistributed, the magnitudes of every column are the same as those

of any other column, up to permutation. Thus, by definition of α-equipartitioning,

it is trivial to verify that then G is α-equipartitioned for all α ∈ I.

Conversely, consider for each x ∈ ZN the function fx : (0,∞) → R : α 7→∑
j∈ZN

eα|Gx,j |
2. Let x, y ∈ ZN be arbitrary. If fx(α) = fy(α) for all α ∈ R then since

fx and fy are both analytic functions which agree on an open interval, it follows

by the principle of analytic continuation that they must agree on all of (0,∞). In

particular, this means that
∑
j∈ZN

eα|Gx,j |
2

=
∑
j∈ZN

eα|Gy,j |
2 for all α ∈ (0,∞). Thus,

lim
α→∞

1

α
log

(∑
j∈ZN

eα|Gx,j |
2

)
= lim

α→∞

1

α
log

(∑
j∈ZN

eα|Gy,j |
2

)
.
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If the maximum magnitude in row x is not equal to the maximum magnitude of

row y, then this equation cannot hold. Similarly, if these maximal magnitudes did

not occur with the same multiplicity in each column, then again the equation would

not be possible. Thus, we can remove the index sets Mx and My corresponding to

the maximal magnitudes in rows x and y from the sum in the definition of fx and

fy to obtain the new identity

∑
j∈ZN\Mx

eα|Gx,j |
2

=
∑

j∈ZN\My

eα|Gy,j |
2

for all α ∈ (0,∞). Repeating the procedure of isolating the strongest growth rate

shows that every possible magnitude that appears in row x must agree in multi-

plicity with every possible magnitude that appears in row y. In other words, the

magnitudes in row x are just a permutation of those in row y. Since x and y were

arbitrary, we conclude that G is equidistributed.

3.3.2 Grassmannian equal-norm Parseval frames

In [86], the authors coined the term Grassmannian frame to describe a frame F =

{fj}j∈ZN over RK which minimizes the maximal magnitude among inner products

between distinct frame vectors subject to ‖fj‖ = 1 for all j ∈ ZN . Although EPFs do

not exist for all choices of K and N ≥ K, a compactness argument shows that this

class of frames is a useful generalization which is never empty. This section concerns

an alternative class of frames: those which optimize this objective function with the

additional constraint of Parsevality. Because there are non-equiangular solutions to

both programs which coincide, we digress momentarily to discuss the first case and

its relationship to the line packing problem.
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The origin of the term Grasmannian frame is attributed to the problem of pack-

ing points into the Grassmannian space G(K,L), which is the compact Riemannian

manifold consisting of all L-dimensional subspaces in RK [68].

3.3.17 Problem. Given N,K,M ∈ N with K ≥M and a continuous metric d defined

on G(K,L), how can one arrange a set of N subspaces {Sj}j∈ZN in RK so that it

maximizes

min
j,l∈ZN ,j 6=l

d(Sj, Sl)?

The compactness of G(K,L) and continuity of this objective function show that

a maximizer for this problem, called a Grassmannian packing, always exists, so the

problem is well-defined. In their landmark paper [35], Conway, Hardin, and Sloane

chose this metric to be the chordal distance defined by

dc(S, T ) =
√

sin2 θ1 + · · ·+ sin2 θL,

where {θj}Nj=1 are the principal angles between the subspaces S and T . By asso-

ciating the subspaces in RK to their corresponding orthogonal projection matrices,

they embedded the metric space (G(K,L), dc) into a Euclidean sphere.

3.3.18 Theorem. (Spherical Embedding, [35].) The map

S 7→ P̃S = PS −
L

K
IK

is an isometric embedding of G(K,L) into the sphere of radius
√
L/2 in RD with D =

K(K+1)
2
−1, where PS denotes the orthogonal projection onto the subspace S ∈ G(K,L)

and dc(S, T ) = 1√
2
‖PS − PT‖2.

Proof. Suppose L ≤ K/2.
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By the requirements of symmetricity and that the trace is L for any matrix which

projects orthogonally onto an element of G(K,L), it follows by dimension counting

that span{P̃S ∈ MK(R) : PS projects orthogonally onto S ∈ G(K,L)} and RD are

isomorphic as vector spaces. Since every such orthogonal projection is the Gram

matrix for a (K,L)-frame, it follows from Parsevality that ‖P̃S‖2
2 = L(K−L)

K
for all

S ∈ G(K,L). Therefore, by the equality of the L2-norm and the Hilbert-Schmidt

norm on MK(C), it is sufficient to show that dc(S, T ) = 1√
2
‖PS − PT‖H.S. for all

S, T ∈ G(K,L).

Let S, T ∈ G(K,L) with principal angles {θj}Lj=1. With an appropriate choice of

basis, we can assume S is spanned by the columns of the matrix AS = (ej)
L
j=1, where

{ek = (δj,k)
K
j=1}Kk=1is the canonical basis for RK . Furthermore, after transformation

by an appropriate orthogonal operator, we may assume that T is spanned by the

columns of the matrixAT = (cos θjej+sin θjej+L)Lj=1. Because the columns ofAS and

AT are orthonormal bases for S and T , respectively, their corresponding orthogonal

projections are given by PS = ASA
∗
S = diag (1L(j))Kj=1 and PT = ATA

∗
T , where 1L is

the indicator function on the set {1, 2, · · · , L}. In particular, tr(PSPT ) =
L∑
j=1

cos2 θj,

so

dc(S, T )2 =
L∑
j=1

sin2 θj

= L−
L∑
j=1

cos2 θj

= L− tr(PSPT )

=
1

2
‖PS − PT‖2

H.S.
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This proves the claim for L ≤ K/2. The case L > K/2 follows by noting that the

elements of G(K,L) are just the orthogonal complements of elements in G(K,K −

L).

This result allowed the authors of [35] to extrapolate an upper bound on the

minimal positive distance between the subspaces of a packing from Rankin’s results

on spherical caps [74]. A spherical cap centered at x with angle θ is defined by

Cx(θ) = {y ∈ RD : ‖y‖2 = 1, arccos (〈x, y〉) < θ} and a θ-packing is a set of points

{x1, ..., xt} on the unit sphere in RD such that Cxj(θ) ∩ Cxl(θ) = ∅ for all j 6= l.

In particular, if given a Grassmannian packing with a sufficiently large number of

subspaces, then, after embedding it into the sphere, the minimal distance between

distinct points cannot exceed the minimal distance between distinct vertices on a

regular orthoplex, which is a generalization of the octahedron to higher dimensions

given by the unit ball induced by the l1 norm.

3.3.19 Theorem. (Orthoplex Bound, [74, 35].) Let N > K(K+1)
2

. If {Sj}j∈ZN ⊂

G(K,L) is a Grassmannian packing, then

min
j,l∈ZN ,j 6=l

dc(Sj, Sl)
2 ≤ L(K − L)

K
for all j, l ∈ ZN , (3.2)

and equality occurs if the N points correspond to a subset of the (K−1)(K+2) vertices

of a regular orthoplex.

Proof. By Theorem 3.3.18, we can identify {Sj}j∈ZN with points {x′j}j∈ZN on the

sphere with radius
√

L(K−L)
K

centered at the origin in RD, where D = K(K+1)
2
− 1,

and we have

dc(Sj, Sl)
2 =

1

2
‖x′j − x′l‖2

2 =
L(K − L)

K
(1− cosφj,l), (3.3)
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where 0 ≤ φj,l ≤ π is the angle between x′j and x′l.

Thus, (3.2) is equivalent to showing min
j,l∈ZN ,j 6=l

(1−cosφj,l) ≤ 1,which is equivalent

to showing

φmin := min
j,l∈ZN ,j 6=l

φj,l ≤
π

2
, (3.4)

and because the angles between the vectors {x′j}j∈ZN do not depend on their lengths,

we re-identify them by their corresponding unit vectors {xj =
√

K
L(K−L)

x′j : j ∈ ZN}.

Since these points correspond to a Grassmannian packing, φmin is maximal. There-

fore, after observing that two arbitrary but distinct caps Cxj(θ) and Cxl(θ) are dis-

joint if and only if φmin ≥ 2θ, we see that (3.4) and hence (3.2) will follow if we

can show that θ = π
4

is the maximal value for which N points can form a θ-packing

on the unit sphere in RD.

To prove this, let D ∈ N with D > 1 and define ND(θ) to be the maximum

number of points that can form a θ-packing on the unit sphere in RD. Because

ND(θ) is clearly non-increasing in θ, (3.2) will follow by verifying the claim that

ND(θ) ≤ D + 1 for all θ > π
4
.

To prove this, let θ > π
4

and induct on D. We have N2(θ) ≤ 3, so suppose

ND−1(θ) ≤ D and, by way of contradiction, suppose there exists a θ-packing con-

sisting of D + 2 points x1, x2, .., xD+2 on the unit sphere in RD. With no loss in

generality, we can assume that that xD+2 = eD, which implies

xj(D) = 〈xj, xD+2〉 = cosφj,D+2 ≤ cos 2θ < 0, for all j ∈ {1, 2, ..., D + 1}, (3.5)

where xj(l) = 〈xj, el〉 denotes the lth coordinate of xj. None of the remaining points
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can be antipodal to xD+2, for if xa = −eD for some 1 ≤ a ≤ D + 1, then

xj(D) = −〈xj, xa〉 = − cosφj,a ≥ cos 2θ > 0, for all j ∈ {1, 2, ..., D + 1} with j 6= a,

which contradicts (3.5). Therefore,

− 1 < xj(D) < 0 for all j ∈ {1, 2, ..., D + 1}. (3.6)

Next, define D+ 1 points y1, ..., yD+1 on the unit sphere in RD−1 by deleting the Dth

coordinates of x1, x2, ..., xD+1 and normalizing; that is, let

yj(l) =
1

λj
xj(l), for l ∈ {1, 2, ..., D − 1} and j ∈ {1, 2, ..., D + 1},

where

λj =

√√√√D−1∑
l=1

(xj(l))2 =
√

1− (xj(D))2,

which is well-defined since 0 < λj by (3.6).

Next, fix j, l ∈ {1, ..., D + 1} with j 6= l and observe that

cosφ′j,l = 〈yj, yl〉

=
1

λjλl
(〈xj, xl〉 − xj(D)xl(D))

≤ 1

λjλl
(cos 2θ − cos2 2θ)

≤ ψ,

where ψ = 1
λjλl

cos 2θ
1+cos 2θ

and φ′j,l denotes the angle between yj and yl.
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Because θ > π
4
, it follows that

−1 ≤ 〈yj, yl〉 ≤ ψ < 0,

which implies

ϕ :=
arccos(ψ)

2
∈
(π

4
,
π

2

]
.

Thus,

cosφ′j,l ≤ cos 2ϕ for all j, l ∈ {1, 2, ..., D + 1} with j 6= l,

which contradicts the induction hypothesis, since y1, ..., yD+1 form a ψ-packing on

the unit sphere in RD−1. Therefore, ND(θ) ≤ D + 1 and the claim follows.

To see that equality in (3.2) can be achieved whenever the embedded points

correspond to a regular orthoplex, let V = {±ej : j ∈ {1, 2, ..., D}}. This set of 2D

points corresponds to the vertices of a regular orthoplex, and it is straightforward

to verify that V forms a π
4
-packing. The claim follows since removing points from

this set will not affect the π
4
-packing property.

In the case L = 1, the chordal distance becomes dc(S, T ) = sin θ1, so the prob-

lem simplifies to maximizing the smallest (acute) angle between any pair of lines

through the origin in RK . If F = {fj}j∈ZN is a set of unit vectors that generates a

set of N 1-dimensional subspaces in RK , then the Pythagorean theorem and Equa-

tion 3.1 show that maximizing the smallest angles between these lines is equivalent

to minimizing the maximal magnitude of inner products between elements of F .

Because an optimal line packing will obviously span RK whenever N ≥ K, it fol-

lows that the set F is a frame in this case. Thus, the packing problem for G(K, 1)
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with N ≥ K is equivalent to the problem of locating Grassmanian frames consisting

of N vectors over RK , so their existence and the orthoplex bound discussed above

carry over.

Next, we consider a modified version of Grassmannian frames, which are opti-

mizers for this problem when the additional restriction of Parsevality is imposed.

Once again, we express this property in terms of the corresponding Gram matrices.

3.3.20 Definition. Given the Gram matrix G = (Gj,l)
N
j,l=1 of a frame consisting of

N vectors over FK , define its worst-case coherence as

µ(G) = max
j,l∈ZN ,j 6=l

|Gj,l|.

A frame F is called a Grassmannian equal-norm Parseval frame if it is an equal-

norm (N,K)-frame and its Gram matrix G satisfies

µ(G) = min
G′∈MN,K∩ΩN,K

µ(G′) ,

where ΩN,K denotes the set of Gram matrices corresponding to equal-norm frames

F = {fj}Nj=1 over FK with ‖fj‖2 = K/N for all j ∈ ZN .

An argument similar to the proof of Proposition 2.2.7 shows thatMN,K ∩ΩN,K ,

the set of Gram matrices belonging to equal-norm (N,K)-frames , is compact, and

it is nonempty, as shown in [32]. By the continuity of the maximal off-diagonal

magnitude, minimizers always exist over this restricted space.

Since EPFs achieve the Welch bound, it follows from Theorem 3.1.4 that Grass-

mannian frames, Grassmanian equal-norm Parseval frames and EPFs are identical

for all settings in which equiangular (N,K)-frames exist. More generally, the set
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containment MN,K ∩ ΩN,K ⊂ ΩN,K implies that a tight frame which is a Grass-

mannian frame is, after an appropriate rescaling of the vector norms, a Grassman-

nian equal-norm Parseval frame. To demonstrate that this new definition is not

redundant, we note that examples of Grassmanian frames which are not tight are

provided in [16].

In [53], Grassmannian equal-norm Parseval frames are shown to be the optimal

frames when frames are used as analog codes and up to two frame coefficients

are erased in the course of a transmission. Based on the numerical construction

of optimal frames for R3, they did not seem to have a simple geometric structure,

apart from the case of equiangular Parseval frames. Nevertheless, it is intriguing

that there are other dimensions for which we can find Grassmanian equal-norm

Parseval frames that are not equiangular, but equidistributed. We provide examples

for the case where F = R.

3.3.21 Example. Let K = 2, N > 3, and consider the (N, 2)-frame with analysis

operator V whose frame vectors are given by the columns of the synthesis matrix,

V ∗ =

√
2

N


 cos(πj/N)

sin(πj/N)



N

j=1

.

This frame is easily verified to be a nonequiangular and Parseval, but it is equidis-

tributed because it is a group frame induced by unitary action under (ZN ,+). Fur-

thermore, as shown in [16], this frame is a Grassmannian frame after scaling the

frame vectors to unit length, so it must also be a Grassmannian equal-norm Parseval

frame.

3.3.22 Example. Let K = 4 and N = 12. Consider the (12, 4)-frame F with anal-

ysis operator V whose vectors are given by the columns of the following synthesis
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matrix.

V ∗ =



2a 0 0 0 a a a −a a a a −a

0 2a 0 0 a a −a a a −a a a

0 0 2a 0 a −a −a −a a −a −a −a

0 0 0 2a a −a a a −a −a a −a


,

where a = 1
2
√

3
. This is an equal-norm sequence of vectors which can be grouped

into 3 sets of 4 orthogonal vectors, thus it is straightforward to verify that this is a

Parseval frame for R4. In addition, inspecting inner products between the vectors

shows that they form, up to an overall scaling of the norms, a mutually unbiased

basis. Thus F is equidistributed, as in Example 3.3.4. To see that this is a Grass-

mannian equal-norm Parseval frame, we show that it corresponds to an optimal line

packing. The absolute values of the sines of all possible angles between frame vec-

tors belong to the set {1,
√

3/2}. By the orthoplex bound in Theorem 3.3.19,
√

3/2

is indeed the largest possible value that the sine of the smallest angle can achieve.

Therefore, these vectors are spanned by the lines of an optimal packing in G(4, 1),

so they form a Grassmannian frame. As with the previous example, because F is a

Parseval frame which is simultaneously a Grassmannian frame, we conclude that it

is also a Grassmannian equal-norm Parseval frame.
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3.4 Equiangular Parseval frames and modulation op-

erators

Although it is not central to the main results of this thesis, this section presents

results involving the modulation operators of frames (see Definition 3.4.4), which is

an approach based on the Fourier transform. In [11], the authors used modulation

operators to prove that the maximal number of of mutually unbiased bases that

can exist in FK is K + 1. In our case, we provide characterizations of EPFs and

equiangular cyclic frames.

