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Abstract

In many applications, measurements of a signal consist of the magnitudes of linear func-

tionals while the phase information of these functionals is unavailable. Examples of these

type of measurements occur in optics, quantum mechanics, speech recognition, and x-ray

crystallography. The main topic of this dissertation is the recovery of the phase informa-

tion of a signal using a small number of these magnitude measurements. This is called

phase retrieval. We provide a choice of 4d − 4 magnitude measurements that uniquely

determines any d dimensional signal, up to a unimodular constant. Then we provide a

choice of 6d− 3 magnitude measurements that admits a stable polynomial time algorithm

to recover the signal under the influence of noise. We also explore the behavior of patho-

logical signals in this algorithm, as well as the mean squared error. Finally, we show that

if the signal is known to be s sparse, then we only need a suitable choice of O(s log d/s)

such measurements for the stable algorithm to successfully recover the signal.
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Chapter 1

Introduction

1.1 Motivation

In the topic of signal recovery, signals are often treated as vectors in a Hilbert space,

and measurements of a signal are treated as inner products with some set of measurement

vectors that does not depend on the signal vector. In the simplest examples, recovery of a

signal from its measurements is equivalent to solving the familiar linear algebra equation

Ax = b for the vector x. However, in many applications an intensity may be measured while

any phase information is unavailable. In this case, phaseless measurements of the signal

would be represented by the magnitudes of real or complex inner products with some set of

measurement vectors. The problem of recovering a signal from such measurements is called

phase retrieval. The phase retrieval problem for real-valued signals has been well studied

[6,7]. Because coefficients have only two possible phases, this problem has a combinatorial

character. Here, we study the phase retrieval problem for complex Hilbert spaces. The

phase retrieval problem is equivalent to solving the equation |Ax|2 = b for the vector x,

where the square of the complex modulus is taken separately on each component.
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When solving the phase retrieval problem, if c ∈ C such that |c| = 1, then x and cx

are indistinguishable. Thus, solving for x up to multiplication by a unimodular constant

is the most precise solution that can be achieved. Even when attempting to solve for such

equivalence classes, the problem still presents challenges. Due to the nonlinearity of the

phase retrieval problem, there may be choices of measurements for which the map that

takes the signal to the phaseless measurements is injective, but a feasible algorithm for

recovery of the signal from these measurements cannot be found. And even if such an

algorithm does exist, it may not be stable. A larger number of measurements is required

for the measurement map to be injective, when compared to the linear case, because of the

loss of phase information. We are interested in finding a small set of measurement vectors

such that the map from the signal vector to the complex modulus of the inner products

with the measurement vectors is injective, permits a feasible algorithm that recovers the

signal from its measurements, and the algorithm is stable with respect to noise in the

measurements.

There are multiple applications for which a solution to the phase retrieval problem

would prove useful, most of which are related to the Fourier transform [1, 2, 36]. In X-ray

crystallography, measurements are taken of the intensity of the Fourier transform of an

object [17,55,57]. A similar situation also arises in optics, for example when imaging stars

through a telescope [67]. In quantum mechanics, the probability of observing a particular

outcome can be represented as the square of the complex modulus of an inner product of

the state vector with a measurement vector [37,38,44,46]. A common procedure for speech

recognition and enhancement measures the short time Fourier transform and then modifies

the magnitudes of the Fourier coefficients, while any corresponding modifications to the

phase are undetermined [7, 61, 62]. In all of these applications, attempts at recovery with

flawed phase information causes distortions to the recovered signal.
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1.2 Background and summary

An important problem in phase retrieval is the problem of finding the smallest possi-

ble set of measurement vectors such that the map that takes the signal to the phaseless

measurements is injective. Similarly, we would also like to find a small set of measure-

ment vectors such that a stable algorithm exists to recover the signal from the phaseless

measurements. It has been known for over a decade that, in the case in which the d di-

mensional signal has no zero coefficients with respect to a chosen basis, there exists a set of

3d− 2 measurements which suffices to recover the signal and that this number is minimal

[37, 38]. However, the assumption that the signal has no zero components is too limiting

to be acceptable in standard signal models.

Until this past year, it was conjectured that 4d−4 measurements would permit injectiv-

ity of the measurement map over all signals, and that this is the minimum such number of

measurements [9]. In a result from Bernhard Bodmann and myself, a set of 4d−4 measure-

ment vectors was constructed such that the measurement map is injective [14]. This shows

that 4d − 4 measurements can permit injectivity of the measurement map, but this does

not imply that 4d − 4 is a minimal number of measurements that can permit injectivity.

In fact, a counterexample was recently found by Cynthia Vinzant, who showed that for

d = 4 there exists a system of 11 measurements that is injective [64]. The minimal number

of measurements required is not known, but a lower bound on the minimum number of

measurements of 4d−O(log(d)) has been shown [44].

Recent techniques for solving the phase retrieval problem have focused on what are

called lifting procedures. Instead of trying to solve the phase retrieval problem in the space

of vectors, where this problem is nonlinear, we injectively map to a higher dimensional space

in which the phaseless measurements are linear. A popular choice of lifting procedure is

the mapping x 7→ xx∗ [4, 5, 7, 19–21, 25]. This choice works because for any two vectors x
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and y, |〈x, y〉|2 = tr(xx∗yy∗). Thus, measurements that were the square of the complex

modulus of an inner product are equal to inner products of rank-one Hermitian matrices,

and so are linear measurements in the space of matrices. However, if x is d dimensional,

then the space of matrices is d2 dimensional, and we would like to find a set of phaseless

measurements that is linear in number. So this space is too large to uniquely determine any

matrix using a linear number of measurements. However, only rank-one Hermitian matrices

need to be considered, and although rank minimization is known to be NP-complete [63],

additional knowledge about the signal or additional requirements on the measurements

can allow rank-one Hermitian matrices to be uniquely determined using a linear number

of measurements.

In some applications in quantum mechanics, the problem does not exactly match the

phase retrieval problem being explored here, because the measurements are not required

to be rank-one. Instead, the measurements are allowed to be what are called positive

operator valued measures [26, 44]. In this setting, any signal may be reconstructed using

4d−O(log(d)) of these more general forms of measurements [44] and this number is minimal.

In fact, this implies that the rank-one measurements cannot reconstruct a signal with fewer

measurements than in the POVM setting, and so gives a lower bound for the minimal

number of measurements required to solve the phase retrieval problem.

One method that allows the space of matrices to be used to solve the phase retrieval

problem is to demand a stronger requirement on the set of measurements than injectivity

over the rank-one Hermitian matrices. For example, the PhaseLift algorithm requires a set

of measurements such that for any rank-one Hermitian matrix X and any positive semi-

definite Y , if the measurements on X and Y are equal, then X = Y . In this setting semi-

definite programming may be used to recover xx∗ from these measurements [19–21,25,41].

However, most examples of measurements that satisfy this requirement are either not linear
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in number, or are linear in number with a large constant. One exception to this is a choice

of 5d − 6 measurements satisfying this requirement that has been found in the past few

months [50]. At the moment, this is the smallest known set of measurements that admits

a stable phase retrieval algorithm.

In this dissertation we are interested in a different choice of lifting space. If the signal is

represented as a polynomial p, then the trigonometric polynomial that is given by p(z)p(z)

has linear measurements that are equal to the phaseless measurements on p. However, this

mapping is not injective. Instead we look at mapping the polynomial p to both p(z)p(z)

and Tp(z)Tp(z) for some linear transformation T . This can be shown to be injective for an

appropriate choice of T . In section 2.2, we provide a proof that shows that if we know the

magnitudes of the point evaluation measurements of p on two circles that intersect at an

irrational angle, then we have an injective map into a 4d−4 dimensional space, and so have

an injective set of 4d−4 measurements; this work appeared in [14] with Bodmann. Another

example of the use of polynomial spaces to obtain an injective set of measurements comes

from Friedrich Philipp [58]. His procedure required measuring p at 2d − 1 equally space

points on the unit circle, and measuring the derivative p′ at 2d−3 equally spaced points on

the unit circle. However, neither of these methods admits a phase retrieval algorithm with

recovery error that is linear in terms of noise. In section 2.3, we provide a phase retrieval

algorithm in 6d − 3 measurements using polynomial spaces, and prove that it is stable in

section 2.6; this work appeared in [15] with Bodmann.

Often, there are fewer measurements that are feasibly available than the dimension of

the signal to be recovered. The problem of recovering a sparse signal from fewer linear

measurements than the dimension of the signal is called compressive sensing. It would be

useful to combine phase retrieval results with compressive sensing results. This idea of

combining these two problems has been explored in recent years [11, 13, 31, 42, 45, 52, 65].
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Some of these methods have provable performance guarantees in the presence of noise,

but they do not include precise conditions on the number of measured quantities that are

sufficient [45,52,65]. We provide an example of compressive phase retrieval that does have

both provable performance guarantees and precise conditions on the number of measured

quantities that are sufficient in section 3.3; this work appeared in [16] with Bodmann.

1.3 Preliminaries

We begin by establishing notation for sets that will be frequently used.

Definition 1.3.1. The set of unimodular complex numbers {z ∈ C : |z| = 1} is denoted

as T.

In solving the phase retrieval problem, we are only interested in solving for x up to

multiplication by T, as solving for x is impossible.

Definition 1.3.2. The equivalence class of x ∈ Cd up to multiplication by a unimodular

constant is denoted as [x]. The set of all such equivalence classes is denoted as Cd/T.

1.3.1 Polynomial spaces

Various polynomial spaces will be used frequently in our results, so we define and

establish notation for these spaces.

Definition 1.3.3. The space of analytic polynomials of degree less than d is defined as

the space of functions on C that can be represented by the map z 7→
∑d−1

j=0 xjz
j , for some

vector (xj)
d−1
j=0 ∈ Cd. This space is denoted as Pd. It is equipped with the inner product

induced by the scaled Lebesgue measure on T, so p, q ∈ Pd have the inner product

〈p, q〉 =
1

2π

∫
[0,2π]

p(eit)q(eit)dt .
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Consequently, the polynomials {z 7→ zj}d−1
j=0 form the standard orthonormal basis for

Pd. Thus, there exists a natural isometric isomorphism between Cd and Pd via the map

that takes x ∈ Cd to the polynomial represented by the map z 7→
∑d−1

j=0 xjz
j . For any

x ∈ Cd, we denote this resulting polynomial as px, and note that for any polynomial

p ∈ Pd there exists a unique x ∈ Cd such that p = px. Note that by this isometry, we have

that 〈x, y〉 = 〈px, py〉 for any x, y ∈ Cd.

A useful property of the space of analytic polynomials is the reproducing property,

which is the fact that on this space any point evaluation is a linear functional. To establish

this property we shall define a set of kernel functions, and show that any point evaluation

is equal to the inner product with one of these kernel functions.

Definition 1.3.4. For any w ∈ C we may define the kernel polynomial Kw ∈ Pd as the

polynomial such that Kw(z) =
∑d−1

j=0 w
jzj .

In particular, K0 is the polynomial such that K0(z) = 1 for all z ∈ C. Using these

kernel polynomials, we shall show that the point evaluation of p ∈ Pd at w ∈ C is equal to

the inner product with Kw.

Proposition 1.3.5. For any p ∈ Pd, if x ∈ Cd such that p = px, then

p(w) =
d−1∑
j=0

xjw
j = 〈p,Kw〉 .

An additional useful property is the fact that there exists a basis composed entirely of

these kernel functions.

Proposition 1.3.6. If ωd = e
2iπ
d is the d-th root of unity, then for any z0 ∈ T, the

polynomials { 1√
d
K
z0ω

j
d
}d−1
j=0 form an orthonormal basis for Pd. Thus, any polynomial p ∈ Pd

satisfies p =
∑d−1

j=0 p(z0ω
j
d)

1
dKz0ω

j
d
.
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We will be representing the signal to be recovered as an element of Pd. But as previously

stated, the phase retrieval problem can only be solved up to multiplication by a unimodular

constant.

Definition 1.3.7. The equivalence class of p ∈ Pd up to multiplication by a unimodular

constant is denoted as [p]. The set of all such equivalence classes is denoted as Pd/T.

Note that for any linear operator T : Pd → Pd, the map [p] 7→ [Tp] is well defined,

and if T is a bijection, then this new map is also a bijection. One useful transformation

on polynomials that will show up frequently is the map that composes the input with a

chosen linear polynomial.

Definition 1.3.8. For any c, r ∈ C and polynomial p ∈ Pd, the map z 7→ p(c+ rz) is itself

a polynomial in Pd. We define Rc,r to be the function that sends any polynomial p to the

polynomial represented by z 7→ p(c+ rz).

The function Rc,r is a linear operator for any choice of c and r in C, and it is a bijective

linear operator if and only if r 6= 0. In fact, R0,1 is equal to the identity operator.

Next we consider the space of trigonometric polynomials.

Definition 1.3.9. The space of trigonometric polynomials of degree less than d is defined

as the space of functions on T that can be represented by the map z 7→
∑d−1

j=−(d−1) yjz
j , for

some vector (yj)
d−1
j=−(d−1) ∈ C2d−1. This space is denoted as Td. This space is also equipped

with the inner product induced by the scaled Lebesgue measure on T, so f, g ∈ Td have

the inner product

〈f, g〉 =
1

2π

∫
[0,2π]

f(eit)g(eit)dt .

Consequently, the polynomials {z 7→ zj}d−1
j=−(d−1) form the standard orthonormal basis

for Td.
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Just as with the analytic polynomials, a useful property of the space of trigonometric

polynomials is the reproducing property, which is the fact that on this space any point

evaluation is a linear functional. To establish this property we shall define a set of kernel

functions, and show that any point evaluation is equal to the inner product with one of

these kernel functions.

Definition 1.3.10. For any w ∈ T we may define the w-rotated Dirichlet kernel Dw,d−1 ∈

Td as the trigonometric polynomial such that Dw,d−1(z) =
∑d−1

j=−(d−1)w
jzj .

Using these rotated Dirichlet kernels, we shall show that the point evaluation of f ∈ Td

at w ∈ T is equal to the inner product with Dw,d−1.

Proposition 1.3.11. For any f ∈ Td, if f is represented by the map z 7→
∑d−1

j=−(d−1) yjz
j,

then

f(w) =
d−1∑

j=−(d−1)

cjw
j = 〈f,Dw,d−1〉 .

An additional useful property is the fact that there exists a basis composed entirely of

these kernel functions.

Proposition 1.3.12. If ω2d−1 = e
2iπ

2d−1 is the 2d− 1-st root of unity, then the polynomials

{ 1√
2d−1

D
ωj2d−1,d−1

}2d−2
j=0 form an orthonormal basis for Td, which we call the Dirichlet kernel

basis. Thus, any polynomial f ∈ Td satisfies f =
∑2d−2

j=0 f(ωj2d−1) 1
2d−1Dωj2d−1,d−1

. This is

called Dirichlet kernel interpolation.

We also define a subset of Td that is analogous to the set of Hermitian matrices.

Definition 1.3.13. The set of real trigonometric polynomials of degree less than d is

defined as the set of functions on T that can be represented by the map z 7→
∑d−1

j=−(d−1) yjz
j ,

for some vector (yj)
d−1
j=−(d−1) ∈ C2d−1 with the additional property that y−j = yj for all j.

This set is denoted as Rd and is a subset of Td.
9



Note that Rd is a vector space over R but not over C. In fact, for any f, g ∈ Rd,

decomposition into the standard orthonormal basis shows that 〈f, g〉 ∈ R.

Proposition 1.3.14. For f ∈ Td, we have that f ∈ Rd if and only if f(z) ∈ R for all

z ∈ T.

Proof. First, note that for any w ∈ T, the definition of the Dirichlet kernel gives that

Dw,d−1 ∈ Rd, so that every element of the Dirichlet kernel basis is in Rd. Thus if f(z) ∈ R

for all z ∈ T, then Dirichlet kernel interpolation gives f =
∑2d−2

j=0 f(ωj2d−1) 1
2d−1Dωj2d−1,d−1

,

which is a real linear combination of elements in Rd, so f ∈ Rd. On the other hand, if

f ∈ Rd, then for any z ∈ T, f(z) = 〈f,Dw,d−1〉 ∈ R.
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Chapter 2

Phase retrieval

2.1 Comparison of lifting spaces

A useful way to represent the phase retrieval problem is to find a set of vectors {νj}

in Cd such that any vector x ∈ Cd can be recovered from the measurements |〈x, νj〉|2. We

define phaseless measurements in this fashion.

Definition 2.1.1. We call a function b : Cd → R a phaseless measurement if there exists

ν ∈ Cd such that b(x) = |〈x, ν〉|2 for all x ∈ Cd. Given a set {bj}M−1
j=0 of phaseless

measurements, the vectors that correspond to these functions are called the measurement

vectors.

This representation will allow us to injectively map into a higher dimensional linear

space in which these measurements are equal to linear measurements. We call this a lifting

procedure. Before this is demonstrated, we need to define the complex conjugate of a

polynomial.

Definition 2.1.2. Also note that if p is represented by the map z 7→
∑d−1

j=0 xjz
j , then the

map z 7→
∑d−1

j=0 xjz
j is itself a polynomial. We denote this new polynomial by p.
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With the conjugate defined, we may now define the trigonometric polynomial lifting.

Definition 2.1.3. For any p ∈ Pd, we define |p|2 ∈ Td to be the trigonometric polynomial

represented by the map z 7→ p(z−1)p(z). We call |p|2 the trigonometric polynomial lifting

of p. Note that for any z0 ∈ T, we have |z0p|2 = |p|2, so the map [p] 7→ |p|2 is well defined.

The trigonometric polynomial lifting of a polynomial p ∈ Pd is useful because its values

on T are equal to the square of the complex modulus of the values of p at the same points.

Because point evaluation is an inner product with a vector as in proposition 1.3.5, the

values of the trigonometric polynomial lifting are equal to phaseless measurements.

Proposition 2.1.4. For any polynomial p ∈ Pd, its trigonometric polynomial lifting |p|2

is in Rd, and for any z ∈ T, |p|2(z) = |p(z)|2.

Proof. Note that for any z ∈ T, we have z = z−1, so

|p|2(z) = p(z−1)p(z) = p(z)p(z) = p(z)p(z) = |p(z)|2 .

This also shows that |p|2 only takes real values on T, and so |p|2 ∈ Rd.

In fact, trigonometric polynomial liftings allow us to obtain a trigonometric polynomial

that has values on T that are equal to the values of any chosen analytic polynomial on any

chosen circle.

Corollary 2.1.5. For any c, r ∈ C and any p ∈ Pd, the trigonometric polynomial lifting

|Rc,rp|2 satisfies |Rc,rp|2(z) = |Rc,rp(z)|2 = |p(c+ rz)|2.

Another choice of lifting procedure that is often used is the idea of lifting [x] ∈ Cd/T

to xx∗ in the space of matrices. For both choices of lifting procedure, any phaseless

measurements of x are equal to linear measurements in the lifting space.
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Proposition 2.1.6. Given a vector x ∈ Cd, and a set of functions bj : Cd → R for j from

0 to M − 1, the following are equivalent:

1. For j from 0 to M − 1, there exist vectors νj ∈ Cd such that |〈x, νj〉|2 = bj(x).

2. For j from 0 to M − 1, there exist Hermitian matrices Yj ∈ Cd×d with rank at most

one such that tr(Yjxx
∗) = bj(x).

3. For j from 0 to M − 1, there exist linear operators Tj : Pd → Pd and unimodular

zj ∈ C such that |Tjpx|2(zj) = bj(x).

Proof. 1 ⇐⇒ 2 Note that for any j, a Hermitian matrix Yj ∈ Cd×d has rank at most one

if and only if there exists a vector fj ∈ Cd such that Yj = fjf
∗
j . In this case

|〈x, fj〉|2 = f∗j xx
∗fj = tr(f∗j xx

∗fj) = tr(fjf
∗
j xx

∗) = tr(Yjxx
∗)

and so |〈x, fj〉|2 = tr(Yjxx
∗) = bj(x).

1 =⇒ 3 If for each j, we let Tj be the linear transformation that sends px to 〈x, fj〉K0,

then for any choice of zj ∈ C with |zj | = 1,

|Tjpx|2(zj) = |Tjpx(zj)|2 = |〈x, fj〉K0(zj)|2 = |〈x, fj〉|2 = bj(x) .

3 =⇒ 1 By the isomorphism between Cd and Pd, we know that for each j there exists a

unique fj ∈ Cd such that T ∗j Kzj = pfj . Thus,

|〈x, fj〉|2 = |〈px, T ∗j Kzj 〉|2 = |〈Tjpx,Kzj 〉|2 = |Tjpx(zj)|2 = |Tjpx|2(zj) = bj(x) .

13



In the above proposition, both item 2 and item 3 are linear measurements on the

corresponding spaces. Item 2 is a linear measurement because the definition of Hilbert-

Schmidt inner product is precisely what is described. Item 3 is a linear measurement due

to the properties of the Dirichlet kernel. Note that the space of matrices is d2 dimensional,

and we would like to find a set of phaseless measurements that is linear in number, for

which any signal can be recovered. So this space is in some sense larger than we would

prefer. It is possible to find a linear set of measurements that allows phase retrieval on this

space, but we will take a different approach.

The space of trigonometric polynomials is 2d−1 dimensional, so that is promising, but

the map [p] 7→ |p|2 is not injective. For example, if e0 and e1 are elements of the standard

basis for Cd, then |pe0 |2 and |pe1 |2 are both equal to the constant trigonometric polynomial

with constant value 1, but [pe0 ] 6= [pe1 ]. Thus, the space Pd is in some sense too small.

However, it can be shown that for a some choices of linear operator T : Pd → Pd, the map

[p] 7→ (|p|2, |Tp|2) is injective. Because the ωj2d−1-rotated Dirichlet kernel forms a basis

for Td, and inner products with these Dirichlet kernels are precisely the measurements

described in proposition 2.1.6, it is possible to recover (|p|2, |Tp|2) using linear algebra.