Given any frame, one can associate it to the discrete, operator-valued function

that maps the indices of the frame vectors to their corresponding rank one Hermi-

tian matrices.

3.4.1 Definition. The operator-valued map of a frame F = {fj}j∈ZN consisting of

N vectors over FK is the map

ΛF : ZN → FK×K : j 7→ fj ⊗ f ∗j .

An advantage of thinking of a frame in terms of its operator-valued map is that,

by using the cyclicity of the trace function, the magnitudes of the inner products

between frame vectors of F are encoded in the Hilbert Schmidt inner products

between values of ΛF by

〈ΛF(j),ΛF(l)〉〉H.S. = tr(fjf
∗
j flf

∗
l ) = tr(f ∗j flf

∗
l fj) = |〈fj, fl〉|2.

In a similar fashion, the results of this section rely on inspecting the Hilbert Schmidt
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inner products between the values of Λ̂F , the Fourier transform of ΛF . In order to

formally define the Fourier transform of such a function, we consider the larger

space of functions

LN,K := {Λ : ZN → FK×K},

which is a vector space under point-wise addition and scalar multiplication, and

equip it with the inner product 〈·, ·〉L defined by

〈Λ1,Λ2〉L =
∑
j∈ZN

〈Λ1(j),Λ2(j)〉HS.

Because the set {Λa,b,c : j 7→ δj,cEa,b : l ∈ ZN , a, b ∈ ZK} forms an orthonormal basis

for LN,K , it is finite-dimensional, so we may regard it as a Hilbert space with respect

to the norm induced by 〈·, ·〉L .

3.4.2 Definition. The Fourier transform on LN,K is the linear map

TF.T. : LN,K → LN,K : Λ 7→ Λ̂,

where Λ̂ is defined by

Λ̂(ξ) :=
∑
j∈ZN

ωjξNΛ(j)

and ωN is the primitive N th root of unity, e2πi/N .

As is customary, when given Λ ∈ LN,K , we denote TF.T.Λ as Λ̂ and refer to it as

the Fourier transform of Λ .

We recall the familiar Fourier inversion formula.

3.4.3 Theorem. The map TF.T. is invertible and its inverse is given by the formula
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T −1
F.T.Λ̂ = Λ, where

Λ(j) =
1

N

∑
ξ∈ZN

ω−jξN Λ̂(ξ)

for any Λ ∈ LN,K and j ∈ ZN . In particular, Λ(j) = 1
N

̂̂
Λ(−j) for every Λ ∈ LN,K and

j ∈ ZN .

3.4.4 Definition. If ΛF is the operator-valued map for a frame F = {fj}j∈ZN over

FK and Λ̂F is its Fourier transform, then the operator Λ̂F(ξ) is called the ξth modu-

lation operator of F , for each ξ ∈ ZN .

For convenience, we record two formulae which relate the inner products be-

tween the vectors of a frame, F , and Hilbert Schmidt inner products between its

modulation operators in the following lemma.

3.4.5 Lemma. If F = {fj}j∈ZN is any frame consisting of N vectors over FK , then

1. N2|〈fa, fb〉|2 =
∑

ξ,η∈ZN
ωbη−aξN 〈Λ̂F(ξ), Λ̂F(η)〉 for all a, b ∈ ZN .

2. 〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. =
∑

j,l∈ZN ω
jξ−lζ
N |〈fj, fl〉|2 for all ξ, ζ ∈ ZN .

Proof. To see the first formula, let a, b ∈ ZN and apply the Fourier inversion formula

to obtain

N2|〈fa, fb〉|2 = N2〈ΛF(a),ΛF(b)〉H.S.

= N2〈 1

N

∑
ξ∈ZN

ω−aξN Λ̂(ξ),
1

N

∑
η∈ZN

ω−bηN Λ̂(η)〉H.S.

=
∑

ξ,η∈ZN

ωbη−aξN 〈Λ̂F(ξ), Λ̂F(η)〉.
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To see the second formula, let ξ, ζ ∈ ZN , then

〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. = tr(
∑
j∈ZN

ωjξNΛ(j)
∑
l∈ZN

ω−lζN Λ(l))

=
∑
j,l∈ZN

ωjξ−lζN tr(Λ(j)Λ(l))

=
∑
j,l∈ZN

ωjξ−lζN |〈fj, fl〉|2.

3.4.1 A characterization of equiangular Parseval frames

In this section, we characterize EPFs in terms of their modulation operators. We

begin by characterizing Parseval frames with a simple lemma.

3.4.6 Lemma. A frame F = {fj}j∈ZN over FK is a Parseval frame if and only if

Λ̂F(0) = IK .

Proof. This follows by realizing that Λ̂F(0) is the frame operator for F , so it is equal

to the identity operator if and only if F is an (N,K)-frame.

Next, we provide a necessary condition which fully describes the Hilbert Schmidt

inner products between the modulation operators of an EPF.

3.4.7 Proposition. If F = {fj}j∈ZN is an equiangular (N,K)-frame, then the follow-

ing hold:
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1. 〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. = 0 for every ξ, ζ ∈ ZN with l 6= j,

2. ‖Λ̂F(ξ)‖2
H.S. = K(K−1)

N−1
for ξ ∈ {1, 2, ..., N − 1} and

3. ‖Λ̂F(0)‖2
H.S. = K.

Proof. Given ξ, ζ ∈ ZN with ξ 6= 0 or ζ 6= 0, we have

〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. =
∑
j,l∈ZN

ωjξ−lζN |〈fj, fl〉|2

by Lemma 3.4.5. Since F is equiangular and Parseval, we have ‖fj‖2 = K2

N2 for all

j ∈ ZN and |〈fj, fl〉|2 = C2
N,K for j 6= l. Splitting the sum above according to these

factors yields

∑
j,l∈ZN

ωjξ−lζN |〈fj, fl〉|2 = C2
N,K

∑
j,l∈ZN ,j 6=l

ωjξ−lζN +
K2

N2

∑
q∈ZN

ω
q(ξ−ζ)
N

= C2
N,K

∑
j∈ZN

ωjζN
∑
l∈ZN

ω−lξN − C2
N,K

∑
p∈Zn

ω
p(ξ−ζ)
N +

K2

N2

∑
q∈ZN

ω
q(ξ−ζ)
N

= 0− C2
N,K

∑
p∈ZN

ω
p(ξ−ζ)
N +

K2

N2

∑
q∈ZN

ω
q(ξ−ζ)
N ,

where the first term vanishes due to the summation of consecutive powers of a root

of unity. If ξ 6= ζ, then the remaining two terms vanish for the same reason, so

〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. = 0. If ξ = ζ ∈ {1, 2, ..., N − 1}, then the remaining terms can be

rewritten to yield

−C2
N,K

∑
p∈ZN

ω
p(ξ−ξ)
N +

K2

N2

∑
q∈ZN

ω
q(ξ−ξ)
N = −C2

N,KN +
K2

N2
N

= −K(N −K)

N2(N − 1)
N +

K2

N2
N

=
K(K − 1)

N − 1
,
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so that the value of ‖Λ̂F(ξ)‖2
H.S. is as claimed. Finally, by Lemma 3.4.6, we have

‖Λ̂F(0)‖2
H.S. = K.

As a corollary, we know the dimension of the subspace spanned by the modula-

tion operators.

3.4.8 Corollary. If F = {fj}j∈ZN is an equiangular (N,K)-frame, then

dim(span{Λ̂F(ξ) : ξ ∈ ZN}) = N.

Proof. This follows immediately from Proposition 3.4.7.

Because dim(CK×K) ≤ K2, this provides an alternative proof for the maximal

number of equiangular lines that can be packed into CK .

3.4.9 Corollary. If F = {fj}j∈ZN is an equiangular (N,K)-frame for CK , then N ≤

K2.

Finally, we show that the necessary conditions of Proposition 3.4.7 are also suf-

ficient.

3.4.10 Theorem. If F = {fj}j∈ZN is an (N,K)-frame, then F is equiangular if and

only if {Λ̂F(ξ)}ξ∈ZN forms an orthogonal set with respect to the Hilbert Schmidt inner

product and ‖Λ̂F(ξ)‖2
H.S. = K(K−1)

N−1
for ξ ∈ {1, 2, ..., N − 1}.

Proof. The sufficiency of equiangularity in this statement follows from Proposi-

tion 3.4.7. To see necessity, suppose that ‖Λ̂F(ξ)‖2
HS = K(K−1)

N−1
for all ξ ∈ {1, 2, ..., N−

1} and let a, b ∈ ZN with a 6= b. By the first formula in Lemma 3.4.5 and the fact
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that ‖Λ̂F(N)‖2 = K from Lemma 3.4.6, we have

N2|〈fa, fb〉|2 =
N∑
ξ=1

ω
2πiξ(b−a)/N
N ‖Λ̂F(ξ)‖2

=
K(K − 1)

N − 1

N∑
ξ=1

e2πiξ(b−a)/N +K − K(K − 1)

N − 1

=
K(K − 1)

N − 1

N∑
ξ=1

e2πiξ(b−a)/N +
K(N −K)

N − 1
.

The first term vanishes due the summation of consecutive powers of roots of unity;

therefore, after dividing both sides by N2, we obtain

|〈fa, fb〉|2 =
K(N −K)

N2(N − 1)
= C2

N,K

as desired.

As a corollary to Theorem 3.4.10, we have a characterization of maximal com-

plex EPFs.

3.4.11 Corollary. If F = {fj}j∈ZN is an (N,K)-frame for CK with N = K2, then F

is equiangular if and only if the set

B =

{
1√
K

Λ̂F(0)

}⋃{√
N − 1

K(K − 1)
Λ̂F(ξ)

}
ξ∈ZN ,ξ 6=0

forms an orthonormal basis for CK×K with respect to the Hilbert Schmidt inner prod-

uct.
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Proof. Since the dimension of CK×K is K2, B is an orthogonal basis by Theo-

rem 3.4.10. The unity of the norms for
√

N−1
K(K−1)

Λ̂F(ξ) with ξ ∈ ZN , ξ 6= 0 also fol-

lows from Theorem 3.4.10 and that 1√
K

Λ̂F(0) is unit norm follows from Lemma 3.4.6.

3.4.2 Modulation operators of cyclic frames

In Section 6.3, we saw how the authors of [58, 95] characterized equiangular cyclic

(N,K)-frames with difference sets. In this section, we reprove this result with

modulation operators. We begin by recording a basic fact about the inner products

between a cyclic frame’s vectors.

3.4.12 Lemma. If F = {fj}j∈ZN is a cyclic (N,K)-frame, then

|〈fj, fl〉|2 = |〈f0, fl−j〉|2

for all j, l ∈ ZN .

Proof. Since F is a cyclic frame, it is the orbit of the vector f0 under the action of

some unitary representation π of the additive group ZN acting on CK , so

|〈fj, fl〉|2 = |〈f0, π(j−1l)f0〉|2 = |〈f0, fl−j〉|2

for all j, l ∈ ZN .

As was the case with EPFs, the Hilbert Schmidt inner products between the

distinct modulation operators of a harmonic cyclic frame are zero.
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3.4.13 Proposition. If F = {fj}j∈ZN is a cyclic (N,K)-frame, then

〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. = 0

for all ξ, ζ ∈ ZN with ξ 6= ζ.

Proof. Let ξ, ζ ∈ ZN with ξ 6= ζ.

By combining Lemma 3.4.12 with Lemma 3.4.5, we obtain

〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. =
∑
j,l∈ZN

ωjξ−lζN |〈fj, fl〉|2 =
∑
j,l∈ZN

ωjξ−lζN |〈f0, fl−j〉|2,

where ωN = e2πi/N . Reindexing this summation with t = l − j yields

〈Λ̂F(ξ), Λ̂F(ζ)〉H.S. =
∑
l,t∈ZN

ω
(l−t)ξ−lζ
N |〈f0, ft〉|2

=
∑
l∈ZN

ω
l(ξ−ζ)
N

∑
t∈ZN

|〈f0, ft〉|2ω−tξN ,

which vanishes because of the summation of consecutive powers of a root of unity

in the first factor of the last line.

Since the modulation operators of a cyclic (N,K)-frame F are Hilbert-Schmidt

orthogonal, it is natural to ask when they satisfy the norm requirements of an EPF

described in Theorem 3.4.10. In order to compute their norms, we recall that every

harmonic cyclic (N,K)-frame is generated by a sequence {n1, n2, ..., nK} ⊂ ZN and

use this to compute the matrix entries of the modulation operators directly.
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3.4.14 Proposition. If F = {fj}j∈ZN is a cyclic (N,K)-frame generated by the se-

quence {n1, n2..., nK}, then the entries of its modulation operators consist entirely of

zeros and ones. In particular,

(Λ̂F(ξ))a,b =

 1, nb − na = ξ

0, otherwise
,

for every ξ ∈ ZN , where ωN = e2πi/N .

Proof. First, we compute the entries of F ’s operator-valued map. If j ∈ ZN , then,

by Definition 3.4.1 and Definition 3.3.7, we have

ΛF(j) =
1√
N

(ωjnaN )Ka=1 ⊗
1√
N

(ωjnbN )Kb=1

∗
,

so the (a, b) entry of ΛF(j) is

(ΛF(j))a,b =
1

N
ω
j(na−nb)
N .

If ξ ∈ ZN , then by Definition 3.4.4, the (a, b) entry of Λ̂F(ξ) is

(Λ̂F(ξ))a,b =

(∑
j∈ZN

ωjξNΛF(j)

)
a,b

=
∑
j∈ZN

ωjξN (ΛF(j))a,b =
1

N

∑
j∈ZN

ω
j(ξ+na−nb)
N .

If nb−na 6= ξ, the entry vanishes as a summation of consecutive powers of a root of

unity; otherwise, ωj(ξ+na−nb)N = 1 and the claim follows.

It is clear from this computation that the Hilbert Schmidt norms of the modu-

lation operators for a cyclic frame depend heavily on how the generating sequence

{nj}Kj=1 is selected. As a corollary, we characterize the subset of cyclic (N,K)-frames
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whose modulation operators form linearly independent subsets of CK×K .

3.4.15 Corollary. Let F = {fj}j∈ZN be a cyclic (N,K)-frame generated by the se-

quence {n1, n2..., nK}. If for each ξ ∈ ZN , there is at least one pair (a, b) ∈ {1, 2, ..., K}×

{1, 2, ..., K} such that nb−na = ξ, then {Λ̂F(ξ)}xi∈ZN is an orthogonal subset of CK×K

with respect to the Hilbert Schmidt norm.

Proof. The modulation operators are pairwise Hilbert Schmidt orthogonal by Propo-

sition 3.4.13. Combining the hypothesis condition with Proposition 3.4.14 shows

that each modulation operator is nonzero, so the claim follows.

Furthermore, we have an upper bound on the dimension of the subspace spanned

by the modulation operators of a cyclic frame.

3.4.16 Corollary. IfF is a cyclic (N,K)-frame generated by the sequence {n1, n2..., nK},

then dim(span{Λ̂F(ξ) : ξ ∈ ZN}) ≤ K2 −K + 1.

Proof. By Proposition 3.4.14, the entries and therefore the norms of F ’s modulation

operators are completely determined by the setA = {n1, n2, ..., nK}×{n1, n2, ..., nK},

which has cardinality K2. In particular, the pairs (x, y) ∈ A are in one-to-one corre-

spondence with the ones occurring among the matrix entries of the N modulation

operators of F . Since Λ̂F(0) = IK by Lemma 3.4.6 (or Proposition 3.4.14), the pairs

(n1, n1), (n2, n2), ..., (nK , nK) ∈ A correspond to the diagonal entries of Λ̂F(0), which

leaves K2 −K pairs remaining. Therefore, at most K2 −K modulation operators

besides Λ̂F(0) can be nonzero and the claim follows.

In particular, this bound in conjunction with Theorem 3.4.10 shows that equian-

gular cyclic frames are never maximal.