The space Td ⊕ Td is 4d− 2 dimensional, and so the number of measurements required to

do this is linear in d. However, depending on the choice of T , it may be difficult to recover

[p] from (|p|2, |Tp|2).

As an example of this, if ωd = e
2iπ
d is the dth root of unity, and c ∈ C is chosen such

that c is a real multiple of ωd+1 and arg(c−1) is an irrational multiple of π, then the map

[p] 7→ (|p|2, |Rc,|c−1|p|2) is injective. This choice of transformation also gives the additional

constraints |p|2(1) = |Rc,|c−1|p|2(− c−1
|c−1|) and |p|2(ωd) = |Rc,|c−1|p|2(− c−ωd

|c−ωd|), which reduces

the dimension to 4d−4. This is described in more detail in the next section. However, even

though there exists an injective stable algorithm to obtain (|p|2, |Rc,|c−1|p|2), an algorithm
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has not yet been discovered that can recover [p] from (|p|2, |Rc,|c−1|p|2) with an explicit

error bound.

2.2 Injectivity in 4d− 4 measurements

For any polynomial p ∈ Pd and any linear operator T : Pd → Pd, the coefficients of the

two trigonometric polynomial liftings |p|2 and |Tp|2 with respect to the Dirichlet kernel

basis are phaseless measurements, as in proposition 2.1.6. Thus, if it can be shown that

the map [p] 7→ (|p|2, |Tp|2) is injective, then a number of phaseless measurements equal to

the dimension of (|p|2, |Tp|2) will suffice to give an injective set of measurements.

We shall show that for the appropriate choice of c ∈ C, the map [p] 7→ (|p|2, |Rc,|c−1|p|2)

is an injective map, and elements of the latter space can be recovered from phaseless

measurements of [p]. We know that the values of |Rc,|c−1|p|2 on T are equal to the modulus

squared of the values of p on the circle with center c and radius |c−1|, as in corollary 2.1.5.

Because the value used for the radius of the circle is |c − 1|, this circle intersects T at 1.

A Möbius transformation that maps 1 to the ∞ will be used to obtain values on two lines

that correspond to T and the circle with center c and radius |c − 1|. Then the following

result from Philippe Jaming [48] will provide injectivity.

Theorem 2.2.1 (Polynomial case of Theorem 3.3 from [48]). Let α1, α2 ∈ [0, 2π) with

α1 − α2 6∈ πQ and p, q ∈ Pd. If |p(reiα1)| = |q(reiα1)| and |p(reiα2)| = |q(reiα2)| for all

r ∈ R, then [p] = [q].

Proof. First, let us consider the case in which p = 0. Then |q(reiα1)| = 0 for all r ∈ R, and

so q = 0. Thus, [p] = [q].
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Otherwise, p 6= 0 and q 6= 0. Define p1, p2, q1, q2 ∈ P2d such that for all z ∈ C,

p1(z) = p(zeiα1)p(ze−iα1) ,

p2(z) = p(zeiα2)p(ze−iα2) ,

q1(z) = q(zeiα1)q(ze−iα1) ,

and

q2(z) = q(zeiα2)q(ze−iα2) .

Then, for all z ∈ R,

p1(z) = p(zeiα1)p(zeiα1) = |p(zeiα1)|2 = |q(zeiα1)|2 = q(zeiα1)q(zeiα1) = q1(z)

and similarly, p2(z) = q2(z). Any polynomials that are equal on R are equal on C, so p1 = q1

and p2 = q2. Note that p1(z) = 0 if and only if either p(zeiα1) = 0 or p(ze−iα1) = 0. But

by complex conjugation, p(ze−iα1) = 0 if and only if p(zeiα1) = 0. Thus, z is a root of p1 if

and only if either zeiα1 or zeiα1 is a root of p. If z is a root of p1, then the multiplicity of

the root is equal to the sum of the multiplicities of the roots of p at zeiα1 and zeiα1 , where

we consider multiplicity to be zero if there is no root. Similar statements hold for p2, q1,

and q2.

Let Zp be the multiset of roots of p, and let Zq be the multiset of roots of q. We

shall show that Zp = Zq. By way of contradiction, assume that Zp 6= Zq. Then because

p1 = q1, we know that p and q have the same number of roots, so Zp\Zq and Zq\Zp

are both nonempty. Let z1 ∈ Zp\Zq. Then, z1e
−iα1 is a root of p1 with multiplicity

equal to the sum of the multiplicities of the roots of p at z1 and z1e−iα1eiα1 = z1e
2iα1 .
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Because p1 = q1, z1e
−iα1 is a root of q1 with the same multiplicity. Because p has a higher

multiplicity than q for the root at z1, q must have a higher multiplicity than p for the

root at z1e
2iα1 . Thus, z1e

2iα1 ∈ Zq\Zp. Then, z1e
2iα1e−iα2 = z1e

i(2α1−α2) is a root of

q2 with multiplicity equal to the sum of the multiplicities of the roots of p at z1e
2iα1 and

z1ei(2α1−α2)eiα2 = z1e
2i(α2−α1). Because p2 = q2, z1e

i(2α1−α2) is a root of p2 with the same

multiplicity. Because q has a higher multiplicity than p for the root at z1e
2iα1 , p must

have a higher multiplicity than q for the root at z1e
2i(α2−α1). Thus, z1e

2i(α2−α1) ∈ Zp\Zq.

Because this is true for any z1 ∈ Zp\Zq, we know that Zp\Zq is invariant under rotation

by 2(α2 − α1), which is an irrational rotation. Thus, Zp\Zq has infinitely many points,

and so p is the zero polynomial. However, we are operating in the case that p 6= 0, so this

is a contradiction. Thus Zp = Zq.

If Zp = Zq, then p = wq for some w ∈ C. Then |p(reiα1)| = |q(reiα1)| = |wp(reiα1)| for

all r ∈ R, so |w| = 1. Thus, [p] = [q].

The above theorem shows that knowledge of the complex modulus of p on two lines

that intersect at 0 with an irrational angle is enough to determine [p]. In fact, we can allow

the intersection point to lie anywhere in C.

Corollary 2.2.2. Let α1, α2 ∈ [0, 2π) with α1 − α2 6∈ πQ and p, q ∈ Pd. For any c ∈ C, if

|p(c+ reiα1)| = |q(c+ reiα1)| and |p(c+ reiα2)| = |q(c+ reiα2)| for all r ∈ R, then [p] = [q].

Proof. Note that

|Rc,1p(reiα1)| = |p(c+ reiα1)| = |q(c+ reiα1)| = |Rc,1q(reiα1)|

and

|Rc,1p(reiα1)| = |p(c+ reiα1)| = |q(c+ reiα1)| = |Rc,1q(reiα1)|
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so by the previous theorem [Rc,1p] = [Rc,1q]. Recall that, because Rc,1 is a bijective linear

operator, the map [p] 7→ [Rc,1p] is a well-defined bijection, so [p] = [q].

A properly chosen Möbius transformation will allow this result concerning injectivity

of the magnitude map intersecting lines to be applied to intersecting circles. Because the

magnitudes on any circle can be recovered using phaseless measurements, this will give the

intended result.

Theorem 2.2.3. Given α ∈ R\πQ and ωd = e
2iπ
d , let c = ωd+1

2

(
1− tan(πd ) cot(α)

)
.

Define the set S = {(f, g) ∈ Td ⊕ Td : f(1) = g(− c−1
|c−1|) and f(ωd) = g(− c−ωd

|c−ωd|)}. If the

map Vα : Pd/T→ S is defined by Vα([p]) = (|p|2, |Rc,|c−1|p|2), then Vα is injective.

Proof. First, we show that the given map Vα is well defined. To do this, we must show that

for any [p] ∈ Pd/T , (|p|2, |Rc,|c−1|p|2) ∈ S. Note that the circle with center c and radius

|c− 1| passes through 1. Because the center of this circle is on the line defined by all real

multiples of ωd + 1, and ωd is the reflection of 1 across this line, the circle with center c

and radius |c− 1| passes through ωd. Thus |c− 1| = |c− ωd|, and for any p ∈ Pd,

|Rc,|c−1|p|2(− c−1
|c−1|) = |Rc,|c−1|p(− c−1

|c−1|)|
2 = |p(1)|2 = |p|2(1)

and

|Rc,|c−1|p|2(− c−ωd
|c−ωd|) = |Rc,|c−1|p(− c−ωd

|c−ωd|)|
2 = |p(ωd)|2 = |p|2(ωd) .

We define the Möbius transformation γ : C\{1} → C\{−1} by γ(z) = 1+z
1−z . The image

of any circle that passes through 1 under this map will be a line, so γ(T) and γ(c+ |c−1|T)

are both lines. Additionally, the point ωd is on both circles T and c+ |c− 1|T, so the point

γ(ωd) is the intersection point of the lines γ(T) and γ(c + |c − 1|T). By conformality of

Möbius transformations, the angle of intersection of the lines γ(T) and γ(c + |c − 1|T) at
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γ(ωd) is equal to the angle of intersection of the circles T and c+ |c− 1|T at ωd.

To determine the angle of intersection of the circles T and c + |c − 1|T at ωd, we will

first determine the angle of the tangent lines to each circle at ωd. The tangent line to T at

ωd is paramentrized by ωd + iuωd for u ∈ R, so the angle of this line is arg(iωd) = π
2 + 2π

d .

The tangent line to c+ |c− 1|T at ωd is parameterized by ωd + iu(ωd− c) for u ∈ R, so the

angle of this line is

arg(i(ωd − c)) =
π

2
+ arg

(
ωd −

ωd + 1

2

(
1− tan(πd ) cot(α)

))

which may be simplified using the identity (ωd + 1) tan(πd ) = −i(ωd − 1), so that

arg(i(ωd − c)) =
π

2
+ arg

(
ωd − 1

2
(1− i cot(α))

)
=
π

2
+ arg

(
ωd − 1

2

)
− α

=π +
π

d
− α .

Then the angle of intersection of the circles T and c + |c − 1|T at ωd is the difference of

these two angles, π
2 −

π
d − α. This angle is irrational if and only if α is irrational, which

was assumed.

We define a linear transformation W : Pd → Pd such that Wp is the polynomial

represented by the map z 7→ (1 + z)d−1p(−1−z
1+z ). Note that γ−1(z) = −1−z

1+z , so Wp(z) = 0

only when z = −1 or p(γ−1(z)) = 0. This only gives finitely many zeros if p 6= 0, so W is

a bijective map. Consider the nonlinear map Ṽα : Pd/T → C(γ(T)) ⊕ C(γ(c + |c − 1|T))

defined such that for all z1 ∈ γ(T) and z2 ∈ γ(c+ |c− 1|T),

(
Ṽα([p])

)
(z1, z2) =

(
|p(z1)|2

|1 + z1|2(d−1)
,
|p(z2)|2

|1 + z2|2(d−1)

)
.
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Because the lines γ(T) and γ(c + |c − 1|T) intersect at an irrational angle, corollary 2.2.2

shows that Ṽα is injective. Thus, the map [p] 7→ Ṽα[Wp] is injective.

Note that by the definition of W , if [p] ∈ Pd/T then for any z1 ∈ γ(T) and any

z2 ∈ γ(c+ |c− 1|T),

(
Ṽα([Wp])

)
(z1, z2) =

(
|Wp(z1)|2

|1 + z1|2(d−1)
,
|Wp(z2)|2

|1 + z2|2(d−1)

)
=
(∣∣p (γ−1(z1)

)∣∣2 , ∣∣p (γ−1(z2)
)∣∣2)

=

(
|p|2

(
γ−1(z1)

)
, |Rc,|c−1|p|2

(
γ−1(z2)− c
|c− 1|

))
.

Consider the nonlinear map W̃c : S → C(γ(T)) ⊕ C(γ(c + |c − 1|T)) defined such that if

(f, g) ∈ S, then for all z1 ∈ γ(T) and z2 ∈ γ(c+ |c− 1|T),

(
W̃c(f, g)

)
(z1, z2) =

(
f
(
γ−1(z1)

)
, g

(
γ−1(z2)− c
|c− 1|

))
.

With this definition, we see that for any [p] ∈ Pd/T, Ṽα[Wp] = W̃cVα[p]. Thus the compo-

sition W̃cVα is injective, and so Vα is injective.

Given the injective map in the above theorem, phaseless measurements in the form of

a basis for the space S are sufficient to determine [p] uniquely.

Corollary 2.2.4. Given α ∈ R\πQ and ωd = e
2iπ
d , let c = ωd+1

2

(
1− tan(πd ) cot(α)

)
. Let

ω2d−1 = e
2iπ

2d−1 be the 2d− 1st root of unity. For any p ∈ Pd, the values
{
|p(ωk2d−1)|2

}2d−1

k=2

and

{∣∣∣p(c+ |c− 1|ωj2d−1

)∣∣∣2}2d−1

j=0

are sufficient to determine [p] uniquely.
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2.3 An algorithm for phase retrieval in 6d− 3 measurements

Although there exist injective sets of measurements using maps [p] 7→ (|p|2, |Tp|2)

for some choice of linear operator T , no corresponding stable algorithm with which to

reconstruct the signal [p] has been discovered. To provide a solution for the phase retrieval

problem using a small number of measurements, we shall provide a stable algorithm with

which to recover [p] from (|p|2, |(I −R0,ωd)p|2, |(I − iR0,ωd)p|2).

Given p ∈ Pd, the phase retrieval algorithm that we shall use proceeds in three steps:

Step 1. First, we augment a finite number of magnitude measurements to an infinite

family of such measurements. For each of 2d− 1 equally spaced points {ωj2d−1}
2d−1
j=0

on T, we sample |p(ωj2d−1)|2, |p(ωj2d−1)−p(ωj2d−1ωd)|
2, and |p(ωj2d−1)− ip(ωj2d−1ωd)|

2.

Then we use the Dirichlet kernel to interpolate these measurements to obtain three

trigonometric polynomials: |p|2, |(I−R0,ωd)p|2, and |(I−iR0,ωd)p|2. In the presence of

noise, we get approximating trigonometric polynomials f0 ≈ |p|2, f1 ≈ |(I−R0,ωd)p|2,

and f2 ≈ |(I − iR0,ωd)p|2.

Step 2. We select suitable non-zero magnitude measurements. To do this we choose a

z0 ∈ T, such that minj |p(ωjdz0)|2 is maximized. A lemma in appendix A.1 will be

used to obtain a lower bound for this maximum that only depends on the dimension

d and the norm of p. Then we sample values of each of the three polynomials from

step 1 at the points {z0ω
j
d}
d−1
j=0 . These values are approximations for the magnitudes

of the components of p, (I − R0,ωd)p, and (I − iR0,ωd)p with respect to the basis

{ 1√
d
K
z0ω

j
d
}d−1
j=0 . We know that the components of f0 are not zero, by our choice of z0.
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Step 3. For any vector x ∈ Cd and any basis {ej}d−1
j=0 , we have the relation

〈x, ej〉〈x, ej+1〉 =1
2

(
(1− i)

(
|〈x, ej〉|2 + |〈x, ej+1〉|2

)
−|〈x, ej − ej+1〉|2 + i|〈x, ej − iej+1〉|2

)

If we consider the basis set { 1√
d
K
z0ω

j
d
}d−1
j=0 , then we get that

〈p,K
z0ω

j
d
〉〈p,K

z0ω
j+1
d
〉

= 1
2

(
(1− i)

(
|p|2(z0ω

j
d) + |p|2(z0ω

j
d)
)

−|(I −R0,ωd)p|
2(z0ω

j
d) + i|(I − iR0,ωd)p|

2(z0ω
j
d)
)
.

This phase relationship is a linear combination of sample values obtained in step 2.

Because all of the values 〈p,K
z0ω

j
d
〉 are bounded away from 0, we know that this

phase relation will always be nonzero. Thus, with the base case of assuming that

〈p,Kz0〉 is real, we may inductively obtain the phase of consecutive coefficients with

respect to this basis using the relation

〈p,K
z0ω

j+1
d
〉 =
〈p,K

z0ω
j
d
〉
(
〈p,K

z0ω
j
d
〉〈p,K

z0ω
j+1
d
〉
)

|〈p,K
z0ω

j
d
〉|2

.

These coefficients with respect to this basis are sufficient to recover the signal.

The time complexity of this algorithm is polynomial. Step 1 requires the addition of d

different d dimensional terms, so step 1 has time complexity d2. Step 2 requires you to find

a point such that a set of d points a have values that are bounded away from zero. Because

a polynomial in Pd has at most d − 1 roots, d different sets of d points will guarantee

that at least one set is bounded away from zero. Because polynomial evaluation has time
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complexity d, and we are evaluating at d2 points, step 2 has time complexity d3. Step 3

consists of inductively multiplying a starting value by a stored value d times, so step 3 has

time complexity d. Thus, this algorithm can run in polynomial time.

In the presence of error, the trigonometric polynomials obtained in step 1 are perturbed.

This error carries through to step 3. Section 2.5 will provide an upper bound for the size of

the perturbation of the trigonometric polynomials. We shall explore step 3 in more detail

in the next section, including an examination of propagation of the error in step 3. The

algorithm can be shown to recover the signal perfectly in the case without noise by setting

the noise to 0 and observing that the error bound then also becomes 0.

2.4 Recovery of full vectors in the presence of noise

In this section we explore a generalized version of the third step of the algorithm pre-

sented in section 2.3. Instead of using the particular basis given in step 3 of the algorithm,

we show that the third step of the algorithm will give stability results for phase retrieval

for any basis in which we wish to recover vectors that have no zero coefficients with respect

to the chosen basis. The measurements and algorithm used here is similar to that used by

Flammia, Silverfarb, and Caves [38], in that it uses a polarization like identity in order to

obtain a phase relation. However, our choice of measurements is such that these stability

results apply to the phase propagation portion of the algorithm presented in section 2.3.

Definition 2.4.1. If {ej}d−1
j=0 is a basis for Cd, and x ∈ Cd, then we say that x is full with

respect to {ej}d−1
j=0 if for all j from 0 to d− 1, 〈x, ej〉 6= 0.

Recall that phase recovery of full vectors requires 3d−2 phaseless measurements. Given

a vector x ∈ Cd and any basis {ej}d−1
j=0 for Cd in which the vector x is full, the phase retrieval

algorithm proceeds as follows
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Generalized Step 3. We are given the phaseless measurements

{|〈x, ek〉|2}d−1
k=0

{|〈x, ek − ek+1〉|2}d−2
k=0

{|〈x, ek − iek+1〉|2}d−2
k=0 .

Using these values, we have the relation

〈x, ej〉〈x, ej+1〉 =1
2

(
(1− i)

(
|〈x, ej〉|2 + |〈x, ej+1〉|2

)
−|〈x, ej − ej+1〉|2 + i|〈x, ej − iej+1〉|2

)

Because all of the values 〈x, ej〉 are bounded away from 0, we know that this phase

relation will always be nonzero. Thus, with the base case of assuming that 〈x, e0〉

is real and positive, we may inductively obtain the phase of consecutive coefficients

with respect to this basis using the relation

〈x, ej+1〉 =
〈x, ej〉

(
〈x, ej〉〈x, ej+1〉

)
|〈x, ej〉|2

.

These coefficients with respect to this basis are sufficient to recover the signal.

We want to explore the impact of noise on the above algorithm. Thus, if we have

measurements

{|〈x, ek〉|2 + εk}d−1
k=0

{|〈x, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈x, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 ,
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for some ε ∈ R3d−2, we want to show that the recovered vector is close to the signal. First,

we shall show that the error in each component depends linearly on ε.

Lemma 2.4.2. Let (mj)
d−1
j=0 ∈ (0, 1]d. For any vectors x ∈ Cd and ε ∈ R3d−2, define

constants C ∈ R and ε̃ ∈ Rd such that C = (1+
√

2)‖ε‖∞+‖x‖2∞
min(m)‖x‖2∞

and for all j from 0 to d− 1,

ε̃j = 1
2

(√
2|εj |+

√
2|εj+1|+ |εd+j |+ |ε2d+j−1|

)
. If {ej}d−1

j=0 is an orthonormal basis such

that |〈x, e0〉|2 ≥ m0‖x‖2∞, and for all j from 0 to d − 1, |〈x, ej〉|2 + εj ≥ mj‖x‖2∞, then a

vector y may be obtained such that for all k from 0 to d− 1,

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ ≤
k−1∑
j=0

(
Ck−1−j ε̃j + |εj |

mj

)
+
Ck|ε0|
2
√
m0

 1

‖x‖∞

by using the algorithm presented above with the phaseless measurements

{|〈x, ek〉|2 + εk}d−1
k=0

{|〈x, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈x, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 .

Proof. The proof proceeds by induction on k. For the base case, let y0 =
√
|〈x, e0〉|2 + ε0.

Then by the mean value theorem and concavity of the square root, there exists a ξ between

|〈x, e0〉|2 + ε0 and |〈x, e0〉|2 (so that ξ ≥ m0‖x‖2∞ > 0) such that

∣∣∣∣y0 −
x0

|x0|
x0

∣∣∣∣ =
∣∣∣√|〈x, e0〉|2 + ε0 −

√
|〈x, e0〉|2

∣∣∣
=
|ε0|
2
√
ξ

≤ |ε0|
2
√
m0‖x‖∞

For the kth (with k < d−1) inductive step, we assume that we have obtained yk with the
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given information such that Ek =
∣∣∣yk − x1

|x1|xk

∣∣∣ ≤ (∑k−1
j=0

(
Ck−1−j |ε̃j |+|εj |

mj

)
+ Ck|ε0|

2
√
m0

)
1
‖x‖∞ .