55



Finally, we reprove the characterization of equiangular cyclic (N,K)-frames in

terms of difference sets from Theorem 3.3.10. We recall the statement:

If F is a cyclic (N,K)-frame generated by the sequence {n1, n2..., nK}, then F

is equiangular if and only if {n1, n2, ..., nK} is a (K,λ) -difference set for ZN where

λ = K(K−1)
N−1

is a positive integer.

Proof. By Theorem 3.4.10, F is equiangular if and only if its modulation operators

are Hilbert Schmidt orthogonal, ‖Λ̂F(0)‖2
H.S. = K and ‖Λ̂F(ξ)‖2

H.S. = K(K−1)
N−1

for

ξ ∈ {1, 2, ..., N − 1}. Because F is a cyclic frame, the orthogonality is guaranteed by

Proposition 3.4.13 and that ‖Λ̂F(0)‖2
H.S. = K is guaranteed by Lemma 3.4.6. Finally,

by Proposition 3.4.14, the entries of each modulation operator consists entirely of

ones and zeros. Since the Hilbert Schmidt norm is equal to the Frobenius norm

on CK×K , the formula for the entries in Proposition 3.4.14 implies ‖Λ̂F(ξ)‖2
H.S. =

K(K−1)
N−1

for ξ ∈ {1, 2, ..., N − 1} if and only if {n1, n2, ..., nK} is a (K,λ) -difference

set for ZN with λ = K(K−1)
N−1

.

In light of this characterization, we characterize the subset of cyclic frames

whose modulation operators form linearly independent sets and saturate the up-

per bound in Corollary 3.4.16.

3.4.17 Corollary. IfF is a cyclic (N,K)-frame generated by the sequence {n1, n2..., nK}

and N = K2 −K + 1, then dim(span{Λ̂F(ξ) : ξ ∈ ZN}) = K2 −K + 1 if and only if

F is equiangular and {n1, n2..., nK} is a (K, 1) -difference set for ZN .

Proof. By Theorem 3.3.10, if a cyclic EPF is generated by a (K, 1) -difference set,

then 1 = K(K−1)
N−1

and this is equivalent to N = K2 −K + 1. By Theorem 3.4.10, the
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modulation operators are nonzero and Hilbert Schmidt orthogonal, so

dim(span{Λ̂F(ξ) : ξ ∈ ZN}) = K2 −K + 1.

Conversely, if dim(span{Λ̂F(ξ) : ξ ∈ ZN}) = K2−K+1, then every modulation must

be nonzero. Since the pairs of the set A = {n1, n2, ..., nK} × {n1, n2, ..., nK} are in

one-to-one correspondence with the nonzero entries of the modulation operators by

Proposition 3.4.14 and since Λ̂F(0) = Ik exhausts K of these pairs for its diagonal

entries, the remaining K2−K modulation operators must have exactly one nonzero

entry and this is if and only if {n1, n2..., nK} is a (K, 1) -difference set for ZN , by the

formula for the entries in Proposition 3.4.14.
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Chapter 4

Frame Potentials

In the previous section, Grassmannian frames were defined as minimizers of an op-

timization problem. Here, we develop this notion into a strategy for finding other

special types of frames. A frame potential is a real-valued function that depends on

the inner products between a frame’s vectors. By carefully constructing such func-

tions, frames with desirable properties can be characterized as their minimizers.

The purpose of the next two sections is to provide an overview of the literature

involving frame potentials. Because their optimization is typically executed over

either the class of equal-norm frames or the class of Parseval frames, we address

the two cases separately below. Since the history began with Benedetto and Fickus

using a frame potential in the equal-norm setting [14], we address this case first.
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4.1 Equal-norm frames

The equal-norm constraint is a geometric property that provides certain advantages

when optimizing frame potentials. In particular, an equal-norm frame’s vectors can

be thought of as points on a sphere.

In 2003, Benedetto and Fickus studied the relationship between frames with

unit norm vectors and the physical notion of point charges on a sphere in RK [14].

Coulumb’s Law dictates that a charge x will repel a charge y of equal magnitude

with an electromagnetic force whose magnitude is inversely proportional to the

square of the distance between them. With the charge x fixed, this force can be

mathematically interpreted as a conservative vector field on RK , because it is the

negative gradient of the Coulumb potential energy, which is a differentiable real-

valued function of the difference between the charges’ positions. In an ideal setting,

when a finite set of such charges is constrained to a conductive sphere, the overall

force causes them to seek out a state of equilibrium where the charges are as far

away from each other as possible. Such a configuration can be characterized as

a (local) minimizer to the Coulumb potential energy. Many of such minimizers

correspond to the vertices of regular polyhedra, which, in turn, correspond to equal-

norm tight frames. Motivated by this, the authors adapted these ideas in order to

characterize equal-norm tight frames. They introduced the notion of frame force,

a term which subsequent literature has generally used to refer to a conservative

vector field defined on some constrained set of frames whose corresponding frame

potential admits critical points (ie equilibria) with desirable properties. In the case

of [14], they defined the frame force of a unit norm vector y acting on a unit norm
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vector x as

FF (x, y) = 〈x, y〉(x− y),

which is induced by the potential given by

FP (x, y) =
1

2
|〈x, y〉|2.

Summing FP (fj, fl) over all vectors in a unit norm frame F = {fj}j∈ZN led to the

p-th frame potential where p = 1 [14].

4.1.1 Definition. The p-th frame potential of a frame F = {fj}Nj=1 for a real or

complex Hilbert space H is given by

Φp(F) =
N∑

j,l=1

|〈fj, fl〉|2p.

They provided a lower bound for Φ1 when restricted to frames whose vectors all

have unit norm and showed that equality is achieved only when the frame is tight

[14]. We rescale the norms to obtain a characterization of equal-norm Parseval

frames.

4.1.2 Theorem. (Benedetto and Fickus, [14].) If F = {fj}Nj=1 is a frame for FK , with

F = R or C, and ‖fj‖2 = K/N for each j ∈ ZN , then

Φ1(F) =
N∑

j,l=1

|〈fj, fl〉|2 ≥ K

and equality holds if and only if F is Parseval.

Proof. The assumption on the norms is equivalent to the condition on the diagonal
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entries, Gj,j = K/N , of the Gram matrix G = V V ∗ of the frame F . By the Cauchy-

Schwarz inequality with respect to the Hilbert-Schmidt inner product, Φ1(F) =

tr(G2) ≥ (tr(GP ))2/ tr(P 2), where P is the orthogonal projection onto the range of

G in `2(ZN). However tr(GP ) = tr(G) = K = tr(P ) = tr(P 2), thus the claimed

lower bound follows. The case of equality holds if and only if G and P are collinear,

which means whenever F is Parseval.

As an aside from the strictly equal-norm setting, we remark that the authors of

[26] extended this result by considering Φ1 when it is restricted, not to the unit-

norm frames, but to frames F = {fj}Nj=1 for FK whose vectors’ norms satisfy ‖fj‖ =

cj for fixed, positive constants c1, ..., cN ∈ R. Such frames can be interpreted as sets

of vectors lying on concentric spheres with radii cj. In this setting, they provided a

lower bound analogous to that of Theorem 4.1.2, which characterizes tight frames

with the prescribed lengths as minimizers whenever they exist.

In 2004, Blume-Kohout, Scott, Caves, and Renes were also prompted by a prob-

lem in physics when they characterized symmetric, informationally complete, pos-

itive operator valued measures (SIC-POVMs), or equivalently maximal complex

EPFs. By considering the restricted p-th frame potential for the case p > 1, they

showed that maximal complex EPFs are its minimizers, whenever they exist among

unit-norm frames [75]. A few years later, Oktay generalized this result to the non-

maximal case [72]. These results are presented in the following theorem, where,

as before, the norms are trivially rescaled for Parsevality.

4.1.3 Theorem. ([75, 72].) Let F = {fj}Nj=1 be a frame for FK , with F = R or C,
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and ‖fj‖2 = K/N for all j ∈ ZN , and let p > 1, then

Φp(F) =
N∑

j,l=1

|〈fj, fl〉|2p ≥
K2p(N − 1)p−1 +Kp(N −K)p

(N − 1)p−1N2p−1

and equality holds if and only if F is an equiangular Parseval frame.

Proof. With the elementary properties of equal-norm frames and Jensen’s inequality,

we obtain the bound

Φp(F) =
N∑
j=1

‖fj‖4p +
∑
j 6=l

|〈fj, fl〉|2p ≥
K2p

N2p−1
+

1

Np−1(N − 1)p−1
(
∑
j 6=l

|〈fj, fl〉|2)p .

Expressing this in terms of Φ1 and using the preceding theorem then gives

Φp(F) ≥ K2p

N2p−1
+

1

Np−1(N − 1)p−1
(Φ1(F)− K2

N
)p

≥ K2p

N2p−1
+

1

Np−1(N − 1)p−1

Kp(N −K)p

Np

=
K2p(N − 1)p−1 +Kp(N −K)p

(N − 1)p−1N2p−1
.

Moreover, equality holds in the Cauchy-Schwarz and Jensen inequalities if and only

if F is Parseval and if there is C ≥ 0 such that |〈fj, fl〉| = C for all j, l ∈ ZN with

j 6= l.

If equality holds, then an inspection of the proof shows that the magnitudes of

the off-diagonal entries of the Gram matrix is the constant

CN,K =

√
1

N(N − 1)

(
K − K2

N

)
=

√
K(N −K)

N2(N − 1)
.

from Theorem 3.1.4, see also [46], [53], and [86].
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4.1.4 Corollary. Let p > 1. If F = {fj}j∈ZN is a frame for FK with ‖fj‖2 = K/N

for each j ∈ ZN , then Φp(F) achieves the lower bounds in Theorem 4.1.2 and Theo-

rem 4.1.3 if and only if F is an (N,K)-frame with |〈fj, fl〉| = CN,K for all j 6= l.

Next, we consider frame potentials as restrictions to the space of (N,K)-frames

instead. This will prepare us for the main results of this thesis.

4.2 Parseval frames

While the equal-norm constraint allows the interpretation of frames as sets of points

on a sphere, the Parseval constraint allows frames to be thought of as projections of

orthonomal bases, as described in Theorem 2.2.1.

Benedetto and Kebo used this result to minimize the probability of a detection

error for quantum measurements [15]. In certain scenarios, the possible states of a

physical system are modeled with a finite set of unit norm vectors {xj}j∈ZN ⊂ FK

which occur with corresponding probabilities {pj}j∈ZN that sum to one. A measure-

ment apparatus can be thought of as a device which returns some index j ∈ ZN that

hopefully reflects the true state of the system and it can be modeled with a Parseval

frame. Given an (N,K)-frame F = {fj}j∈ZN over FK , the map Π : P(ZN)→MK(F)

defined by

Π(L) =
∑
l∈L

fl ⊗ f ∗l

is what physicists refer to as a positive operator-valued measure, which can be used to

determine the probability of whether the measurement device’s output are correct.

If the system is in a state xj during a measurement, then the probability that the
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device outputs a measurement l ∈ L ⊂ ZN is given by

PΠ(L) = 〈xj,Π(L)xj〉

and, in particular, the probability that it correctly outputs {j} is

PΠ({j}) = 〈xj,Π({j})xj〉 = 〈xj, fj ⊗ f ∗j xj〉 = |〈xj, fj〉|2.

Thus, the average probability of a correct measurement is
∑
j∈ZN

pj|〈xj, fj〉|2 and it is

straightforward to verify that

Pe(F) := 1−
∑
j∈ZN

pj|〈xj, fj〉|2,

is the average probability of a detection error when modeling the apparatus with the

frameF . Seeking to minimize Pe over the space of all (N,K)-frames, they simplified

the problem by applying Theorem 2.2.1 to show that minimizing Pe over the space

of (N,K)-frames is equivalent to minimizing it over the space of orthonormal bases

in an ambientN -dimensional vector space, which admits a parametrization in terms

of of the coordinate charts of the Lie group of unitary (or orthogonal) matrices

[15]. By showing that Pe corresponds to a frame force Fe, the authors were able to

interpret the second order ordinary differential equation

ẍ(t) = Fe(x(t)),

where x(t) is a parametrization of the N -dimensional orthonormal bases, as a New-

tonian equation of motion [15]. This allowed them to apply the physical law of
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conservation of energy to characterize the minimizers to Pe as the constant solu-

tions for this ODE which minimize the energy

E(t) =
1

2
[ẋ(t)]2 + Pe(x(t)).

In [20], Bodmann and Casazza addressed the Paulsen Problem, which is to de-

termine how far in l2 distance the closest equal-norm (N,K)-frame is from an arbi-

trary frame consisting of N vectors over FK .

4.2.1 Problem. Given a frame F = {fj}j∈ZN for FK and ε > 0, find the largest

value δ > 0 such that there exists an equal-norm (N,K)-frame F ′ = {f ′j}j∈ZN which

satisfies

‖F − F ′‖ =

(∑
j∈ZN

‖fj − f ′j‖2

) 1
2

≤ ε

whenever F is ε-nearly equal-norm with constant C, which means

(1− ε)C ≤ ‖fj‖ ≤ (1− ε)C for all j ∈ ZN ,

and ε-nearly Parseval, which means

(1− ε)‖x‖2 ≤
∑
j∈ZN

|〈x, fj〉〉|2 ≤ (1− ε)‖x‖2 for all x ∈ FK .

They showed that the vector norms for the closest (N,K)-frame to an arbitrary

δ-nearly equal-norm frame, as given in Theorem 2.2.3, are controlled by a pair

of norm inequalities similar to the ε-nearly equal-norm definition, which allowed

them to reduce the problem with the assumption that F is Parseval. By applying a

Naimark-like argument, they showed that the solutions to a system of ODEs which
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governs the evolution of orthonormal bases in N -dimensional Euclidean space cor-

respond to the solutions of a similar system over the space of Parseval frames, which

converge to equal-norm frames under certain conditions. By exploiting this corre-

spondence and intermittently switching between solutions of this ODE by multi-

plying frame vectors with carefully chosen unimodular constants, they obtained a

sequence which converges rapidly to a necessarily equal-norm minimizer for the

frame energy

U(F) =
∑
j,l∈ZN

(‖fj‖2 − ‖fl‖2)2.

This ultimately provided an upper bound for the distance between F and its nearest

equal-norm Parseval frame in terms of U(F), whenever K and N are relatively

prime [20].

4.2.1 Gram matrices of Parseval frames

By definition, the value of a frame potential depends only on the entries of its

Gram matrix, so another advantage of restricting frame potentials to the space of

Parseval frames is that, up to unitary equivalence of frames, the optimization of any

frame potential is equivalent to the optimization of the corresponding function on

the manifold MN,K . Although the benefits of MN,K ’s manifold structure are not

clarified until the next chapter, from here on we view frame potentials as functions

of the Gramians of Parseval frames.

In this setting, we have a result which is analogous to Theorem 4.1.2, character-

izing equal-norm (N,K)-frames.
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4.2.2 Theorem. Let G ∈MN,K , then

N∑
j=1

|Gj,j|2 ≥
K2

N

and equality holds if and only if Gj,j = K
N

for each j ∈ ZN .

Proof. We know that
∑N

j=1Gj,j = K, so the Cauchy-Schwarz inequality gives

N∑
j=1

|Gj,j|2 ≥
1

N
(
N∑
j=1

Gj,j)
2 = K2/N

and equality is achieved if and only if Gj,j = Gl,l for all j, l ∈ ZN . By summing the

diagonal entries of G, we then obtain NGj,j = K for each j ∈ ZN .

In [41], Elwood lifted Φ2 to the space of Gram matrices for (N,K)-frames and

provided the following characterization of equiangular Parseval frames.

4.2.3 Theorem. (Elwood, [41].) Let G ∈MN,K , then

N∑
j,l=1

|Gj,l|4 ≥
K2(K2 − 2K +N)

N2(N − 1)

and equality holds if and only if Gj,j = K/N and |Gj,l| = CN,K for each j 6= l.

Proof. We recall that by the fact that G is an orthogonal rank-K projection, one

has that
N∑

j,l=1

|Gj,l|2 =
N∑
j=1

Gj,j = K. With the help of these identities, we express the
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difference between the two sides of the inequality as a sum of quadratic expressions,

N∑
j,l=1

|Gj,l|4 −
K2(K2 +N − 2K)

N2(N − 1)

=
N∑

j, l = 1

j 6= l

(
|Gj,l|2 − C2

N,K

)2
+

N∑
j=1

(
G2
j,j −

K2

N2

)2

+
2K(K − 1)

N(N − 1)

N∑
j=1

(
Gj,j −

K

N

)2

.