Note that

xkxk+1 = 1
2

(
(1− i)|xk|2 + (1− i)|xk+1|2 − |xk − xk+1|2 + i|xk − ixk+1|2

)
so an approximation for xkxk+1 may be obtained as a linear combination of the perturbed

measurements. If we let

tk =1
2

(
(1− i)

(
|〈x, ek〉|2 + εk + |〈x, ek+1〉|2 + εk+1

)
−
(
|〈x, ek − ek+1〉|2 + εk+d

)
+ i
(
|〈x, ek − iek+1〉|2 + εk+2d−1

))
and

yk+1 =
tk

|〈x, ek〉|2 + εk
yk ,

then tk ≈ xkxk+1 and yk+1 ≈ xkxk+1

|〈x,ek〉|2+εk
yk. A direct computation shows the error for the

approximation of the term used in phase propagation,

|tk − xkxk+1| =
∣∣∣∣(1− i)(|xk|2 + εk) + (1− i)(|xk+1|2 + εk+1)

2

− (|xk − xk+1|2 + εd+k)− i(|xk − ixk+1|2 + ε2d+k−1)

2

− (1− i)|xk|2 + (1− i)|xk+1|2

2

+
|xk − xk+1|2 − i|xk − ixk+1|2

2

∣∣∣∣
=

∣∣∣∣(1− i)εk + (1− i)εk+1 − εd+k + iε2d+k−1

2

∣∣∣∣
≤
√

2|εk|+
√

2|εk+1|+ |εd+k|+ |ε2d+k−1|
2

=ε̃k
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which satisfies ε̃k ≤ (1 +
√

2)‖ε‖∞. We use similar calculations to simplify the relationship

between the vector and approximate recovery,

∣∣∣∣yk+1 −
x0

|x0|
xk+1

∣∣∣∣ =

∣∣∣∣ tk
|〈x, ek〉|2 + εk

yk −
xkxk+1

|xk|2
x1

|x1|
xk

∣∣∣∣
=

∣∣∣∣∣ |xk|
2tkyk − xkxk+1

x1
|x1|xk(|xk|

2 + εk)

(|xk|2 + εk)|xk|2

∣∣∣∣∣
=

∣∣∣∣∣ |xk|
2(tk − xkxk+1)yk + |xk|2xkxk+1(yk − x1

|x1|xk)− xkxk+1
x1
|x1|xkεk

(|xk|2 + εk)|xk|2

∣∣∣∣∣
=

∣∣∣∣∣(tk − xkxk+1)yk + xkxk+1(yk − x1
|x1|xk)− xk+1

x1
|x1|εk

|xk|2 + εk

∣∣∣∣∣ .
We use the assumption that |〈x, ek〉|2 + εk ≥ mk‖x‖2∞ to get that

∣∣∣∣yk+1 −
x0

|x0|
xk+1

∣∣∣∣ ≤
∣∣∣(tk − xkxk+1)yk + xkxk+1(yk − x1

|x1|xk)− xk+1
x1
|x1|εk

∣∣∣
mk‖x‖2∞

.

Next, we estimate using the triangle inequality

∣∣∣∣yk+1 −
x0

|x0|
xk+1

∣∣∣∣ ≤|tk − xkxk+1| |yk|+ |xkxk+1||yk − x1
|x1|xk|+ |xk+1

x1
|x1|εk|

mk‖x‖2∞

≤
|tk − xkxk+1| (|yk − x1

|x1|xk|+ |xk|) + |xkxk+1||yk − x1
|x1|xk|+ |xk+1εk|

mk‖x‖2∞
.

Recalling that Ek = |yk − x1
|x1|xk| was bounded by the induction assumption, we get

∣∣∣∣yk+1 −
x0

|x0|
xk+1

∣∣∣∣ ≤ ε̃k(Ek + ‖x‖∞) + ‖x‖2∞Ek + ‖x‖∞|εk|
mk‖x‖2∞

=
ε̃k + |εk|
mk‖x‖2∞

‖x‖∞ +
(1 +

√
2)‖ε‖∞ + ‖x‖2∞
mk‖x‖2∞

Ek
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and using the definition of C to simplify gives

∣∣∣∣yk+1 −
x0

|x0|
xk+1

∣∣∣∣ ≤ ε̃k + |εk|
mk‖x‖∞

+ CEk .

Finally, we replace all occurrences of Ek with the value given by the inductive assumption,

and simplify

∣∣∣∣yk+1 −
x0

|x0|
xk+1

∣∣∣∣ ≤ ε̃k + |εk|
mk‖x‖∞

+ C

k−1∑
j=0

(
Ck−1−j ε̃j + |εj |

mj

)
+
Ck|ε0|
2
√
m0

 1

‖x‖∞

≤ ε̃k + |εk|
mk‖x‖∞

+

k−1∑
j=0

(
Ck−j

ε̃j + |εj |
mj

)
+
Ck+1|ε0|
2
√
m0

 1

‖x‖∞

=

 k∑
j=0

(
Ck−j

ε̃j + |εj |
mj

)
+
Ck+1|ε0|
2
√
m0

 1

‖x‖∞
.

Note that if each component of ε is 0, then the error is 0 in each component, so this

algorithm reconstructs x perfectly. In the next lemma, we show a bound on the `1 norm

of the difference between the recovered vector and the input signal.

Lemma 2.4.3. Let (mj)
d−1
j=0 ∈ (0, 1]d. For any vectors x ∈ Cd and ε ∈ R3d−2, define

C ∈ R such that C = (1+
√

2)‖ε‖∞+‖x‖2∞
min(m)‖x‖2∞

. If {ej}d−1
j=0 is an orthonormal basis such that

|〈x, e0〉|2 ≥ m0‖x‖2∞, and for all j from 0 to d− 1, |〈x, ej〉|2 + εj ≥ mj‖x‖2∞, then a vector

y may be obtained such that

d∑
k=1

∣∣∣∣yk − x1

|x1|
xk

∣∣∣∣ ≤ ‖w(C,min(m))‖2
‖ε‖2
‖x‖∞
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for a weight vector w(C, u) ∈ R3d−2 satisfying

w(C, u)j =



∑d−1
k=1

Ck−1(1+
√
2
2

)

u +
∑d−1

k=0
Ck

2
√
u

if j = 0∑d−j−1
k=1

Ck−1(1+
√
2

2
)

u +
∑d−j−1

k=0

Ck
√
2

2
u if 1 ≤ j ≤ d− 1∑2d−1−j

k=1
Ck−1

2u if d ≤ j ≤ 2d− 2∑3d−2−j
k=1

Ck−1

2u if 2d− 1 ≤ j ≤ 3d− 3

by using the algorithm presented above with the phaseless measurements

{|〈x, ek〉|2 + εk}d−1
k=0

{|〈x, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈x, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 .

Proof. By Lemma 2.4.2, we know that for k = 0,

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ ≤ |ε0|
2
√
m0

1

‖x‖∞
.

Also, by Lemma 2.4.2, we know that if ε̃j = 1
2

(√
2|εj |+

√
2|εj+1|+ |εd+j |+ |ε2d+j−1|

)
for all j from 0 to d− 1, then for all k from 1 to d− 1,

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ ≤
k−1∑
j=0

(
Ck−1−j ε̃j + |εj |

mj

)
+
Ck|ε0|
2
√
m0

 1

‖x‖∞

=

(
Ck−1(1 +

√
2

2 )

m0
+

Ck

2
√
m0

)
|ε0|
‖x‖∞

+
k−1∑
j=1

(
Ck−1−j(1 +

√
2

2 )

mj
+
Ck−j

√
2

2

mj−1

)
|εj |
‖x‖∞

+

√
2

2mk−1

|εk|
‖x‖∞

+

k−1∑
j=0

Ck−1−j

2mj

|εd+j |
‖x‖∞

+

k−1∑
j=0

Ck−1−j

2mj

|ε2d+j−1|
‖x‖∞

.
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When we sum these terms over all k, we get

d−1∑
k=0

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ ≤
(

1

2
√
m0

+
d−1∑
k=1

(
Ck−1(1 +

√
2

2 )

m0
+

Ck

2
√
m0

))
|ε0|
‖x‖∞

+
d−1∑
k=1

k−1∑
j=1

(
Ck−1−j(1 +

√
2

2 )

mj
+
Ck−j

√
2

2

mj−1

)
|εj |
‖x‖∞

+
d−1∑
k=1

√
2

2mk−1

|εk|
‖x‖∞

+
d−1∑
k=1

k−1∑
j=0

Ck−1−j

2mj

|εd+j |
‖x‖∞

+
d−1∑
k=1

k−1∑
j=0

Ck−1−j

2mj

|ε2d+j−1|
‖x‖∞

and by rearranging

d−1∑
k=0

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ =

(
d−1∑
k=1

Ck−1(1 +
√

2
2 )

m0
+

d−1∑
k=0

Ck

2
√
m0

)
|ε0|
‖x‖∞

+

d−2∑
j=1

d−1∑
k=j+1

(
Ck−1−j(1 +

√
2

2 )

mj
+
Ck−j

√
2

2

mj−1

)
|εj |
‖x‖∞

+

d−1∑
j=1

√
2

2mj−1

|εj |
‖x‖∞

+

d−2∑
j=0

d−1∑
k=j+1

Ck−1−j

2mj

|εd+j |
‖x‖∞

+

d−2∑
j=0

d−1∑
k=j+1

Ck−1−j

2mj

|ε2d+j−1|
‖x‖∞

and because every term in this sequence is non-increasing in each mj

≤
3d−3∑
j=0

w(C,min(m))j
|εj |
‖x‖∞

=
1

‖x‖∞

3d−2∑
j=1

w(C,min(m))j
ε̄j
|εj |

εj .

Then by the Cauchy-Schwarz inequality, we get that

d∑
k=1

∣∣∣∣yk − x1

|x1|
xk

∣∣∣∣ ≤ ‖w̃‖2 ‖ε‖2‖x‖∞
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where w̃j = w(C,min(m))j
ε̄j
|εj | . Note that ‖w̃‖2 = ‖w(C,min(m))‖2, which proves the

claim.

2.5 Interpolation in the presence of noise

In the presence of noise, a few lemmas are needed to show how noise propagates through

Dirichlet kernel interpolation. First, we will note that the basis of point evaluations of the

analytic polynomials are point evaluations at d equally spaced points around T, while the

basis of point evaluations of the trigonometric polynomials are point evaluations at 2d− 1

equally spaced points around T. The following lemma observes the effect of evaluating a

trigonometric polynomial at d equally spaced points around T.