In this form it is manifest that this quantity is non-negative and that it vanishes if

and only if G is a rank-K orthogonal projection with Gj,j = K/N for all j and with

|Gj,l| = CN,K for all j 6= l.

With this characterization in mind, the author studied a gradient descent for this

potential onMN,K [41]. Although she did not prove convergence for the trajecto-

ries induced by the gradient flow, she used a switching argument similar to the one

used by Bodmann and Casazza in [20] to obtain sequences which converge to fixed

points, provided that the limits exists. Unfortunately, the corresponding fixed point

equations allowed undesirable frames as possible critical points.

4.3 Summary

Since the introduction of frame potentials by Benedetto and Fickus in 2003 [14],

researchers have used them to characterize frames with various properties as mini-

mizers or critical points [14, 26, 75, 72, 15, 20, 41], see also [27, 84, 17, 43, 57]. As

the literature has developed, a hierarchy of deeper questions has emerged, where

each question depends on the answer to the one before it.
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1. Given a desired frame property P , is there a frame potential F which charac-

terizes frames with P as minimizers?

2. If F is such a potential, is there an algorithm for locating the minimizers of F

starting with a well-conditioned initial point?

3. Given such an algorithm, does it lead to the closest frame with P? Can it

be used to determine how far an arbitrary frame is from the nearest optimal

configuration?

In this document, the property P that we are interested in is the equidistributed

property. By restricting certain real analytic frame potentials to the space of Grami-

ans for Parseval frames and applying a gradient descent, we address questions (1)

and (2), but leave question (3) as an open problem.

In the next chapter, we prove that solutions to the first order ODE induced by

the gradient descent of a real analytic frame potential onMN,K are guaranteed to

converge to fixed points. In Chapter 6, we define several families of frame poten-

tials on MN,K and use them to characterize and locate both equidistributed and

Grassmannian equal-norm Parseval frames.
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Chapter 5

The Gradient Descent onMN,K

In order to locate (N,K)-frames with desirable geometric properties, we character-

ize their Gram matrices as critical points for families of analytic frame potentials

onMN,K and pursue them via gradient descent. In this chapter, we show that this

method works and develop tools for computing the gradient. By adapting a result

of Łojasiewicz, we prove that if M is a compact, real analytic Riemannian mani-

fold, then the solutions of the first order ODE induced by the gradient flow of a

real-valued, real analytic map defined on M converge to critical points. To apply

these results, we first show thatMN,K is a real analytic Riemmannian manifold.

5.1 MN,K as a real analytic, Riemmannian manifold

If F = C (respectively F = R), then MN,K is a subset of the (linear) manifold

of Hermitian (respectively symmetric) N × N matrices equipped with the Hilbert-

Schmidt norm. This induces a topology on MN,K generated by the open balls

B(X, σ) = {Y ∈ MN,K : ‖Y − X‖H.S. < σ} of radius σ > 0 centered at each
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X ∈ MN,K . To see that MN,K is a real analytic manifold, we show that it can be

covered by real analytic charts with corresponding real analytic change of coordi-

nates maps. Once this is established, the claim follows by considering the maximal

atlas induced by these charts. See Appendix A.1 for details.

5.1.1 Theorem. The manifold MN,K is a real analytic submanifold of the (linear)

manifold of matrices FN×N . The dimension of MN,K is K(N − K) if F = R and

2K(N −K) if F = C.

Proof. As before, we defineMN,K as the set of N × N orthogonal projections with

rankK. Given anyG0 ∈MN,K , we can find a subset of indices, J = {n1, n2, ..., nK} ⊂

ZN of size |J | = K such that the rows of G indexed by J are linearly independent.

By the orthogonality of G, removing the rows and columns corresponding to the in-

dices in ZN \ J from G0 then yields the Gramian (G0)J,J of the row vectors indexed

by J , which is invertible since the rows are linearly independent. By continuity

of the determinant in the entries of a matrix, there exists ε > 0 such that for any

G ∈ MN,K ∩ B(G0; ε) the K × K submatrix GJ,J consisting of the rows from G

indexed by J is invertible. Now, for G ∈ B(G0; ε) ∩MN,K , consider the map

φ̃J : B(G0; ε) ∩MN,K → FN×K(C), G 7→ (GJ,J)−1GJ,N .

Noting that φ̃J(G) contains a K ×K identity submatrix, we define the chart φJ(G)

to be the K × (N −K) matrix given by φ̃J(G) = (IK φJ(G)), thereby defining what

will be our local coordinates in FK×(N−K). Then φ̃J is analytic, since the inverse

of GJ,J is rational in its entries; hence, φJ is also analytic, since there is no loss of

analyticity in the removal of entries.

To see that φJ has an analytic inverse, we show that we can reconstruct G
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from φ(G) in an analytic fashion. First, we reinsert the K × K identity block

in a way that corresponds to J so that we have recovered the K × N matrix

A := φ̃J(G) = (GJ,J)−1GJ,N , as above. Next, we form the K ×K Gram matrix Q =

AA∗ = (GJ,J)−1GJ,N(GJ,N)∗((GJ,J)−1)∗. Since GJ,N was extracted from an orthogo-

nal projection, GJ,N(GJ,N)∗ = GJ,J , so that Q = (GJ,J)−1 is analytic in the coordi-

nates. Next, we orthogonalize the rows of A to obtain B := Q−1/2A = (GJ,J)1/2A.

The negative square root of Q is seen to be analytic in Q via a convergent power

series expansion of (cI − (cI − Q))−1/2 in terms of the powers of cI − Q, where

c > ‖Q‖. The rows of B then provide an orthonormal basis with the same span as

the rows of A and BB∗ = I. Thus, B is the synthesis operator of a Parseval frame

with the Gram matrix

B∗B = ((Q−
1
2A))∗Q−

1
2A = GN,J(GJ,J)−1GJ,N = G.

We see that the entries of G are analytic in the coordinates if there is c > 0 such

that the power series expansion of (cI − (cI −Q))−1/2 converges, so φ−1
J is analytic

on the range φJ(B(G0; ε)).

Combining the analyticity of the charts and of their inverses, we conclude that

MN,K is a real analytic manifold because φJ ◦ φ−1
L is analytic on the image of the

intersection of the domains of φJ and φL for any subsets J and L of size |J | = |L| =

K. The dimension ofMN,K is the real dimension of FK×(N−K), which is K(N −K)

if F = R and 2K(N −K) if F = C.

Moreover, the Hilbert-Schmidt norm induces a Riemannian structure on the tan-

gent space TMN,K , as described in Appendix A.1.1. Via the embedding, the tangent
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space TG0MN,K at G0 ∈ MN,K is identified with a subspace of the Hermitian (re-

spectively symmetric) matrices, and the Riemannian metric is the real inner product

(X, Y ) 7→ X · Y ≡ tr(XY ) = tr(XY ∗) restricted to the tangent space.

5.2 Convergence of the gradient descent

Let d be a positive integer and recall the definition for the gradient of an analytic

function F on the analytic Riemannian manifold Rd from Appendix A.1.11. The

following classical theorem of Łojasiewicz provides an upper bound for the distance

between a critical point of an analytic function on Rd and local points in terms of

the gradient.

5.2.1 Theorem. (Łojasiewicz, p. 61 - 67 of [64]; see also [61, 67].) Let Ω be an open

subset of Rd and F : Ω → R real analytic. For any x ∈ Ω there exist C, σ > 0 and

θ ∈ (0, 1/2] such that for all y ∈ B(x, σ) ∩ Ω,

|F (y)− F (x)|1−θ ≤ C‖∇F (y)‖ .

This result can be extended to hold for real analytic functions defined on any

real analytic, Riemannian manifold.

5.2.2 Corollary. Let M be a d-dimensional real analytic Riemannian manifold. Let

G0 ∈ Ω ⊂ M and let W : Ω → R be real analytic, then there exist an open neighbor-

hood U of G0 in Ω and constants C > 0 and θ ∈ (0, 1/2] such that for all G ∈ U ,

|W (G)−W (G0)|1−θ ≤ C‖∇W (G)‖ .
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Proof. Since the manifold is real analytic, after choosing a chart Γ : M → Rd,

there exists a neighborhood U of x = Γ(G0) in Rd such that F = W ◦ Γ−1 is a

real analytic function on U . Thus, the Łojasiewicz inequality gives a bound for the

values of F in terms of the Euclidean gradient ∇F in a set B(x, σ) ∩ U . However,

Γ is a diffeomorphism, thus by the continuity of the matrix-valued function ob-

tained from applying the Riemannian metric to pairs of the coordinate vector fields

{ ∂
∂xj
}dj=1 and by the fact that B(x, σ) ∩ U is paracompact in Rd, there exists C ′ > 0

such that ‖∇F (Γ(G)‖ ≤ C ′‖∇W (G)‖ if Γ(G) ∈ B(x, σ) ∩ U . The combination of

the Łojasiewicz inequality in local coordinates with this norm inequality gives the

claimed bound, valid in the neighborhood U = Γ−1(B(x, σ) ∩ U) of G0.

It is well known that the Łojasiewicz inequality can be used to prove convergence

of gradient flows induced by analytic functions on Rd. Since the frame potentials

we define onMN,K in Section 6 are all real analytic functions of matrix entries, we

provide a proof of convergence in our setting, adapted from [67].

5.2.3 Proposition. Suppose that W :MN,K → R is real analytic and let γ be a global

solution of the descent system γ̇ = −∇W (γ). Then there is an element G0 ∈ MN,K

such that γ(t)→ G0 as t→∞ and ∇W (G0) = 0.

Proof. First, we observe that W (γ(t)) is a nonincreasing function, since

d

dt
W (γ(t)) = ∇W (γ(t)) · γ̇(t),

= −∇W (γ(t)) · ∇W (γ(t))

= −‖∇W (γ(t))‖2

≤ 0.
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Furthermore, sinceMN,K is compact, there must some point G0 ∈ MN,K along

with an increasing sequence tn in R, tn →∞, which satisfies that γ(tn)→ G0. Thus,

the continuity ofW together with the fact that t 7→ W (γ(t)) is nonincreasing implies

that lim
t→∞

W (γ(t)) = W (G0).

Since adding a constant to our energy function will not alter the gradient flow,

let us assume without loss of generality that W (G0) = 0 and W (γ(t)) ≥ 0 for all

t ≥ 0.

If W (γ(t)) = 0 for some t0 ≥ 0, then it follows that W (γ(t)) = 0 for all t ≥ t0. In

particular, since ‖∇W (γ(t))‖2 = − d
dt
W (γ(t)) = 0, we have γ̇(t) = ∇W (γ(t)) = 0 for

all t ≥ 0. In this case, the proof is complete.

Henceforth, we will consider the case where W (γ(t)) > 0 for all t ≥ 0. Due to

Corollary 5.2.2, we know that since W is real analytic in some neighborhood of G0,

it follows that there exist C, σ > 0 and θ ∈ (0, 1/2] such that

|W (γ(t))−W (G0)|1−θ = |W (γ(t))|1−θ ≤ C‖∇W (γ(t))‖

for all t ≥ 0 where γ(t) ∈ B(G0;σ) ∩ MN,K . Let ε ∈ (0, σ). Then there exists a

sufficiently large t0 ∈ R+ that yields

W (γ(t0))∫
0

C

s1−θ ds+ ‖γ(t0)−G0‖ < ε.

Setting t1 = inf{t ≥ t0 : ‖γ(t)−G0‖ ≥ ε}, we note that the Łojasiewicz inequality is
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satisfied for t ∈ [t0, t1), which gives us

− d

dt

W (γ(t))∫
0

C

s1−θ ds = C
− d
dt
W (γ(t))

|W (γ(t))|1−θ
= C
‖∇W (γ(t))‖2

|W (γ(t))|1−θ
≥ ‖∇W (γ(t))‖ = ‖γ̇(t)‖.

Since this inequality holds for any t ∈ [t0, t1), it follows by integrating both sides

that for any t ∈ [t0, t1] we have

‖γ(t)−G0‖ ≤ ‖γ(t)− γ(t0)‖+ ‖γ(t0)−G0‖

≤
t1∫
t0

‖γ̇(s)‖ds+ ‖γ(t0)−G0‖

≤ C

t1∫
t0

‖∇W (γ(s))‖2

|W (γ(s))|1−θ
ds+ ‖γ(t0)−G0‖

= −C
W (γ(t1))∫
W (γ(t0))

dv

v1−θ + ‖γ(t0)−G0‖

≤ C

W (γ(t0))∫
0

dv

v1−θ + ‖γ(t0)−G0‖

< ε .

This shows that t1 = +∞, so that

∞∫
0

‖γ̇(t)‖dt ≤ C

∞∫
0

‖∇W (γ(t))‖2

|W (γ(t))|1−θ
dt = C

W (γ(0))∫
0

dv

v1−θ <∞ .

Thus, we see that ‖γ̇(t)‖ ∈ L1(R+), and conclude that γ(t)→ G0 as t→∞.
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5.3 Characterization of fixed points for the gradient

flow

Recall that when F = C (respectively F = R), the embedding of MN,K into the

real vector space of Hermitian (respectively symmetric) N × N matrices induces a

similar embedding of the tangent space toMN,K at G0,

TG0MN,K = {γ̇(0) : γ ∈ C1(R,MN,K), γ(0) = G0} ⊂ FN×N

where γ̇ is the (matrix-valued) derivative of γ. We use this embedding to compute

gradients and characterize where the gradient vanishes.

5.3.1 Lemma. Let G0 ∈MN,K , then the real linear map

PG0 : FN×N → FN×N

X 7→ (I −G0)XG0 +G0X
∗(I −G0)

is the orthogonal projection onto TG0MN,K .

Proof. As a first step, we observe that because PG0 is idempotent, its range is the

real vector space

VG0 = {X ∈ FN×N : X = (I −G0)XG0 +G0X
∗(I −G0)} .

We show that this vector space contains each tangent vector at G0. Let γ : (a, b) →

MN,K be a smooth curve such that 0 ∈ (a, b) and γ(0) = G0. Since γ(t) is an orthog-

onal projection for all t ∈ (a, b), one has that γ(t)∗ = γ(t) and γ(t) = γ(t)2 = γ(t)3
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for all t ∈ (a, b). Therefore, differentiating γ(t)2 − γ(t)3 = 0 yields γ(t)γ̇(t)γ(t) = 0 .

If X = γ̇(0), then at t = 0 this gives

G0XG0 = 0 .

Similarly, if ι(t) = I, then the equations for the complementary projection, ι(t) −

γ(t) = (ι(t)− γ(t))2 = (ι(t)− γ(t))3 result in the identity

(I −G0)X(I −G0) = 0

for X = γ̇(0). This, together with γ̇(0)∗ = γ̇(0) shows that each tangent vector is in

VG0.

Moreover, from Section 5.1.1, we know the dimension ofMN,K is 2K(N −K)

when F = C and K(N −K) when F = R. If U is a unitary (respectively orthogonal)

matrix whose columns are eigenvectors of G0, the first K columns corresponding to

eigenvalue one, then if X = X∗ and X = (I −G0)XG0 +G0X(I −G0), we know

X = U

 0 Y

Y ∗ 0

U∗

with some Y ∈ FK×N−K , so the real dimension of the space VG0 is 2K(N−K) when

F = C and K(N − K) when F = R. This is precisely the dimension of the real

manifoldMN,K , thus the vector space is the span of all the tangent vectors.

Finally, we note that the map PG0 is idempotent and self-adjoint with respect to

the (real) Hilbert-Schmidt inner product. Thus, it is an orthogonal projection onto

its range, the tangent space ofMN,K at G0.
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Since PG0 is the orthogonal projection onto TG0MN,K , it can be used to construct

Parseval frames for TG0MN,K from suitable orthonormal sequences. We first discuss

the complex case and then the real case. In the following, ∆a,b with a, b ∈ ZN

denotes the matrix unit whose only non-vanishing entry is a 1 in the ath row and

the bth column.

5.3.2 Theorem. Suppose F = C and let {Sa,a : a ∈ ZN}∪{Sa,b, Ta,b : a, b ∈ ZN , a > b}

be the orthonormal basis for the real vector space of the anti-HermitianN×N matrices

given by Sa,a = i∆a,a, Sa,b = i(∆a,b + ∆b,a)/
√

2 and Ta,b = (∆a,b −∆b,a)/
√

2 for a > b,

then PG0(Sa,b) = Sa,bG0 −G0Sa,b and PG0(Ta,b) = Ta,bG0 −G0Ta,b provides a Parseval

frame {PG0(Sa,b), PG0(Ta,b)}Na,b=1 for the tangent space TG0MN,K .

Proof. We first note that because Sa,b and Ta,b are anti-Hermitian,G0Sa,bG0+G0S
∗
a,bG0 =

0 and G0Ta,bG0 + G0T
∗
a,bG0 = 0, which shows the simplified expressions for the

projections onto the tangent space. Next, we show the Parseval property. Since

{Sa,b, Ta,b}Na,b=1 is an orthonormal basis, the orthogonal projection PG0 maps it to a

Parseval frame for its span. This means we only need to show that the span of the

projected vectors is the space of all tangent vectors at G0.

Conjugating the orthonormal basis vectors {Sa,a : a ∈ ZN} ∪ {Sa,b, Ta,b : a, b ∈

ZN , a > b} with a unitary U does not change the span. We choose U so that it

diagonalizes G0, with the first K columns of U belonging to eigenvectors of G of
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eigenvalue one. Thus

(I −G0)USa,bU
∗G0 +G0U

∗S∗a,bU(I −G0) =U

 0 0

0 IN−K

Sa,b

 IK 0

0 0

U∗

− U

 IK 0

0 0

Sa,b

 0 0

0 IN−K

U∗

where IK and IN−K are identity matrices of size K × K and (N − K) × (N − K).

Inserting the definition of Sa,b shows that this is zero unless a > K and b ≤ K. In

that case,

(I −G0)USa,bU
∗G0 −G0U

∗Sa,bU(I −G0) = U(i∆a,b − i∆b,a)U
∗/
√

2 = iUTa,bU
∗ .

Similarly, if a > K and b ≤ K, then

(I −G0)UTa,bU
∗G0 −G0U

∗Ta,bU(I −G0) = −iUSa,bU∗ .

The set {iUTa,bU∗,−iUSa,bU∗}a>K,b≤K is by inspection the orthonormal basis of a

2K(N − K)-dimensional real vector space of Hermitian matrices. Since this is in

the range of PG0, it is a subspace of the tangent space. Its dimension then shows that

the set {iUTa,bU∗, −iUSa,bU∗}a>K,b≤K spans the entire tangent space. Consequently,

{PG0(Sa,a) : a ∈ ZN} ∪ {PG0(Sa,b), PG0(Ta,b) : a, b ∈ ZN , a > b} is a Parseval frame

for the tangent space.

An analogous theorem holds for the real case.

5.3.3 Theorem. Suppose F = R and let {Ta,b : a, b ∈ ZN , a > b} be the orthonormal

basis for the real vector space of the anti-symmetric N × N matrices given by Ta,b =
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(∆a,b−∆b,a)/
√

2 for a > b, then PG0(Ta,b) = Ta,bG0−G0Ta,b provides a Parseval frame

{PG0(Ta,b)}Na,b=1 for the tangent space TG0MN,K .

Proof. The proof follows verbatim the proof of the complex case, with {Sa,b}a≥b

omitted from the basis of the anti-Hermitian matrices. We note that after conjugat-

ing with a suitable orthogonal matrix U , the resulting projection of Ta,b, with a > K

and b ≤ K, onto the tangent space is

(I −G0)UTa,bU
∗G0 −G0U

∗Ta,bU(I −G0) = −iUSa,bU∗

which is indeed a real symmetric matrix. Dimension counting then gives that the

image of {Ta,b}a>b is a basis for the K(N −K)-dimensional space of tangent vectors

at G0.

The appearance of anti-Hermitian (respectively anti-symmetric) matrices is nat-

ural if one considers that selecting G0 ∈ MN,K and a differentiable function u ∈

C1(R, U(N)) with values in U(N) (respectively O(N)) , the manifold of N ×N uni-

tary (respectively orthogonal) matrices [62], induces curves inMN,K of the form

γ(t) = u(t)G0u
∗(t) .

If u(0) = I then from d
dt
u(t)u∗(t) = 0, we see that u̇(0) + u̇∗(0) = 0, so A = u̇(0) is

anti-Hermitian (respectively anti-symmetric) and

γ̇(0) = AG0 +G0A
∗ = AG0 −G0A .
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We denote the underlying map by ΠG0 : U(N)→MN,K , ΠG0(U) = UG0U
∗ (respec-

tively ΠG0 : O(N)→MN,K , ΠG0(U) = UG0U
∗) and consider the associated tangent

map DΠG0.

We recall that the embedding of the tangent spaces TIU(N) (respectively TIO(N))

and of TG0MN,K in FN×N induces via the Hilbert-Schmidt inner product a Rieman-

nian structure on the tangent spaces.

5.3.4 Corollary. The tangent map DΠG0 from TIU(N) = {A ∈ FN×N , A = −A∗}

(respectively TIO(N) = {A ∈ FN×N , A = −Aᵀ}) to TG0MN,K given by

DΠG0(A) = AG0 −G0A

is a surjective partial isometry.

Proof. The preceding theorems show that the map DΠG0 is the synthesis operator

of a Parseval frame, so it is a surjective partial isometry.

In order to characterize fixed points of the gradient flows associated with each

potential, we lift frame potentials and gradients to the manifold of unitary (respec-

tively orthogonal) matrices.

Given a function Φ :MN,K → R and G0 ∈MN,K , we consider the lifted function

Φ̂G0 : U(N)→ R, Φ̂(U) = Φ ◦ ΠG0(U) = Φ(UG0U
∗)

when F = C or

Φ̂G0 : O(N)→ R, Φ̂(U) = Φ ◦ ΠG0(U) = Φ(UG0U
ᵀ)
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when F = R.

5.3.5 Corollary. Let Φ :MN,K → R be differentiable, then the gradient ∇Φ(G0) = 0

if and only if ∇Φ̂G0(I) = 0.

Proof. We first cover the complex case. Letting γ(t) = u(t)G0u
∗(t), u(0) = I and

u̇(0) = A = −A∗, then the chain rule gives d
dt
|t=0Φ(γ(t)) = ∇Φ(G0) · (AG0 − G0A).

On the other hand, d
dt
|t=0Φ(γ(t)) = d

dt
|t=0Φ̂G0(u(t)) = ∇Φ̂(I) · A. We conclude

∇Φ̂G0(I) · A = ∇Φ(G0) ·DΠG0(A)

for any anti-Hermitian A. Thus, if ∇Φ(G0) = 0 then ∇Φ̂G0(I) = 0. Conversely, since

DΠG0 is surjective, ∇Φ̂G0(I) = 0 implies that ∇Φ(G0) = 0.

In the real case, A∗ is simply the transpose of A, so A = −A∗ means that A is

skew-symmetric rather than anti-Hermitian. The same argument as in the complex

case applies.
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Chapter 6

Locating Structured Frames onMN,K

This chapter presents the main results of this work. We define several parametric

families of nonnegative, analytic frame potentials onMN,K and use them to locate

frames with geometric properties. We show that Grassmannian equal-norm Parse-

val frames can be obtained as limits of global minimizers for one of these families,

and with the assistance of the machinery developed in the preceding chapter, we

characterize various classes of equidistributed frames and equidistributed, Grass-

mannian equal-norm Parseval frames in terms of fixed point equations for the other

families. We also provide a simple characterization of equiangular Parseval frames,

similar to the one from Theorem 4.1.3. In order to formulate these families of frame

potentials in a convenient manner, we use the fact that every potential is at most

quadratic in the elementary one-parameter potential, Eη
x,y.

6.0.6 Definition. Let G = (Ga,b)
N
a,b=1 ∈ MN,K . Given x, y ∈ ZN and η > 0, we

define the exponential potential Eη
x,y :MN,K → R by

Eη
x,y(G) = eη|Gx,y |

2

.
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6.1 Grassmanian equal-norm Parseval frames

It is natural to ask whether a characterization of Grassmannian equal-norm, Parse-

val frames in terms of frame potentials exists. To address this question, we introduce

the family of off-diagonal sum potentials.

6.1.1 Definition. Let G = (Ga,b)
N
a,b=1 ∈ MN,K . Given η > 0, the off-diagonal sum

potential is the map Φη
od :MN,K → R defined by

Φη
od(G) =

N∑
j,l=1

(1− δj,l)Eη
j,l(G) ,

where the Kronecker symbol δj,l vanishes if j 6= l and contributes δj,j = 1 otherwise.

Although a Grassmannian equal-norm, Parseval frame may fail to be a minimizer

for Φη
od for a fixed value η, the family of frame potentials {Φη

od}η>0 characterizes

them.

6.1.2 Proposition. Let G ∈MN,K ∩ ΩN,K , then

µ(G) = lim
η→∞

1

η
ln(Φη

od(G)) .

Moreover, if G′ belongs to a Grassmannian, equal-norm Parseval frame and G′′ ∈

MN,K ∩ ΩN,K does not, then there exists an η > 0 such that Φη′

od(G′) < Φη′

od(G′′) for

each η′ > η.

Proof. We have for any G ∈MN,K ∩ ΩN,K

eηµ(G) ≤ Φη
od(G) ≤ N(N − 1)eηµ(G),
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thus limη→∞
1
η

ln(Φη
od(G)) = µ(G). Moreover, if G′ is the Gram matrix of a Grass-

mannian equal-norm, Parseval frame and G′′ is not, then µ(G′′) = µ(G′)+ε for some

ε > 0 and if η > ln(N(N − 1))/ε, then ηµ(G′) + lnN(N − 1) < ηµ(G′) + ηε = ηµ(G′′)

and consequently Φη
od(G′) ≤ N(N − 1)eηµ(G′) < eηµ(G′′) ≤ Φη

od(G′′).

Although µ is continuous onMN,K∩ΩN,K , it is not globally differentiable. Thus,

locating even local minima is difficult. Fortunately, we can reduce the minimization

problem for µ to finding minimizers for a sequence of frame potentials.

6.1.3 Proposition. Let {ηm}∞m=1 be a positive, increasing sequence such that lim
m→∞

ηm =

+∞. If
{
G(m) = (G(m)a,b)

N
a,b=1

}∞
m=1
⊆ MN,K ∩ ΩN,K is a sequence such that the re-

stricted potential Φηm
od |MN,K∩ΩN,K

achieves its absolute minimum at G(m) for every

m ∈ {1, 2, 3, ...}, then there exists a subsequence {G(ms)}∞s=1 and G ∈ MN,K ∩ ΩN,K

such that lim
s→∞

G(ms) = G, where G is the Gramian of a Grassmannian equal-norm,

Parseval frame.

Proof. By the compactness ofMN,K ∩ΩN,K , there exists a subsequence {G(ms)}∞s=1

and G ∈ MN,K ∩ ΩN,K such that lim
s→∞

G(ms) = G. Now let Ĝ ∈ MN,K ∩ ΩN,K

correspond to any Grassmannian equal-norm, Parseval frame. By hypothesis, we

have

Φ
ηms
od (G(ms)) ≤ Φ

ηms
od

(
Ĝ
)

for every s ∈ {1, 2, 3, ...}. Furthermore, for every s ∈ {1, 2, 3, ...}, we have

eηmsµ(G(ms)) ≤ Φ
ηms
od (G(ms)) ≤ N(N − 1)eηmsµ(G(ms)).
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Thus

µ(G) = lim
s→∞

µ(G(ms)) = lim
s→∞

1

ηms
ln (Φ

ηms
od (G(ms))) ≤ lim

s→∞

1

ηms
ln
(

Φ
ηms
od (Ĝ)

)
= µ(Ĝ),

where the first equality follows from continuity of the max function. This shows

that G belongs to a Grassmannian equal-norm, Parseval frame.

6.2 Equiangular frames

If the off-diagonal sum potential is properly complemented by terms for the diago-

nal entries of G, then a simple characterization of equiangular Parseval frames can

be derived.

6.2.1 Definition. Let G = (Ga,b)
N
a,b=1 ∈ MN,K . Given η > 0, we define the sum

potential of G as

Φη
sum(G) = Φη

od(G) +
N∑
j=1

e−η(K2/N2−C2
N,K)Eη

j,j(G) .

6.2.2 Proposition. Let G ∈MN,K , then

Φη
sum(G) ≥ N2eη(K/N2−K2/N3+K(N−K))/N3(N−1)

and equality holds if and only if G belongs to an equiangular Parseval frame.

Proof. We use Jensen’s inequality to obtain

Φη
sum(G) =

N∑
j,l=1

eη|Gj,l|
2−δj,l(K2/N2−C2

N,K) ≥ N2e(η/N2)
∑N
j,l=1(|Gj,l|2−ηδj,l(K2/N2−C2

N,K)) .
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Now using the Parseval property gives
∑N

j,l=1 |Gj,l|2 = K and thus

Φη
sum(G) ≥ N2eη(K/N2−K2/N3+K(N−K))/N3(N−1) .

Equality holds in Jensen’s equality if and only if the average is over a constant.

This implies that the diagonal entries equal Gj,j = K/N and the magnitude of the

off-diagonal entries equals CN,K .

6.3 Equidistributed frames

In Chapter 5, we learned that the gradient descent for any real-analytic frame po-

tential on MN,K always approaches a critical point. With this in mind, we direct

our attention to the geometric character of the critical points for several choices of

frame potentials, which culminates with results concerning equidistributed frames.

In order to compute the fixed point equations, we recall from Corollary 5.3.5 that

∇Φ vanishes at G0 if and only if ∇Φ̂G0 vanishes at I.

We start with ∇(Êα
x,y)G(I). From here on, when computing the gradient∇Φ̂G(I)

corresponding to any frame potential Φ, we suppress the subscript G and the argu-

ment I and simply write ∇Φ̂.

6.3.1 Lemma. Let F = C or F = R. If G ∈ MN,K , α ∈ (0,∞), x, y ∈ {1, 2, ..., N},

and let (Êα
x,y)(U) = Eα

x,y(UGU
∗) , then the (a, b) entry of the gradient of Êα

x,y at I is

given as follows:

[∇Êα
x,y]a,b = αeα|Gx,y |

2

(Gy,xGx,bδy,a −Ga,yGy,xδb,x +Gx,yGy,bδa,x −Ga,xGx,yδb,y) .
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In particular, if x = y, then

[∇Êα
x,x]a,b = 2αGx,xe

α|Gx,x|2(δa,xGx,b − δb,xGa,x) .

Proof. Let Sa,b = i(∆a,b+∆b,a)/
√

2 for a ≤ b and let Ta,b = (∆a,b−∆b,a)/
√

2 for a < b

as before.

We first compute the entries of the matrices Sa,bG−GSa,b and Ta,bG−GTa,b,

[Sa,bG−GSa,b]x,y =
i√
2

[∆a,bG+ ∆b,aG−G∆a,b −G∆b,a]x,y

=
i√
2

[δa,xGb,y + δb,xGa,y −Gx,aδb,y −Gx,bδy,a] .

and

[Ta,bG−GTa,b]x,y =
1√
2

[∆a,bG−∆b,aG−G∆a,b +G∆b,a]x,y

=
1√
2

[δa,xGb,y − δb,xGa,y −Gx,aδb,y +Gx,bδa,y] .

Let x, y ∈ ZN , then

∇Êα
x,y · Sa,b =

d

dt
|t=0E

α
x,y(G+ t(Sa,bG−GSa,b))

=
i√
2
αea|Gx,y |

2

(Gy,x(δa,xGb,y + δb,xGa,y −Gx,aδb,y −Gx,bδy,a)

−Gx,y(δa,xGy,b + δb,xGy,a −Ga,xδb,y −Gb,xδy,a))
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and

∇Êα
x,y · Ta,b =

d

dt
|t=0E

α
x,y(G0 + t(Ta,bG0 −G0Ta,b))

=
1√
2
αea|Gx,y |

2

(Gy,x(δa,xGb,y − δb,xGa,y −Gx,aδb,y +Gx,bδa,y)

+Gx,y(δa,xGy,b − δb,xGy,a −Ga,xδb,y +Gb,xδa,y)) .