Lemma 2.5.1. For any trigonometric polynomial f : z 7→
∑d−1

k=−(d−1) ckz
k of degree at

most d− 1, and any z0 ∈ C such that |z0| = 1,

d−1∑
j=0

∣∣∣∣〈f, 1√
d
D
z0ω

j
d,d−1

〉∣∣∣∣2 ≤ 2‖f‖22

Proof. Note that the set { 1√
d
D
z0ω

j
d,d−1

}d−1
j=0 is a Bessel sequence, because it is finite. Thus,

the Bessel bound is equal to the operator norm of the Gram matrix. Note that for all j

from 0 to d− 1, 〈
1√
d
D
z0ω

j
d,d−1

,
1√
d
D
z0ω

j
d,d−1

〉
=

2d− 1

d
= 2− 1

d
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and for all l from 0 to d− 1 with j 6= l,

〈
1√
d
D
z0ω

j
d,d−1

,
1√
d
Dz0ωld,d−1

〉
+

1

d
=

1

d

1 +
d−1∑

k=−(d−1)

ω
(l−j)k
d


=

1

d

(
d−1∑
k=0

ω
(j−l)k
d +

d−1∑
k=0

ω
(l−j)k
d

)

=0

Thus, if we let 1d be the d × d matrix of all 1s, then the Gram matrix G satisfies G =

2Id − 1
d1d, and has operator norm ‖G‖ = 2. Thus the Bessel bound for this sequence is 2,

and
d−1∑
j=0

∣∣∣∣〈f, 1√
d
D
z0ω

j
d,d−1

〉∣∣∣∣2 ≤ 2‖f‖22

Now we will observe the effect of noise and the effect of oversampling on Dirichlet kernel

interpolation.

Lemma 2.5.2. If a trigonometric polynomial f ∈ Td is measured at 2N − 1 equally spaced

points on T, where N ≥ d, with a noise vector η ∈ R2N−1, then the recovered 2d− 1 degree

trigonometric polynomial f̃ ∈ Td will have error that satisfies

‖f̃ − f‖2 ≤
1√

2N − 1
‖η‖2

Proof. Note that any trigonometric polynomial f ∈ Td may be expressed as an element

of TN for any N ≥ d. Then Dirichlet kernel interpolation may be used in this space, but

should still recover f . Thus f =
∑2N−2

j=0 f(ωj2N−1) 1
2N−1Dωj2N−1,N−1

, where ω2N−1 is the
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2N − 1st root of unity. Thus,

f =
2N−2∑
j=0

f(ωj2N−1)
1

2N − 1
D
ωj2N−1,N−1

and if we let

f̃N =

2N−2∑
j=0

(f(ωj2N−1) + ηj)
1

2N − 1
D
ωj2N−1,N−1

then

‖f̃N − f‖22 =

∥∥∥∥∥∥
2N−2∑
j=0

ηj
1

2N − 1
D
ωj2N−1,N−1

∥∥∥∥∥∥
2

2

=
2N−2∑
j=0

∣∣∣∣ηj 1√
2N − 1

∣∣∣∣2
=

1

2N − 1
‖η‖22 .

Note that f has degree at most 2d− 1, even when interpolated as a 2N − 1 degree trigono-

metric polynomial, so if the extra dimensions of f̃N are truncated, and we let

f̃ =
2N−2∑
j=0

(f(ωj2N−1) + ηj)
1

2N − 1
D
ωj2N−1,d−1

then we get that

‖f̃ − f‖2 ≤ ‖f̃N − f‖2 =
1√

2N − 1
‖η‖2

We also observe the mean squared error of the effect of noise and the effect of oversam-

pling on Dirichlet kernel interpolation.

Lemma 2.5.3. If a trigonometric polynomial f ∈ Td is measured at 2N − 1 equally spaced
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points on T, where N ≥ d, with a noise vector η ∈ R2N−1 composed of i.i.d. Gaussian

entries, then the recovered 2d − 1 degree trigonometric polynomial f̃ ∈ Td will have error

that satisfies

E[‖f̃ − f‖22] =
2d− 1

(2N − 1)2
E[‖η‖22]

Proof. Note that any trigonometric polynomial f ∈ Td may be expressed as an element

of TN for any N ≥ d. Then Dirichlet kernel interpolation may be used in this space, but

should still recover f . Thus f =
∑2N−2

j=0 f(ωj2N−1) 1
2N−1Dωj2N−1,N−1

, where ω2N−1 is the

2N − 1st root of unity. Thus,

f =
2N−2∑
j=0

f(ωj2N−1)
1

2N − 1
D
ωj2N−1,N−1

and if we let

f̃N =

2N−2∑
j=0

(f(ωj2N−1) + ηj)
1

2N − 1
D
ωj2N−1,N−1

then

E[‖f̃N − f‖22] =E

∥∥∥∥∥∥
2N−2∑
j=0

ηj
1

2N − 1
D
ωj2N−1,N−1

∥∥∥∥∥∥
2

2


=E

2N−2∑
j=0

∣∣∣∣ηj 1√
2N − 1

∣∣∣∣2


=
1

2N − 1
E[‖η‖22] .

Note that f has degree at most 2d− 1, even when interpolated as a 2N − 1 degree trigono-

metric polynomial, so if the extra dimensions of f̃N are truncated, and we let

f̃ =

2N−2∑
j=0

(f(ωj2N−1) + ηj)
1

2N − 1
D
ωj2N−1,d−1
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then, because each component of f̃N − f is independent, we get that

E[‖f̃ − f‖22] =
2d− 1

2N − 1
E[‖f̃N − f‖22] =

2d− 1

(2N − 1)2
E[‖η‖22]

2.6 Phase retrieval algorithm: stability and oversampling

We begin proving that the phase retrieval algorithm presented in section 2.3 is stable

by giving a result that assumes we are already given the approximating trigonometric

polynomials that arise in step 1. In other words, we show that if given a fixed polynomial

p ∈ Pd and approximating trigonometric polynomials f0 ≈ |p|2, f1 ≈ |(I − R0,ωd)p|2, and

f2 ≈ |(I − iR0,ωd)p|2 with sample values that are bounded away from zero, the recovery

error of applying steps 2 and 3 is O(‖f0 − |p|2‖2).

Lemma 2.6.1. Let m ∈ (0, 1]d. For any nonzero p ∈ Pd, and any f0, f1, f2 ∈ Rd such

that f0 ≈ |p|2, f1 ≈ |(I − R0,ωd)p|2, and f2 ≈ |(I − iR0,ωd)p|2, define E ∈ R3
+ such that

E = {‖f0− |p|2‖2, ‖f1− |(I −R0,ωd)p|2‖2, ‖f2− |(I − iR0,ωd)p|2‖2} and define C(t1, t2) ∈ R

such that C(t1, t2) =
(1+
√

2)
√

2d−1t1+d‖p‖22
t2
√
d‖p‖22

. Then define w as in lemma 2.4.3. If there exists

a z0 ∈ T such that |p(z0)|2 ≥ dm0‖p‖22 and for all j from 0 to d− 1, |f0(z0ω
j
d)| ≥ dmj‖p‖22,

then an approximation p̃ ∈ Pd can be obtained such that for some c0 ∈ T

‖p̃− c0p‖2 ≤ ‖w(C(‖E‖∞,min(m)),min(m))‖2
√

2d‖E‖2
‖p‖2

by using steps 3 of the algorithm given in section 2.3 with the values {f0(z0ω
j
d)}

d−1
j=0,

{f1(z0ω
j
d)}

d−2
j=0, and {f2(z0ω

j
d)}

d−2
j=0.

Proof. Recall that the set { 1√
d
K
z0ω

j
d
}d−1
j=0 is an ordered orthonormal basis for Pd. Let x be
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the vector p represented in this ordered basis. Then for any j from 0 to d− 1,

|xj |2 =
∣∣∣〈p, 1√

d
K
z0ω

j
d

〉∣∣∣2 = 1
d |〈p,Kz0ω

j
d
〉|2 = 1

d |p(z0ω
j
d)|

2 = 1
d |p|

2(z0ω
j
d) = 1

d〈|p|
2, D

z0ω
j
d,d−1

〉 .

If we define ε ∈ R3d−2 such that

εj =


1
d

(
f0(z0ω

j
d)− |p(z0ω

j
d)|

2
)

if 0 ≤ j ≤ d− 1

1
d

(
f1(z0ω

j
d)− |p(z0ω

j
d)− p(z0ω

j+1
d )|2

)
if d ≤ j ≤ 2d− 2

1
d

(
f2(z0ω

j+1
d )− |p(z0ω

j+1
d )− ip(z0ω

j+2
d )|2

)
if 2d− 1 ≤ j ≤ 3d− 3

then by Cauchy-Schwarz ‖ε‖∞ ≤
√

2d−1
d ‖E‖∞ and by Lemma 2.5.1 ‖ε‖2 ≤

√
2
d‖E‖2.

Additionally, the values {f0(z0ω
j
d)}

d−1
j=0 , {f1(z0ω

j
d)}

d−2
j=0 , and {f2(z0ω

j
d)}

d−2
j=0 are precisely

equal to the values

{|xk|2 + εk}d−1
k=0

{|xk − xk+1|2 + εk+d}d−2
k=0

{|xk − ixk+1|2 + εk+2d−1}d−2
k=0 .

If Lemma 2.4.3 is applied to these measurements, and we use the equivalence of norms,

‖x‖∞ = max
k

{∣∣∣∣〈p, 1√
d
Kz0ωkd

〉∣∣∣∣} ≤ max
k

{
‖p‖2

∥∥∥∥ 1√
d
Kz0ωkd

∥∥∥∥
2

}
= ‖p‖2

and

‖x‖∞ =

√√√√max
k

{∣∣∣∣〈p, 1√
d
Kz0ωkd

〉∣∣∣∣2
}
≥

√√√√1

d

∑
k

∣∣∣∣〈p, 1√
d
Kz0ωkd

〉∣∣∣∣2 =
1√
d
‖p‖2 .
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Then

C =
(1 +

√
2)‖ε‖∞ + ‖x‖2∞

min(m)‖x‖2∞
≤

(1 +
√

2)
√

2d−1
d ‖E‖∞ + ‖p‖22

min(m)‖p‖22

√
d = C(‖E‖∞,min(m)) .

We obtain a vector of coefficients y ∈ Cd by Lemma 2.4.3 that satisfies

d∑
k=1

∣∣∣∣∣yk − p(z̃0ωd)

|p(z̃0ωd)|
p(z̃0ω

k
d)

∣∣∣∣∣ ≤ ‖w(C,min(m))‖2
‖ε‖2
‖x‖∞

and because each component of w is non-decreasing in C, and by the definition of ε

d∑
k=1

∣∣∣∣∣yk − p(z̃0ωd)

|p(z̃0ωd)|
p(z̃0ω

k
d)

∣∣∣∣∣ ≤ ‖w(C(‖E‖∞,min(m)),min(m))‖2
√

2‖E‖2
‖p‖2

.

Let p̃ =
∑d−1

k=0 yk
1√
d
Kz̃0ωkd

. Then

∥∥∥∥∥p̃− p(z̃0ωd)

|p(z̃0ωd)|
p

∥∥∥∥∥
2

=

∥∥∥∥∥
d−1∑
k=0

yk
1√
d
Kz̃0ωkd

− p(z̃0ωd)

|p(z̃0ωd)|

d−1∑
k=0

p(z̃0ω
k
d)

1√
d
Kz̃0ωkd

∥∥∥∥∥
2

=

∥∥∥∥∥
d−1∑
k=0

(
yk −

p(z̃0ωd)

|p(z̃0ωd)|
p(z̃0ω

k
d)

)
1√
d
Kz̃0ωkd

∥∥∥∥∥
2

≤
d−1∑
k=0

∣∣∣∣∣yk − p(z̃0ωd)

|p(z̃0ωd)|
p(z̃0ω

k
d)

∣∣∣∣∣
∥∥∥∥ 1√

d
Kz̃0ωkd

∥∥∥∥
2

≤‖w(C(‖E‖∞,min(m)),min(m))‖2
√

2‖E‖2
‖p‖2

.