Thus, when F = C, summing the components of the gradient gives

[∇Êα
x,y]a,b = [(∇Êα

x,y · Sa,b)Sa,b + (∇Êα
x,y · Ta,b)Ta,b]a,b

= αeα|Gx,y |
2

(Gy,xGx,bδy,a −Ga,yGy,xδb,x +Gx,yGy,bδa,x −Ga,xGx,yδb,y) .

Using the fact that Gj,l = Gl,j for all j, l ∈ ZN when F = R, we obtain again

[∇Êα
x,y]a,b = [(∇Êα

x,y · Ta,b)Ta,b]a,b

= αeα|Gx,y |
2

(Gy,xGx,bδy,a −Ga,yGy,xδb,x +Gx,yGy,bδa,x −Ga,xGx,yδb,y) .

Because the expression for ∇Êα
x,y does not depend on whether F = C or F = R,

we do not distinguish between the two cases for the remaining gradient computa-

tions.

6.3.1 The sum potential and the absence of orthogonal frame

vectors

Next, we investigate the sum potential.

90



6.3.2 Proposition. Let G ∈ MN,K , let a, b ∈ ZN , and let Φ̂η
sum(U) = Φη

sum(UGU∗) ,

then the (a, b) entry of the gradient of Φ̂η
sum is given as follows:

[
∇Φ̂η

sum

]
a,b

= 2
∑

j∈ZN ,j 6∈{a,b}

(eη|Ga,j |
2 − eη|Gb,j |2)Ga,jGj,b + 2eη|Ga,b|

2

(Ga,bGb,b −Ga,aGa,b)

+2eη(C2
N,K−

K2

N2 )
(
eηG

2
a,aGa,aGa,b − eηG

2
b,bGa,bGb,b

)
.

Proof. By linearity of the gradient operator, we have

∇Φ̂η
sum =

1

η


N∑

l, j = 1

l 6= j

∇Êη
l,j + e

η
(
C2
N,K−

K2

N2

) N∑
s=1

∇Êη
s,s

 .

By applying Lemma 6.3.1, the claim follows.

In the investigation of gradient descent for equal-norm frames, nontrivially or-

thodecomposable frames presented undesirable critical points [40]. We show that

this class of frames does not pose problems for our optimization strategy when an

initial condition is met.

6.3.3 Definition. A frame F for a Hilbert space H is called orthodecomposable if

there are mutually disjoint subsets J1, J2, . . . , Jm partitioning ZN and subspaces

H1, H2, . . . , Hm of H such that {fj}j∈Jk is a frame for Hk and Hk ⊥ Hl for all k 6= l,

so H =
⊕m

k=1Hk.

In terms of its Gram matrix G, a frame F is nontrivially orthodecomposable if
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there is some permutation matrix P which makes G block diagonal,

G′ = PGP ∗ =

 G′1,1 0

0 G′2,2


where G′1,1 6≡ 0 and G′2,2 6≡ 0.

A sufficiently small initial value of the sum potential rules out that the gradient

descent onMN,K encounters such orthodecomoposable frames.

6.3.4 Proposition. Let G ∈MN,K and η > 0. Suppose that

Φη
sum(G) < 2 + (N2 − 2)eη(K/(N2−2)−K2/N(N2−2)+K(N−K)/(N(N−1)(N2−2)) ,

then G contains no zero entries.

Proof. We prove the contrapositive. Let Gj,l = 0. Without loss of generality, we can

assume that j 6= l because if a diagonal entry in G vanishes, then so do all entries

in the corresponding row. Now we can perform Jensen’s inequality for the entries

other than Gj,l and Gl,j and obtain

Φη
sum(G) ≥ 2 + (N2 − 2)eη/(N

2−2)
∑N
j,l=1(|Gj,l|2−ηδj,l(K2/N2−C2

N,K)) .

Inserting the value for CN,K and using the Parseval property gives the claimed

bound.
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6.3.2 The diagonal potential and equal-norm Parseval frames

Next, we show how equal-norm Parseval frames which exhibit no orthogonality

among the frame vectors can be obtained.

6.3.5 Definition. Let G = (Ga,b)
N
a,b=1 ∈ MN,K . Given δ ∈ (0,∞), we define the

diagonal potential Φδ
diag :MN,K → R by

Φδ
diag(G) =

1

δ

N∑
j=1

Eδ
j,j(G)− N

δ
eδ

K2

N2

=
1

δ

N∑
j=1

eδ|Gj,j |
2 − N

δ
eδ

K2

N2 .

6.3.6 Proposition. Let G ∈ MN,K , let a, b ∈ ZN , and let Φ̂δ
diag(U) = Φδ

diag(UGU
∗).

Then the (a, b) entry of the gradient of Φ̂δ
diag is given as follows:

[
∇Φ̂δ

diag

]
a,b

= 2Ga,b(Ga,ae
δ|Ga,a|2 −Gb,be

δ|Gb,b|2) .

Proof. Observe that by linearity of the gradient operator, we have

∇Φ̂δ
diag = ∇

1

δ

∑
x ∈ ZN

Êδ
x,x

 =
1

δ

∑
x ∈ ZN

∇Êδ
x,x.

By summing over the different cases for x and applying Lemma 6.3.1 , the claim

follows.

6.3.7 Proposition. Let Φδ := Ψ + Φδ
diag be a function onMN,K , where Ψ :MN,K →

[0,∞) is any real analytic function that does not depend on the parameter δ. Let
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G ∈ MN,K with no zero entries and suppose ∇Φδ(G) = 0 for all δ ∈ I, where

I ⊆ (0,∞) is an open interval, then G is the Gram matrix of an equal-norm Parseval

frame.

Proof. Recall from Proposition 6.3.6 that each (a, b) entry of ∇Φ̂δ
diag is given by

[∇Φ̂δ
diag]a,b = 2Ga,b(Ga,ae

δ|Ga,a|2 −Gb,be
δ|Gb,b|2).

Thus, by hypothesis and Corollary 5.3.5, we have

[∇Φ̂δ]a,b = [∇Ψ̂]a,b + 2Ga,b(Ga,ae
δ|Ga,a|2 −Gb,be

δ|Gb,b|2) = 0, ∀a, b ∈ ZN ,∀δ ∈ I.

Since [∇Φ̂δ]a,b is constant for all δ ∈ I and since Ψ does not depend on δ, taking the

derivative of this expression with respect to δ yields

d

dδ
[∇Φ̂δ]a,b =

d

dδ
[∇Ψ̂]a,b +

d

dδ
2Ga,b(Ga,ae

δ|Ga,a|2 −Gb,be
δ|Gb,b|2)

= 0 + 2Ga,b(G
3
a,ae

δ|Ga,a|2 −G3
b,be

δ|Gb,b|2)

= 0

for all a, b ∈ ZN and for all δ ∈ I. Since G contains no zero entries, we can cancel

the factor 2Ga,b in these equations to obtain

G3
b,be

δG2
b,b = G3

a,ae
δG2

a,a ,

for all a, b ∈ ZN and all δ ∈ I. By the strict monotonicity of the function x 7→ x3eδx
2

on R+, this implies Ga,a = Gb,b for all a, b in ZN . This is only possible if G is equal-

norm, so we are done.
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6.3.3 The chain potential and equipartitioning

In this section, we show that α-equipartitioned frames can be obtained under cer-

tain conditions with the chain potential. This requires two auxiliary functions: the

exponential row sum potential and the link potential.

6.3.8 Definition. Let G = (Ga,b)
N
a,b=1 ∈ MN,K . Given x ∈ ZN and α, β ∈ (0,∞), we

define the exponential row sum potential Rα,β
x :MN,K → R by

Rα,β
x (G) =

1

α

N∑
j=1, 6=x

Eα
x,j(G) + βE1

x,x(G)

=
1

α

N∑
j=1, 6=x

eα|Gx,j |
2

+ βe|Gx,x|
2

.

We define the link potential Lα,βx :MN,K → R by

Lα,βx (G) = (Rα,β
x (G)−Rα,β

x+1(G))2

and the chain potential Φα,β
ch :MN,K → R by

Φα,β
ch (G) =

∑
j∈ZN

Lα,βj (G) .

Next, we compute the gradients of R̂α,β
x and L̂α,βx at I.

6.3.9 Lemma. Let G ∈ MN,K , α ∈ (0,∞) and x ∈ {1, 2, ..., N}, and let R̂α,β
x (U) =

Rα,β
x (UGU∗), then the (a, b) entry of the gradient of R̂α

x at I is given as follows:
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[
∇R̂α,β

x

]
a,b

=
∑
j ∈ ZN

j 6= a

eα|Gx,j |
2

[−Ga,jGj,xδb,x +Gx,jGj,bδa,x −Ga,xGx,jδb,j]

+ 2βe|Gx,x|
2

[Gx,xGx,bδx,a −Ga,xGx,xδb,x] .

Proof. This computation follows immediately from Lemma 6.3.1 by observing that,

because of linearity of the gradient operator, we have

∇R̂α,β
x = ∇

 1

α

∑
j ∈ ZN

j 6= a

Êα
x,j + βÊ1

x,x

 =
1

α

∑
j ∈ ZN

j 6= a

∇Êα
x,j + β∇Ê1

x,x.

6.3.10 Lemma. Let G ∈ MN,K and α, β ∈ (0,∞). Furthermore, let x, a ∈ ZN

and set b = a + 1. Let L̂α,βx (U) = Lα,βx (UGU∗) , then the (a, b)-entry (ie, along the
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superdiagonal) of the gradient of L̂α,βx at I is given as:

[
∇L̂α,βx

]
a,b

= 2(R̂α,β
x − R̂

α,β
x+1)

×


∑
j ∈ ZN

j 6= a

[
eα|Gx,j |

2

(−Ga,jGj,xδb,x +Gx,jGj,bδa,x −Ga,xGx,jδb,j)

− eα|Gx+1,j |2 (−Ga,jGj,x+1δb,x+1 +Gx+1,jGj,bδa,x+1 −Ga,x+1Gx+1,jδb,j)
]

+ 2β
[
e|Gx,x|

2

(Gx,xGx,bδx,a −Ga,xGx,xδb,x)

− e|Gx+1,x+1|2 (Gx+1,x+1Gx+1,bδx+1,a −Ga,x+1Gx+1,x+1δb,x+1)
]
 .

Proof. If we let h(t) = t2, then we see that

Lα,βx (G) = (Rα
x(G)−Rα,β

x+1(G))2 = h(Rα
x(G)−Rα,β

x+1(G)).

Therefore, by applying the chain rule and linearity of the gradient operator, we see

that

∇L̂α,βx = h′(Rα,β
x (G)−Rα,β

x+1(G))∇(R̂α,β
x − R̂

α,β
x+1)

= 2(Rα,β
x (G)−Rα,β

x+1(G))(∇R̂α,β
x −∇R̂

α,β
x+1)

The rest follows by Lemma 6.3.9.
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For notational convenience, we define ϕα : Z3
N ×MN,K → C for α > 0 by

ϕα(a, b, x,G) =
∑
j ∈ ZN

j 6= a

[
eα|Gx,j |

2

(−Ga,jGj,xδb,x +Gx,jGj,bδa,x −Ga,xGx,jδb,j)

− eα|Gx+1,j |2 (−Ga,jGj,x+1δb,x+1 +Gx+1,jGj,bδa,x+1 −Ga,x+1Gx+1,jδb,j)
]
.

6.3.11 Proposition. Let G ∈ MN,K , α, β,∈ (0,∞). Let a ∈ ZN and set b = a + 1, so

that (a, b) entry of G falls on the superdiagonal, and let Φ̂α,β
ch (U) = Φα,β

ch (UGU∗), then

the (a, b) entry of the gradient of Φ̂α,β
ch is given as follows:

[
∇Φ̂α,β

ch

]
a,b

= 2
∑
j ∈ ZN

(
Rα,β
j (G)−Rα,β

j+1(G)
)
ϕα(a, b, x,G)

+ 4β
{
−Ga,aGa,be

|Ga,a|2 [Rα,β
a−1(G)−Rα,β

a (G)]

+ (Ga,aGa,be
|Ga,a|2 +Ga,bGb,be

|Gb,b|2)[Rα,β
a (G)−Rα,β

b (G)]

−Ga,bGb,be
|Gb,b|2 [Rα,β

b (G)−Rα,β
b+1(G)]

}
.

Proof. Observe that

∇Φ̂α,β
ch = ∇

 ∑
j ∈ ZN

L̂α,βj

 =
∑
j ∈ ZN

∇L̂α,βj .

By summing over the different cases for j and using Lemma 6.3.10, the claim fol-

lows, where we have isolated the nonzero terms which are multiplied by the pa-

rameter β (i.e., corresponding to j = a− 1, j = a, and j = a+ 1).

6.3.12 Proposition. Let Φα,β := Ψ+Φα,β
ch be a function onMN,K , where Ψ :MN,K →
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[0,∞) is any real analytic function that does not depend on the parameters α or β. Let

G ∈ MN,K be equal-norm with no zero entries, fix α ∈ (0,∞), and suppose that

∇Φα,β
ch (G) = 0 for all β ∈ J , where J ⊆ (0,∞) is an open interval, then G is α-

equipartitioned.

Proof. Since Ψ does not depend on β and since ∇Φα,β
ch = 0 for all β ∈ J , then using

corollary 5.3.5 and taking the partial derivative with respect to β of an (a, b) entry

of ∇Φ̂α,β
ch gives

d

dβ
[∇Φ̂α,β

ch ]a,b =
d

dβ
[∇Ψ̂(G)]a,b +

d

dβ
[∇Φ̂ch]a,b

= 0 +
d

dβ
[∇Φ̂α,β

ch ]a,b

= 0

for all β ∈ J . In particular, we have d
dβ

[∇Φ̂α,β
ch ]a,b = 0 for all a, b ∈ ZN and for all

β ∈ J .

Next, we compute d
dβ

[Φ̂α,β
ch ]a,b for the case where b = a + 1 (ie, along the super-

diagonal), thereby inducing a set of equations which will lead to the desired result.

So, from here on, we suppose that b = a+ 1.

First, we observe a simplification that results from the assumption that G is

equal-norm. Referring back to Proposition 6.3.11, we note that every additive term

of [∇Φ̂ch]a,b has a factor of the form (Rα,β
j (G)−Rα,β

j+1(G)). However, since G is equal-

norm, we can replace each of these factors with (Rα
j (G) − Rα

j+1(G)) to denote the

fact that the β terms corresponding to the diagonal entries have canceled because

of the equal-norm property. After doing this, we see that there are only three terms

of [∇Φ̂α,β
ch ]a,b which still depend on β. Now the desired partial derivative is easy to
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compute, which yields

d

dβ
[∇Φ̂ch]a,b = −4Ga,aGa,be

|Ga,a|2 [Rα,β
a−1(G)−Rα,β

a (G)]

+ 4(Ga,aGa,be
|Ga,a|2 +Ga,bGb,be

|Gb,b|2)[Rα,β
a (G)−Rα,β

b (G)]

− 4Ga,bGb,be
|Gb,b|2 [Rα,β

b (G)−Rα,β
b+1(G)

= 0

Once again, because G is equal-norm, it follows that Ga,a = Gb,b = K
N

, so this

equation can be rewritten as

d

dβ
[∇Φ̂ch]a,b = −4

K

N
Ga,be

|K
N
|2 (Rα

a−1(G)− 3Rα
a (G) + 3Rα

b (G)−Rα
b+1(G)

)
= 0 .

Since G contains no zero entries, we can cancel the factor(s) −4K
N
Ga,be

|K
N
|2 to obtain

Rα
a−1(G)− 3Rα

a (G) + 3Rα
b (G)−Rα

b+1(G) = 0

for all a, b ∈ ZN , where b = a + 1. This induces the linear system Ax = 0, where A

is the N ×N circulant matrix

A =



−3 3 −1 0 · · · 0 1

1 −3 3 −1 · · · 0 0

0 1 −3 3 · · · 0 0

...
...

...
...

...
...

...

3 −1 0 0 · · · 1 −3



100



and

x =



Rα
1 (G)

Rα
2 (G)

...

Rα
N(G)


.

The circulant matrix A is the polynomial A = −3I + 3S − S2 + SN−1 of the cyclic

shift matrix S. Therefore, its eigenvectors coincide with those of S,

vj =



1

ωj
...

ωN−1
j


and by the spectral theorem the eigenvalues of A are then given by

λj = −3 + 3ωj − ω2
j + ωN−1

j , j ∈ ZN ,

where ωj = e
2πij
N , the N th roots of unity, are the corresponding eigenvalues of S.

The system Ax = 0 is homogeneous, so we would like to obtain the zero

eigenspace of A. By letting j ∈ ZN , setting λj = 0, and then factoring, we ob-

tain

0 = −3 + 3ωj − ω2
j + ωN−1

j

= −(1− ωj)(2− ωj − ωN−1
j ) .

Inspecting both factors, we see that λj = 0 iff ωj = 1 iff j ≡ 0 mod N . Thus,

the zero eigenspace is 1-dimensional and spanned by the vector of all ones. In
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particular, this shows that

Rα
1 (G) = Rα

2 (G) = · · · = Rα
N(G).

In other words, G is α-equipartitioned.

6.3.13 Corollary. Let Φα,β := Ψ + Φα,β
ch be a function onMN,K , where Ψ :MN,K →

[0,∞) is any real analytic function that does not depend on the parameters α or β.

Let G ∈ MN,K be equal-norm with no zero entries, and, furthermore, suppose that

∇Φα,β
ch (G) = 0 for all α ∈ I and all β ∈ J , where I, J ⊆ (0,∞) are open intervals,

then G is equidistributed.

Proof. Since J is an open interval, it follows by proposition 6.3.12 that G is α-

equipartitioned for every α ∈ I. Therefore, by Proposition 3.3.16, G is equidis-

tributed.

6.3.4 A characterization of equidistributed frames

Finally, we combine these definitions to obtain the family of potential functions

which will yield our main theorem, as defined below.

6.3.14 Definition. Let G = (Ga,b)
N
a,b=1 ∈ MN,K . Given α, β, δ, η ∈ (0,∞), we define

the combined potential, Φα,β,δ,η :MN,K → R, by

Φα,β,δ,η(G) = Φα,β
ch (G) + Φδ

diag(G) + Φη
sum(G).

6.3.15 Definition. Let G ∈ MN,K , let I, J, T ⊆ (0,∞) be open intervals and η > 0,

then we say that G is a family-wise critical point with respect to {Φα,β,δ,η}α∈I,β∈J,δ∈T
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if ∇Φα,β,δ,η(G) = 0 for all α ∈ I, β ∈ J , and δ ∈ T .

6.3.16 Theorem. Let G ∈ MN,K , let I, J, T ⊆ (0,∞) be open intervals and η > 0. If

G is a family-wise critical point with respect to {Φα,β,δ,η}α∈I,β∈J,δ∈T and

Φα′,β′,δ′,η(G) < 2 + (N2 − 2)eη(K/(N2−2)−K2/N(N2−2)+K(N−K)/(N(N−1)(N2−2))

for some α′, β′, δ′ ∈ (0,∞), then G is equidistributed.

Proof. Since G is a family-wise critical point, ∇Φα,β,δ,η(G) = 0 for all α ∈ I, β ∈ J

and δ ∈ T .

Since Φα′,β′,δ′,η(G) = Φα′,β′

ch (G) + Φδ′

diag(G) + Φη
sum(G) < D, with

D = 2 + (N2 − 2)eη(K/(N2−2)−K2/N(N2−2)+K(N−K)/(N(N−1)(N2−2))

then it must also be the case that Φη
sum(G) < D. Hence, G contains no zero entries,

by Proposition 6.3.4.

Now, with respect to Proposition 6.3.7, we can momentarily rewrite Φα,β,δ,η as

Φδ = Ψ + Φδ
diag, where Ψ = Φα,β

ch + Φη
sum. Since we have confirmed that there are no

zero entries, since Ψ does not depend on δ and since ∇Φδ(G) = 0 for all δ ∈ T , it

follows from Proposition 6.3.7 that G corresponds to an equal-norm Parseval frame.

Finally, with respect to Corollary 6.3.13, we can once again rewrite Φα,β,δ,η as

Φα,β = Ψ + Φα,β
ch , where Ψ = Φη

sum + Φδ
diag this time. Since we have confirmed that

G contains no zeros, since G is equal-norm, Ψ does not depend on α or β, and

∇Φα,β
ch (G) = 0 for all α ∈ I and β ∈ J , it follows from Corollary 6.3.13 that G is

equidistributed.
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Alternatively, we can relax the requirement on the value of the potential and

simply assume that our family-wise critical point contains no zero entries. It is

clear from the preceding proof that this would also yield equidistributivity, as stated

below.

6.3.17 Corollary. Let η > 0. If G ∈ MN,K is a family-wise critical point with respect

to the family of frame potentials {Φα,β,δ,η}α∈I,β∈J,δ∈T and G contains no zero entries,

then G is equidistributed.

6.3.18 Proposition. Let η > 0 and G ∈ MN,K be equidistributed. If ∇Φη
sum(G) = 0,

then G is a family-wise critical point with respect to {Φα,β,δ,η}α,β,δ∈(0,∞).

Proof. Since G is equidistributed, we see immediately that Φα,β
ch (G) = 0 for all

α, β ∈ (0,∞), so it follows that ∇Φα,β
ch (G) = 0 for all α, β ∈ (0,∞). Similarly,

since G must also be equal-norm, we have Φδ
diag(G) = 0 for all δ ∈ (0,∞), which

implies∇Φδ
diag(G) = 0 for all δ ∈ (0,∞). Thus, if ∇Φη

sum(G) = 0, then

∇Φα,β,δ,η(G) = ∇Φα,β
ch (G) + Φδ

diag(G) +∇Φη
sum(G) = 0

for all α, β, δ ∈ (0,∞), so the claim follows.

The assumption in the preceding proposition is met when the frame is generated

with a group representation as specified below.

6.3.19 Proposition. Suppose Γ is a finite group of size N = |Γ| with a unitary

representation π : Γ → B(H) on the complex K-dimensional Hilbert space H and

{fg = π(g)fe} is an (N,K)-frame. If the Gram matrix G satisfies Gg,h = Gh−1,g−1 for

all g, h ∈ Γ, then ∇Φη
sum(G) = 0 for all η ∈ (0,∞).
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Proof. Fix η ∈ (0,∞). Since G is equidistributed (see Example 3.3.6), it is equal-

norm, so the last two additive two terms from the (a, b) gradient entry in Proposi-

tion 6.3.2 cancel. Therefore, to show that the gradient vanishes, it is sufficient to

show that ∑
j∈Γ

eη|Ga,j |
2

Ga,jGj,b =
∑
j∈Γ

eη|Gb,j |
2

Ga,jGj,b

for all a, b ∈ Γ. As a first step, we note that the group representation gives Gx,y =

〈fy, fx〉 = 〈π(x−1y)fe, fe〉 ≡ H(x−1y). Thus, we can change the summation index

and get

∑
j∈Γ

eη|Ga,j |
2

Ga,jGj,b =
∑
j∈Γ

eη|H(j−1a)|2H(j−1a)H(b−1j) =
∑
j∈Γ

eη|H(j−1)|2H(j−1)H(b−1aj) .

We also note that |H(g)| = |H(g−1)|, so in combination with changing the summa-

tion index we obtain

∑
j∈Γ

eη|Ga,j |
2

Ga,jGj,b =
∑
j∈Γ

eη|H(j)|2H(j−1)H(b−1aj) =
∑
j∈Γ

eη|H(j−1b)|2H(b−1j)H(b−1aj−1b) .

Finally, using the fact that the Gram matrix has the assumed structure givesH(h−1g) =

H(gh−1) for h = a−1b and g = j−1b, which yields

∑
j∈Γ

eη|Ga,j |
2

Ga,jGj,b =
∑
j∈Γ

eη|H(j−1b)|2H(b−1j)H(j−1a) =
∑
j∈Γ

eη|Gb,j |
2

Ga,jGj,b .

This completes the proof, since η was arbitrary.

The claimed property of the Gramian is true if Γ is abelian.

6.3.20 Corollary. Suppose Γ is a finite abelian group of size N = |Γ| with a unitary
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representation π : Γ → B(H) on a real or complex K-dimensional Hilbert space H

and {fg = π(g)fe} is an (N,K)-frame, then ∇Φη
sum(G) = 0 for every η ∈ (0,∞).

There is an abundance of equidistributed Parseval frames obtained with repre-

sentations of abelian groups, in particular the harmonic frames that exist for any

combination of the number of frame vectors N and dimension K ≤ N .

6.3.21 Corollary. For every pair of integers 1 ≤ K ≤ N and for every η > 0, there

exists a family-wise critical point with respect to {Φα,β,δ,η}α,β,δ∈(0,∞) onMN,K .

The gradient of the sum energy also vanishes for any Gramian corresponding to

a mutually unbiased basic sequence which has been rescaled to admit Parsevality.

6.3.22 Proposition. If G ∈ MN,K is the Gramian of a mutually unbiased basic se-

quence, then ∇Φη
sum(G) = 0 for all η ∈ (0,∞).

Proof. Fix η ∈ (0,∞). We recall that the Gram matrix has diagonal entries that are

equal to K/N , and the other entries either vanish in diagonal blocks or have the

same magnitude in off-diagonal blocks. Assuming the frame vectors are grouped in

M subsets of size L, then N = ML and there are M(M − 1)L2 off-diagonal entries

of the same magnitude CM,L,K . Based on the Hilbert-Schmidt norm of G, we then

have

CM,L,K =

√
K(ML−K)

M2(M − 1)L3
.

In order to make the block structure apparent in the notation, we write the ma-

trix G as G = (G
(p,q)
x,y )p,q∈ZM ,x,y∈ZL, where the doubly-indexed superscript indicates

in which block the entry is and the subscript indicates the position within the block.
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The absolute value of any entry then satisfies

|G(p,q)
x,y | =


K
ML

, x = y, p = q

0, x 6= y, p = q

CM,L,K , p 6= q .

To see the claim, we verify that every entry of ∇Φ̂η
sum vanishes. Since this is auto-

matically true for the diagonal entries, let (p, x), (q, y) ∈ ZS×ZL with (p, x) 6= (q, y).

One has that either p = q or p 6= q. If p = q, then re-expressing the identity in

Proposition 6.3.2 in terms of block notation and noting that the last two terms on

the right-hand side cancel due to the equal-norm property yields

[
∇Φ̂η

sum

](p,p)

x,y
= 2

L∑
t = 1

t 6= x, y

(eη|G
(p,p)
x,t |2 − eη|G

(p,p)
y,t |2)G

(p,p)
x,t G

(p,p)
t,y

+ 2
M∑
s = 1

s 6= p

L∑
t = 1

t 6= x, y

(eη|G
(p,s)
x,t |2 − eη|G

(p,s)
y,t |2)G

(p,s)
x,t G

(s,p)
t,y .

The first series on the right-hand side is zero because G
(p,p)
x,t = G

(p,p)
y,t = 0 since

t 6∈ {x, y}. The second series also vanishes because when s 6= p, then |G(p,s)
x,t | =

|G(p,s)
y,t | = CM,L,K . Thus, the block diagonal entries of the gradient vanish.
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On the other hand, if p 6= q, then we get

[
∇Φ̂η

sum

](p,q)

x,y
= 2

M,L∑
s, t = 1

(s, t) 6= (p, x), (q, y)

(eη|G
(p,s)
x,t |2 − eη|G

(q,s)
y,t |2)G

(p,s)
x,t G

(s,q)
t,y

= 2
L∑

t = 1

t 6= x

(eη|G
(p,p)
x,t |2 − eη|G

(q,p)
y,t |2)G

(p,p)
x,t G

(p,q)
t,y

+ 2
L∑

t = 1

t 6= y

(eη|G
(p,q)
x,t |2 − eη|G

(q,q)
y,t |2)G

(p,q)
x,t G

(q,q)
t,y

+ 2
M∑
s = 1

s 6= p, q

L∑
t = 1

(eη|G
(p,s)
x,t |2 − eη|G

(q,s)
y,t |2)G

(p,s)
x,t G

(s,q)
t,y .

The first series vanishes because G(p,p)
x,t = 0, the second one because G(q,q)

t,y = 0 and

the last one because |G(p,s)
x,t | = |G

(q,s)
y,t | = CM,L,K . This confirms that ∇Φ̂η

sum = 0 and,

since η was arbitrary, the claim is proven.

As a consequence of this Proposition and of Proposition 6.3.18, we know that

Examples 3.3.21 and 3.3.22 provide us with family-wise critical points.

If the Gramian does not contain vanishing entries, then we can characterize

equidistributed frames, taking advantage of the fact that the term Φη
sum in Φα,β,δ,η is

no longer needed in this case.

6.3.23 Theorem. Let G ∈ MN,K and suppose that G contains no zero entries. The

Gramian G is equidistributed if and only if∇[Φδ
diag+Φα,β

ch ](G) = 0 for all α ∈ I, β ∈ J ,

and δ ∈ T , where I, J, T ⊆ (0,∞) are open intervals.

Proof. If G is equidistributed, then Φδ
diag(G) = 0 and Φα,β

ch (G) = 0 for all α, β, δ ∈
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(0,∞), so it follows that ∇Φδ
diag(G) = 0 and ∇Φα,β

ch (G) = 0 for all α, β, δ ∈ (0,∞).

For the converse, since G contains no zero entries, it follows by Proposition 6.3.7

that G is equal-norm. With this established, it then follows from Corollary 6.3.13

that G is equidistributed.

6.4 Equidistributed Grassmannian equal-norm Parse-

val frames

We conclude the discussion of the relation between frame potentials and the struc-

ture of optimizers by showing how an equidistributed Grassmannian equal-norm

Parseval frame can be obtained as the limit of minimizers to the sequence {Φηn
sum}∞n=1,

where ηn →∞.

6.4.1 Proposition. Let {ηm}∞m=1 be a positive, increasing sequence such that lim
m→∞

ηm =

+∞. If
{
G(m) = (G(m)a,b)

N
a,b=1

}∞
m=1
⊆ MN,K ∩ ΩN,K is a sequence of Gram matri-

ces such that the restricted potential Φηm
sum|MN,K∩ΩN,K

achieves its absolute minimum

onMN,K ∩ ΩN,K at G(m) for every m ∈ {1, 2, 3, ...}, then there exists a subsequence

{G(ms)}∞s=1 andG ∈MN,K∩ΩN,K such that lim
s→∞

G(ms) = G, whereG is the Gramian

of a Grassmannian equal-norm Parseval frame.

Proof. For each m ∈ {1, 2, ...}, since G(m) is equal-norm, the diagonal part of

Φηm
sum(G(m)) simplifies so that we can write

Φηm
sum(G(m)) = Φηm

od (G) +
N∑
j=1

eηmC
2
N,K .
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Furthermore, by Parsevality, since each G(m) is equal-norm, there must always

exist an off diagonal entry G(m)a,b such that |G(m)a,b|2 ≥ C2
N,K . Hence, µ(G(m)) =

max
a,b∈ZN

|G(m)a,b| for every m, which allows us to replace Φηm
od with Φηm

sum in the proof

strategy from Proposition 6.1.3, which shows the claim.

If the sequence of minimizing equal-norm Parseval frames has the stronger prop-

erty of being equidistributed, then the limit of the corresponding subsequence is

equidistributed as well.

6.4.2 Proposition. Let {ηm}∞m=1 be a positive, increasing sequence such that lim
m→∞

ηm =

+∞. If
{
G(m) = (G(m)a,b)

N
a,b=1

}∞
m=1
⊆MN,K ∩ΩN,K is a sequence of equidistributed

Gramians such that Φηm
sum|MN,K∩ΩN,K

achieves its absolute minimum onMN,K ∩ΩN,K

at G(m) for every m ∈ {1, 2, 3, ...}, then there exists a subsequence {G(ms)}∞s=1 and

G ∈ MN,K ∩ ΩN,K such that lim
s→∞

G(ms) = G, where G corresponds to an equidis-

tributed Grassmannian equal-norm Parseval frame.