With the above lemma, we may now give a stability result for the entire algorithm.

Note that this result considers the effect of oversampling. If we let N = d, then we get the

result with no oversampling, and if we let all η = 0, then we show the injectivity of our

measurements.
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Theorem 2.6.2. Let m̃ ∈ (0, 1]. For any nonzero polynomial p ∈ Pd, and any noise

vectors η0, η1, η2 ∈ R2N−1, if there exists z0 ∈ T such that |p(z0ωd)|2 ≥ m̃d‖p‖22 and

min{|p(ωjdz0)|2−
√

2d−1√
2N−1

‖η0‖2}d−1
j=0 ≥ m̃d‖p‖22, then an approximation p̃ ∈ Pd can be obtained

by the algorithm given in section 2.3 with the phaseless measurements

{|p|2(ωk2N−1) + (η0)k}2N−2
k=0

{|(I −R0,ωd)p|
2(ωk2N−1) + (η1)k}2N−2

k=0

{|(I − iR0,ωd)p|
2(ωk2N−1) + (η2)k}2N−2

k=0

such that if C(t1, t2) =
(1+
√

2)
√

2d−1t1+d‖p‖22
t2
√
d‖p‖22

then for some c0 ∈ T

‖p̃− c0p‖2 ≤
∥∥∥∥w(C ( 1√

2N−1
max
l=0,1,2

{‖ηl‖2}, m̃
)
, m̃

)∥∥∥∥
2

√
2√

2N − 1

√
‖η0‖22 + ‖η1‖22 + ‖η2‖22

‖p‖2
.

Proof. Let m ∈ (0, 1]d such that each entry mj = m̃. Note any trigonometric polynomial in

Td may be recovered using Dirichlet kernel interpolation on TN for any N ≥ d, as shown in

Lemma 2.5.2. This requires the use of point evaluations at {ωj2N−1}
2N−2
j=0 . Note that |p|2,

|(I−R0,ωd)p|2, and |(I− iR0,ωd)p|2 are in Td, and using the above , these functions may be

interpolated from the values at {ωj2N−1}
2N−2
j=0 . Approximating trigonometric polynomials

f0 ≈ |p|2, f1 ≈ |(I−R0,ωd)p|2, and f2 ≈ |(I−iR0,ωd)p|2 are obtained from this interpolation.

Then by Lemma 2.5.2

‖f0 − |p|2‖2 ≤
1√

2N − 1
‖η0‖2 ,

‖f1 − |(I −R0,ωd)p|
2‖2 ≤

1√
2N − 1

‖η1‖2 ,

and

‖f2 − |(I − iR0,ωd)p|
2‖2 ≤

1√
2N − 1

‖η2‖2 .
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Note that for any z ∈ T,

|f0(z)| =

∣∣∣∣∣∣|p(z)|2 +
2N−2∑
j=0

η0,j
1

2N − 1
D
ωj2N−1,d−1

(z)

∣∣∣∣∣∣
≥|p(z)|2 −

∣∣∣∣∣∣
2N−2∑
j=0

η0,j
1

2N − 1
D
ωj2N−1,d−1

(z)

∣∣∣∣∣∣
=|p(z)|2 −

∣∣∣∣∣∣
〈

2N−2∑
j=0

η0,j
1√

2N − 1
D
ωj2N−1,d−1

,
1√

2N − 1
Dz,d−1

〉∣∣∣∣∣∣
≥|p(z)|2 −

∥∥∥∥ 1√
2N − 1

Dz,d−1

∥∥∥∥
2

∥∥∥∥∥∥
2N−2∑
j=0

η0,j
1√

2N − 1
D
ωj2N−1,d−1

∥∥∥∥∥∥
2

≥|p(z)|2 −
∥∥∥∥ 1√

2N − 1
Dz,d−1

∥∥∥∥
2

∥∥∥∥∥∥
2N−2∑
j=0

η0,j
1√

2N − 1
D
ωj2N−1,N−1

∥∥∥∥∥∥
2

≥|p(z)|2 −
√

2d− 1√
2N − 1

‖η0‖2

≥m̃d‖p‖22 .

Thus, we may apply lemma 2.6.1 to get an approximation p̃ ∈ Pd such that for some c0 ∈ T

‖p̃− c0p‖2 ≤ ‖w(C(‖E‖∞,min(m)),m)‖2
√

2‖E‖2
‖p‖2

.

where E = {‖f0 − |p|2‖2, ‖f1 − |(I − R0,ωd)p|2‖2, ‖f2 − |(I − iR0,ωd)p|2‖2}. Note that

‖E‖∞ ≤ 1√
2N−1

maxl=0,1,2{‖ηl‖2} and ‖E‖2 ≤ 1√
2N−1

√
‖η0‖22 + ‖η1‖22 + ‖η2‖22. Thus

C(‖E‖∞,min(m)) ≤ C( 1√
2N−1

maxl=0,1,2{‖ηl‖2}, m̃). Then because all components of w

are increasing in C,

‖p̃− c0p‖2 ≤
∥∥∥∥w(C ( 1√

2N−1
max
l=0,1,2

{‖ηl‖2}, m̃
)
, m̃

)∥∥∥∥
2

√
2√

2N − 1

√
‖η0‖22 + ‖η1‖22 + ‖η2‖22

‖p‖2
.
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To obtain a uniform error bound that only assumes bounds on the norms of the vector p

and on the magnitude of the noise ‖η0‖2, we use the max-min principle from appendix A.1.

This provides us with a universally valid lower bound m̃ that applies to the above theorem.

The oversampling results from the previous theorem are maintained.

Theorem 2.6.3. Let r = sin( 2π
(d−1)d2

), and 0 < α < 1. For any nonzero p ∈ Pd, and any

noise vectors η0, η1, η2 ∈ R2N−1, if β =
r
(d−1)d

2 ( d−1
2d )

d 2
d−1

(
∏d−1
k=1(rk+1))

and ‖η0‖2 ≤
√

2N−1√
2d−1

αβ2‖p‖22, then

an approximation p̃ ∈ Pd can be obtained by the algorithm given in section 2.3 with the

phaseless measurements

{|p|2(ωk2N−1) + (η0)k}2N−2
k=0

{|(I −R0,ωd)p|
2(ωk2N−1) + (η1)k}2N−2

k=0

{|(I − iR0,ωd)p|
2(ωk2N−1) + (η2)k}2N−2

k=0

such that if C =
(1+
√

2)
√
2d−1√
2N−1

maxl=0,1,2{‖ηl‖2}+d‖p‖22
β2(1−α)‖p‖22

√
d then for some c0 ∈ T

‖p̃− c0p‖2 ≤
∥∥∥∥w(C, 1

d
β2(1− α)

)∥∥∥∥
2

√
2√

2N − 1

√
‖η0‖22 + ‖η1‖22 + ‖η2‖22

‖p‖2
.

Proof. By Lemma A.1.3 we know that there exists a z0 ∈ T such that the distance between

any element of {ωjdz0}d−1
j=0 and any roots of any nonzero truncations of p is at least r. Then

by Lemma A.1.4 we know that for all j from 0 to d− 1, |p(ωjdz0)| ≥ β‖p‖1 ≥ β‖p‖2 where

we define ‖p‖1 to be the `1 norm of the monomial coefficients of p. Thus, we know that

there exists a z0 ∈ T such that

min

{
|p(ωjdz0)|2 −

√
2d− 1√
2N − 1

‖η0‖1
}d−1

j=0

≥ β2‖p‖22 −
√

2d− 1√
2N − 1

‖η0‖1 ≥ β2(1− α)‖p‖22

40



for all j from 0 to d− 1 and we may use z0 and m̃ = 1
dβ

2(1−α) in the preceding theorem.

When we apply the above theorem, we get

‖p̃− c0p‖2 ≤
∥∥∥∥w(C, 1

d
β2(1− α)

)∥∥∥∥
2

√
2√

2N − 1

√
‖η0‖22 + ‖η1‖22 + ‖η2‖22

‖p‖2
.

We remark that many of the inequalities used to create this bound are not sharp.

Thus the above theorem would benefit from an improved lower bound on the minimum

magnitude. In fact, the value
∥∥w (C, 1

dβ
2(1− α)

)∥∥
2

grows extremely fast with the dimen-

sion. Errors as large as would be indicated by this value have not appeared, even for the

worst-case polynomial that has been found experimentally.

In figure 2.1, we show the results of oversampling in our algorithm, when the signal is

the experimentally found worst-case, and the input noise with fixed `∞ norm equal to 10−9

has been chosen to take advantage of this polynomial. When N = d = 7, the `2 error is

106 times the `∞ norm of the input noise. As the oversampling rate increases, the recovery

error drops, as predicted by the theorem.

2.6.1 A lower bound for the error resulting from a pathological signal

The above error inequalities are much worse than even the worst-case input error for

the worst-case polynomial. But we don’t have an analytic formula for the worst-case

polynomial or its stability. Experimentally, the polynomial that is most affected by noise

that has been found has roots whose angles are very close to the Chebyshev nodes. That

is, if we found the d − 1 Chebyshev nodes on the interval [−π
d ,

π
d ], and then created the

polynomial with roots all on the unit circle whose angles occur at the Chebyshev nodes,

then this new polynomial would be very close to our experimentally found worst-case
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Recovery error as a function of oversampling dimension

Figure 2.1: The L2 distance between the signal recovered by the phase retrieval algorithm
and the actual signal for a fixed polynomial in d = 7, with input noise with ‖η0‖∞ = 10−9

as a function of the oversampling dimension. The fixed polynomial that was chosen is the
polynomial that most amplifies the noise.
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polynomial. In this section, we shall provide a lower bound on the maximum error that

can be achieved by using the algorithm given in section 2.3.

Proposition 2.6.4. Let p ∈ Pd be a polynomial with roots

zk = e
iπ
d cos

(
(2k−1)π
2(d−1)

)
.

Then p(z) = a
∏d−1
k=1(z − zk) for some a ∈ C and

max
{
|p(z)| : |z| = 1 and arg(z) ∈ [−π

d ,
π
d ]
}
≥
∣∣∣∣p(e iπd )∣∣∣∣

=|a|
d−1∏
k=1

∣∣∣∣∣e iπd cos

(
(2k−1)π
2(d−1)

)
− e

iπ
d

∣∣∣∣∣
=|a|

d−1∏
k=1

∣∣∣∣∣e iπd
(

cos

(
(2k−1)π
2(d−1)

)
−1

)
− 1

∣∣∣∣∣ .
Now we show the location of the maximum does not change when we map an appropriate

polynomial on a line segment to a polynomial on an arc of the circle.