Proof. By compactness ofMN,K ∩ΩN,K , there exists a subsequence {G(ms)}∞s=1 and

G ∈ MN,K ∩ ΩN,K such that lim
s→∞

G(ms) = G. Since each G(ms) is equidistributed,

we can define for each α ∈ (0,∞) the sequence

{
xα(ms) :=

∑
j∈ZN

eα|G(ms)a,j |2
}∞
s=1

,

where our definition is independent of the choice of a ∈ ZN . Since the entries of

{G(ms)}∞m=1 converge to those of G, we have by continuity

∑
j∈ZN

eα|Ga,j |
2

= lim
m→∞

xα(ms) =
∑
j∈ZN

eα|Gb,j |
2

for all a, b ∈ ZN . Since this is true for every α ∈ (0,∞), G is equidistributed by

Proposition 3.3.16. Additionally, it follows by applying Proposition 6.4.1 to the

sequence {ms}∞s=1 that G is a Grassmannian equal-norm Parseval frame, because
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any subsequence of {G(ms)}∞s=1 must also converge to G.

If we know that each G(m) is a family-wise critical point without vanishing en-

tries, then we can characterize this limit in terms of the gradient of frame potentials.

6.4.3 Theorem. Let I, J, T be open intervals in (0,∞) and let {ηm}∞m=1 be a positive,

increasing sequence such that lim
m→∞

ηm = +∞. If
{
G(m) = (G(m)a,b)

N
a,b=1

}∞
m=1

⊆

MN,K ∩ ΩN,K is a sequence such that Φηm
sum|MN,K∩ΩN,K

achieves its absolute minimum

onMN,K ∩ ΩN,K at G(m), each G(m) contains no vanishing entries, and each G(m)

is a family-wise fixed point with respect to {Φα,β,δ,ηm}α∈I,β∈J,δ∈T , then there exists a

subsequence {G(ms)}∞s=1 and G ∈ MN,K ∩ ΩN,K such that lim
s→∞

G(ms) = G, where G

is the Gram matrix of an equidistributed Grassmannian equal-norm Parseval frame.

Proof. By Corollary 6.3.17, it follows that each G(m) is equidistributed. Therefore,

by Proposition 6.4.3, there exists a subsequence {G(ms)}∞s=1 and G ∈MN,K ∩ΩN,K

such that lim
s→∞

G(ms) = G, where G corresponds to an equidistributed Grassman-

nian equal-norm Parseval frame.

The existence of equiangular Parseval frames for certain pairs of N and K pro-

vides an abundance of examples for which this theorem holds; however, due to the

difficulty in verifying when a non-equiangular critical point of Φη
sum|MN,K∩ΩN,K

is at

an absolute minimum, it cannot be stated outright that non-equiangular, equidis-

tributed frames exist which satisfy the conditions of Proposition 6.4.2 or Theo-

rem 6.4.3. By considering the Welch bound over (2, 6)-frames and then apply-

ing the Naimark compliment, it is seen that complex equiangular (4, 6) frames do

not exist; however, based on numerical experiments, it is the author’s conjecture

that Example 3.3.4 is an absolute minimizer of Φη
sum|MN,K∩ΩN,K

for all η ∈ (0,∞)
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and therefore corresponds to an equidistributed Grassmannian equal-norm Parseval

frame in this setting by Proposition 6.4.2. Similarly, it was shown in [89] that com-

plex equiangular (3, 8)-frames do not exist; however, further numerical experiments

have led to the additional conjecture that Example 3.3.5 is an absolute minimizer of

Φη
sum|MN,K∩ΩN,K

for all η ∈ (0,∞) and therefore corresponds to an equidistributed

Grassmannian equal-norm Parseval frame in this setting by either Proposition 6.4.2

or Theorem 6.4.3. In addition, we know at least that there are equidistributed

Grassmannian equal-norm Parseval frames that are family-wise critical points: the

real Examples 3.3.21 and 3.3.22. Although these do not satisfy the assumptions

of Theorem 6.4.3 because their Gramians have vanishing entries, a final conjec-

ture is that these minimize Φη
sum|MN,K∩ΩN,K

for all η ∈ (0,∞) and hence satisfy the

assumptions of Proposition 6.4.2.
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Appendix A

Supplementary Material

A.1 The theory of real analytic manifolds

Many results in this paper depend on the ability to induce a gradient flow on a

Riemannian manifold. This section presents the essential background material for

understanding this concept, with the assumption that the reader is familiar with

basic concepts from topology, multivariable calculus and analysis. After introducing

the general theory, we outline the matrix manifold approach, as is described in [1].

Informally, a manifold is a geometric object upon which one can apply the tech-

niques of calculus. This depends heavily of the fact that every point is contained in

a neighborhood that can be identified with an open subset of Euclidean space.

A.1.1 Definition. LetM be a nonempty topological space and let x ∈M. We call a

homeomorphism φ : U → V ⊂ Rd between open sets U ⊂M and V a d-dimensional

chart for x, and we sometimes refer to it by the pair (φ, U). If x ∈ U , then φ(x) ∈ Rd

is the coordinate expression of x with respect to this chart. In this case, the chart is
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said to contain x.

To take advantage of this idea, we require that the domains of intersecting charts

can be seamlessly patched together.

A.1.2 Definition. LetM be a nonempty topological space. A real analytic atlas for

M into Rd is a collection of charts A = {φj : Uj → Vj}j∈J such that

1. M =
⋃
j∈J

Uj

2. For every j, l ∈ J , the change of coordinates map, defined by φ′j ◦ φ′−1
l : φl(Uj ∩

Ul)→ φj(Uj ∩Ul), where φ′j and φ′l denote the respective restrictions of φj and

φl to Uj ∩ Ul, is real analytic.

A real analytic atlas A is maximal if there is no larger real analytic atlas A′ such

that A ⊂ A′.

In order to avoid certain pathological issues, for example, sequences converging

to multiple points, we additionally require that the topology be Hausdorff and sec-

ond countable. Since the manifolds considered in this paper are either Euclidean

spaces or compact (topological) subspaces of Euclidean spaces, these properties

occur naturally.

A.1.3 Definition. A d-dimensional real analytic manifold is a pair (M,A), where

M is a nonempty, second countable, Hausdorff topological space and A is a real

analytic maximal atlas forM into Rd. When there is no confusion about the atlas

structure, we refer toM as a real analytic manifold or just an analytic manifold. If

N ⊂M is a real analytic manifold with the subspace topology induced byM, then

we say that N is a submanifold ofM.
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We are interested in optimizing real-valued, real analytic maps defined on real

analytic manifolds, which requires a formal definition.

A.1.4 Definition. A function F : M → N between a d1-dimensional real analytic

manifold M and a d2-dimensional analytic manifold N is real analytic if for every

x ∈ M and every choice of charts (φ, U) and (ψ, V ) containing x and F (x), respec-

tively, the composition ψ′ ◦F ′ ◦φ−1 is real analytic, where F ′ denotes the restriction

of F to the domain of φ and ψ′ denotes the restriction of ψ to the image of F ′ ◦ φ−1.

In order to generalize the notion of a directional derivative for a real analytic

function F : M → R at a point x ∈ M, we first develop the abstract notion of

”direction” on a manifold. This requires the use of curves.

A.1.5 Definition. Let M be a d-dimensional real analytic manifold and (a, b) ⊂ R

with 0 ∈ (a, b). A map γ : (a, b) → M is a curve if for every t ∈ (a, b) and every

chart φ : U → V ⊂ Rd containing γ(t), the composition φ ◦ γ′ : γ−1(U) → V is a

C1 function, where γ′ denotes the restriction of γ to γ−1(U). In this case, we write

γ ∈ C1(R,M).

Consider the curves γ ∈ C1(R,M) that satisfy γ(0) = x. Informally, every such

curve resembles a straight line passing through x in a sufficiently small neighbor-

hood, which we interpret as the ”direction” along which we want to differentiate

F . By reading through a chart, it is simple to verify that the classical derivative

d
dt
F (γ(t))|t=0 is well-defined. Realizing that these curves induce real-valued maps

on the set of all such functions leads to the definition of the tangent vector to a

curve.

A.1.6 Definition. Let M be a d-dimensional real analytic manifold and let S(M)

denote the set of real-valued, real analytic functions defined onM. If γ is a curve in
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M with γ(0) = x, then the mapping γ̇ : S(M)→ R defined by γ̇(F ) = d
dt
F (γ(t))|t=0

is called the tangent vector to the curve γ at t = 0.

Given a tangent vector to a curve, there are infinitely many other curves which

induce the same function. Thus, we quotient the set of curves passing through x at

t = 0 by this equivalence relation, which leads to the formal definition of a tangent

vector.

A.1.7 Definition. Let M be a d-dimensional real analytic manifold. A tangent

vector to a point x ∈ M is a mapping ξx : S(M)→ R for which there exists a curve

γ onM with γ(0) = x, satisfying

ξx(F ) = γ̇(F ) =
d

dt
F (γ(t))|t=0.

In this case, the curve γ is said to realize the tangent vector ξx, and we refer to it

interchangeably as ξx or γ̇. The tangent space toM at x, denoted by Tx(M), is the

set of all tangent vectors to x. The tangent bundle forM is the disjoint union of all

tangent spaces to points inM, denoted

TM :=
⋃
x∈M

Tx(M).

If a, b ∈ R and γ̇1, γ̇2 ∈ Tx(M) correspond to the curves γ1 : (a, b)→M and γ2 :

(c, d) → M, then, after an appropriate translation, we can find a chart φ : U → R

for x satisfying φ(x) = 0 ∈ Rd. In this case, it is straightforward to verify that the

map γ : (a, b) ∩ (c, d)→M defined by

γ(t) = φ−1(aφ(γ1(t)) + bφ(γ2(t)))
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is a curve satisfying γ(0) = x. If F ∈ S(M), then after restricting the domain of F

to U , the composition ψ = F ◦ φ−1 is a real analytic map from an open subset of Rd

to R, so a straightforward application of the chain rule yields

γ̇(F ) =
d

dt
F (φ−1(aφ(γ1(t)) + bφ(γ2(t))))|t=0 = aγ̇1(F ) + bγ̇1(F ),

which shows that Tx(M) is a vector space. In this sense, the tangent space provides

the best linear approximation for a manifold near any point. Furthermore, if φ :

U → R is a chart for x, then for every γ̇ ∈ Tx(M) corresponding to some curve γ,

one can verify that the mapping

γ̇ 7→ d

dt
φ(γ(t))|t=0

is a linear isomorphism [62], which shows that dim(Tx(M) = d.

Next, we generalize the total derivative from classical multivariable calculus.

A.1.8 Definition. Let F : M → N be an analytic map between a d1-dimensional

real analytic manifoldM and a d2-dimensional analytic manifold N and fix x ∈M.

The tangent map of F at x, denoted DF , is the mapping from Tx(M) to TF (x)(N )

defined by

ξx 7→ ζF (x),

where, if γ ∈ C1(R,M) is any curve that realizes ξx, then ζF (x) is the tangent vector

at F (x) realized by the curve F ◦ γ ∈ C1(R,N ).

By choosing appropriate charts, it is straightforward that F ◦γ in this definition is

indeed a curve, so that DF is well-defined. Similarly, if a, b ∈ R and γ̇1, γ̇2 ∈ Tx(M)

correspond to the curves γ1 : (a, b) →M and γ2 : (c, d) →M, then an appropriate
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choice of charts also shows that DF (aγ̇1 + bγ̇2) = aDF (γ̇1) + bDF (γ̇2), so DF is

linear.

The points of the tangent bundle TM can be partitioned by the quotient map

π : TM → M, which identifies every point in TM with its corresponding tangent

space via the mapping ξx ∈ Tx(M) 7→ x. If A = {φj : Uj → Vj}j∈J is a real analytic

atlas forM, then the mappings φ′j : π−1(Uj)→ Vj × Rd, j ∈ J , defined by

ξx ∈ Tx(M) 7→ φ(π(ξx))× (ξx((φj)1), ..., ξx((φj)d))
t,

where (φj)1, ..., (φj)d are the component functions of the chart φj, can be shown to

form a real analytic atlas for TM , when TM is endowed with the topology gener-

ated by the sets {π−1(Uj)}j∈J . See [62] for details. For us, the manifold structure

of TM is only necessary for the definition a vector field.

A.1.9 Definition. A vector field on a real analytic manifoldM is a real analytic map

ξ : M → TM such that ξ(x) := ξx ∈ Tx(M) for every x ∈M.

Of particular interest, if ξ : M → TM is a vector field and (φ, U) is a chart for a

pointM, then we obtain the first order ordinary differential equation,

d

dt
φ(x(t)) = ξ(x(t)).

By patching charts together, this generates a flow over the entire manifold.

With this in mind, we define a manifold with a Riemannian structure, which

allows us to interpret familiar geometric notions like angles and distance on mani-

folds. In particular, it allows us to define the gradient vector field of a real-valued,

real analytic map.

118



A.1.10 Definition. A real analytic manifoldM is a Riemannian manifold if for every

x ∈M, the tangent space Tx(M) is equipped with a real inner product gx : Tx(M)×

Tx(M)→ R such that the mapping

x 7→ gx(ξ(x), ζ(x))

from M to R is smooth for all choices of vector fields ξ, ζ on M. In this case, the

mapping g which maps each x ∈ M to the corresponding positive, bilinear form gx

is called the Riemannian metric.

A.1.11 Definition. Let M be a Riemannian manifold with a Riemannian metric g

and let F : M → R be a real analytic map. The gradient of F at x ∈ M, denoted

∇F (x), is the unique tangent vector of Tx(M) that satisfies

gx(∇F (x), ξ) = ξ(F ), for all ξ ∈ Tx(M).

The assignment

x 7→ ∇F (x)

induces a vector field, called the gradient vector field.

The uniqueness of the gradient of F at x follows from the Riesz representation

theorem. The following property of the gradient characterizes it as the direction of

steepest descent.

A.1.12 Proposition. If M is a Riemannian manifold, ‖ · ‖x is the norm on Tx(M)

induced by the Riemannian metric, and F :M→ R is a real analytic map, then

∇F (x)

‖∇F (x)‖x
= argmax

ξ∈Tx(M),‖ξ‖x=1

ξ(F ).
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Proof. By definition of the gradient and the Cauchy-Schwarz inequality,

|ξ(F )| = |gx(∇F (x), ξ)| ≤ ‖∇F (x)‖x‖ξ‖x

for all ξ ∈ Tx(M). The claim follows from the norm constraint along with the fact

that the Cauchy-Schwarz inequality is saturated if and only if the two vectors are

collinear.

With this in mind, we see that a function’s value decreases if we follow the

trajectory induced by the flow of the negative of the gradient vector field.

A.1.1 Matrix manifolds

LetM be the real vector space Fd×d with F = R or F = C. With the identification

C ∼= R2, the global identity chart on M shows that it is a real analytic manifold

with dimension d2 when F = R and dimension d4 when F = C. As mentioned in the

preceding section, for every x ∈M, the tangent space Tx(M) is linearly isomorphic

to Fd×d. In this case, however, many details of the abstract theory about tangent

spaces can be disregarded. Since the classical directional derivative for a function

F ∈ S(M) at the point x ∈ M is now well-defined, we can equivalently redefine

the tangent map DF : Tx(M)→ R as

DF (ξ) = lim
t→0

F (x+ tξ)− F (x)

t
, ξ ∈ Fd×d,

which allows us to identify the abstract tangent vectors in Tx(M) as actual matri-

ces in Fd×d. With this identification, M is equipped with the Riemannian metric

determined by the familiar Hilbert Schmidt inner product on Fd×d.
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Now consider a d′-dimensional submanifold N ⊂M. If γ ∈ C1(R,N ) is a curve

with γ(0) = x, then, due to the vector space inclusion, it is well-defined to write

ξ = lim
t→0

γ(t)− γ(0)

t
∈ Fd×d,

which can be viewed as an element of the tangent space of matrices, Tx(M). Be-

cause γ also realizes the tangent vector γ̇ in Tx(N ), as defined in Definition A.1.7,

we see that

γ̇(F ′) =
d

dt
F ′(γ(t))|t=0 =

d

dt
F (γ(t))|t=0 = DF (ξ),

where F ′ denotes the restriction of F to the submanifold N for every F ∈ S(M).

In light of this, the abstract tangent vectors of Tx(N ) can also be view as matrices,

and, in particular, we interpret Tx(N ) as a d′-dimensional linear subspace of Tx(M).

By this inclusion, N becomes a Riemannian manifold, where the the Riemannian

metric is the restriction of the Hilbert Schmidt inner product on Tx(M) to Tx(N ),

for each point x ∈ N .
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