Lemma 2.6.5. Let d be an even integer with d ≥ 2, let α ∈ (0, π2 ], and let {ak}
d
2

k=− d
2
, k 6=0

be a set of numbers in the interval [−α, α] such that a−k = −ak. Let p0 ∈ Pd be the real

polynomial such that

p0(x) =

d
2∏

k=− d
2

k 6=0

(x− ak) =

d
2∏

k=1

(x− a−k)(x− ak)

and let p1 ∈ Pd be the polynomial such that

p1(z) =

d
2∏

k=− d
2

k 6=0

(z − eiak) =

d
2∏

k=1

(z − eia−k)(z − eiak) .
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If p0 achieves its maximum over the interval [−α, α] at x = 0, then p1 achieves its maximum

over the set {z : |z| = 1 and arg(z) ∈ [−α, α]} uniquely at z = 1.

Proof. Note that for all z ∈ {z : |z| = 1 and arg(z) ∈ [−α, α]} with arg(z) 6∈ {ak}
d
2

k=− d
2
, k 6=0

|p1(z)| =

d
2∏

k=− d
2

k 6=0

|z − eiak |

=

d
2∏

k=− d
2

k 6=0

|z − eiak |
| arg(z)− ak|

| arg(z)− ak|

=|p0(arg(z))|

d
2∏

k=− d
2

k 6=0

|z − eiak |
| arg(z)− ak|

=|p0(arg(z))|

d
2∏

k=− d
2

k 6=0

sinc

(
| arg(z)− ak|

2

)

=|p0(arg(z))|

d
2∏

k=1

sinc

(
| arg(z)− a−k|

2

)
sinc

(
| arg(z)− ak|

2

)

Note that because α ≤ π
2 , we know that | arg(z)−ak| ≤ 2α ≤ π and so we are only looking

at the sinc function on the interval (0, π2 ]. On this interval, sinc is strictly positive, strictly

decreasing, and strictly concave. Because it is strictly positive, we may use the inequality

of arithmetic and geometric means to show that for any k,

sinc

(
| arg(z)− a−k|

2

)
sinc

(
| arg(z)− ak|

2

)
≤

sinc
(
| arg(z)−a−k|

2

)
+ sinc

(
| arg(z)−ak|

2

)
2

2

44



and equality holds if and only if

sinc

(
| arg(z)− a−k|

2

)
= sinc

(
| arg(z)− ak|

2

)

which is true if and only if | arg(z) − a−k| = | arg(z) − ak|, which is true if and only if

arg(z) = 0. By the strict concavity of sinc, we know that for any k,

sinc
(
| arg(z)−a−k|

2

)
+ sinc

(
| arg(z)−ak|

2

)
2

≤ sinc

( | arg(z)−a−k|
2 + | arg(z)−ak|

2

2

)

and equality holds if and only if | arg(z) − a−k| = | arg(z) − ak|, which is true if and only

if arg(z) = 0. Thus,

|p1(z)| ≤ |p0(arg(z))|

d
2∏

k=1

sinc2

(
| arg(z)− a−k|+ | arg(z)− ak|

4

)

and equality holds if and only if z = 1. Note that for any k, if | arg(z)| > |ak|, then

| arg(z)− a−k|+ | arg(z)− ak| = | arg(z)− a−k + arg(z)− ak| = 2| arg(z)| > 2|ak|

and if −|ak| ≤ arg(z) ≤ |ak|, then

| arg(z)− a−k|+ | arg(z)− ak| = |ak| − arg(z) + arg(z) + |ak| = 2|ak| .

Thus, for all k, | arg(z)−a−k|+| arg(z)−ak| ≥ 2|ak|, and because sinc is strictly decreasing,

we get that

sinc2

(
| arg(z)− a−k|+ | arg(z)− ak|

4

)
≤ sinc2

(
|ak|
2

)
.
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Thus,

|p1(z)| ≤ |p0(arg(z))|

d
2∏

k=1

sinc2

(
|ak|
2

)
and equality holds if and only if z = 1. Because |p0(arg(z))| achieves its maximum at

arg(z) = 0, we know that |p1(z)| achieves its maximum at z = 1, and we know that it

doesn’t achieve this maximum anywhere else on the set we are concerned with, because

the above inequality does not hold for z 6= 1.

We also want a lower bound for the values of the pathological polynomial on the arc

with angles in [−π
d ,

π
d ].

Proposition 2.6.6. Let d ≥ 3 and let p ∈ Pd be a polynomial with roots

zk = e
iπ
d cos

(
(2k−1)π
2(d−1)

)
.

Then p(z) = a
∏d−1
k=1(z − zk) for some a ∈ C. For any z with |z| = 1 and angle inside the

interval [−π
d ,

π
d ],

|p(z)| ≤ |a|
(π
d

)d−1
.

Proof. Let p0 be the polynomial that is equal to

∣∣∣∣∣e iπd −1

∣∣∣∣∣
z−1 p(z) if p(z) has a root at 1, and

equal to p(z) otherwise. Then on this interval, |z − 1| ≤
∣∣∣∣e iπd − 1

∣∣∣∣, so |p(z)| ≤ |p0(z)|. By
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the previous lemma, we know that |p0(z)| ≤ |p0(1)|. Thus,

|p(z)| ≤ |p0(z)|

≤ |p0 (1)|

= |a|
∣∣∣∣e iπd − 1

∣∣∣∣2( d−1
2
−b d−1

2
c) d−1∏
k=1

k 6=d
2

∣∣∣∣∣e iπd cos

(
(2k−1)π
2(d−1)

)
− 1

∣∣∣∣∣

= |a|
∣∣∣∣e iπd − 1

∣∣∣∣2( d−1
2
−b d−1

2
c) b

d−1
2
c∏

k=1

∣∣∣∣∣e iπd cos

(
(2k−1)π
2(d−1)

)
− 1

∣∣∣∣∣
2

and because distance along the arc is greater than linear distance

≤ |a|
∣∣∣π
d

∣∣∣2( d−1
2
−b d−1

2
c)
b d−1

2
c∏

k=1

∣∣∣πd cos
(

(2k−1)π
2(d−1)

)∣∣∣2

= |a|
(π
d

)2( d−1
2
−b d−1

2
c) (π

d

)2b d−1
2
c
b d−1

2
c∏

k=1

cos2
(

(2k−1)π
2(d−1)

)

= |a|
(π
d

)d−1
b d−1

2
c∏

k=1

cos2
(

(2k−1)π
2(d−1)

)
≤ |a|

(π
d

)d−1
.

We will also get a lower bound for the value of the pathological polynomial at ωd, which

is the second coordinate in the ordered basis of point evaluations.

Proposition 2.6.7. Let d ≥ 6 and let p ∈ Pd be a polynomial with roots

zk = e
iπ
d cos

(
(2k−1)π
2(d−1)

)
.
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Then p(z) = a
∏d−1
k=1(z − zk) for some a ∈ C, and

|p(e
2iπ
d )| ≥ |a|2

d−1
2

(π
d

)d−1 3
√

3(5 +
√

5)

64
.

Proof.

|p(e
2iπ
d )| = |a|

d−1∏
k=1

∣∣∣∣∣e 2iπ
d − e

iπ
d cos

(
(2k−1)π
2(d−1)

)∣∣∣∣∣
≥ |a|

b d−1
2
c∏

k=1

∣∣∣e 2iπ
d − e

iπ
d

∣∣∣ d−1∏
k=b d−1

2
c+1

∣∣∣e 2iπ
d − 1

∣∣∣
= |a|

∣∣∣e iπd − 1
∣∣∣b d−1

2
c ∣∣∣e 2iπ

d − 1
∣∣∣d−1−b d−1

2
c

= |a|
∣∣∣2 sin

( π
2d

)∣∣∣b d−1
2
c ∣∣∣2 sin

(π
d

)∣∣∣d−1−b d−1
2
c
.

Note that, for any x ∈ [0, π], sin(x) ≥ x cos(x). Thus,

|p(e
2iπ
d )| ≥ |a|

∣∣∣2 sin
( π

2d

)∣∣∣b d−1
2
c ∣∣∣2 sin

(π
d

)∣∣∣d−1−b d−1
2
c

≥ |a|2d−1
∣∣∣ π
2d

cos
( π

2d

)∣∣∣b d−1
2
c ∣∣∣π
d

cos
(π
d

)∣∣∣d−1−b d−1
2
c

= |a|2d−1−b d−1
2
c
(π
d

) ∣∣∣cos
( π

2d

)∣∣∣b d−1
2
c
∣∣∣∣cos

(π
d

)d−1
∣∣∣∣d−1−b d−1

2
c

≥ |a|2d−1−b d−1
2
c
(π
d

)d−1 ∣∣∣cos
( π

2d

)∣∣∣ d−1
2
∣∣∣cos

(π
d

)∣∣∣ d2 .
Note that for d ≥ 3, the derivative of

∣∣cos
(
π
2d

)∣∣ d−1
2 is positive. Thus for d ≥ 5,

∣∣cos
(
π
2d

)∣∣ d−1
2

is increasing and
∣∣cos

(
π
2d

)∣∣ d−1
2 ≥

∣∣cos
(
π
10

)∣∣2 = 5+
√

5
8 . Also note that for d > 2, the

derivative of
∣∣cos

(
π
d

)∣∣ d2 is positive. Thus for d ≥ 6,
∣∣cos

(
π
d

)∣∣ d2 is increasing and we get
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∣∣cos
(
π
d

)∣∣ d2 ≥ ∣∣cos
(
π
6

)∣∣3 = 3
√

3
8 . Thus,

|p(e
2iπ
d )| ≥ |a|2d−1−b d−1

2
c
(π
d

)d−1 ∣∣∣cos
( π

2d

)∣∣∣ d−1
2
∣∣∣cos

(π
d

)∣∣∣ d2
≥ |a|2d−1−b d−1

2
c
(π
d

)d−1 3
√

3(5 +
√

5)

64

= |a|2
d−1
2 2

d−1
2
−b d−1

2
c
(π
d

)d−1 3
√

3(5 +
√

5)

64

≥ |a|2
d−1
2

(π
d

)d−1 3
√

3(5 +
√

5)

64
.

And finally, we establish a ratio between the first two coordinates of the pathological

polynomial with respect to the point evaluation basis.

Corollary 2.6.8. Let d be an even integer with d ≥ 6 and let p ∈ Pd be a polynomial with

roots

zk = e
iπ
d cos

(
(2k−1)π
2(d−1)

)
.

Then p(z) = a
∏d−1
k=1(z − zk) for some a ∈ C, and

|p(1)|
|p(e

2iπ
d )|
≤

|a|
(
π
d

)d−1

|a|2
d−1
2

(
π
d

)d−1 3
√

3(5+
√

5)
64

=
64

2
d−1
2 3
√

3(5 +
√

5)

and if d ≥ 11, then

|p(1)|
|p(e

2iπ
d )|
≤ 64

2
d−1
2 3
√

3(5 +
√

5)
≤ 64

253
√

3(5 +
√

5)
=

2

3
√

3(5 +
√

5)
≤ (
√

2− 1)2

2
√

2

Just as we did with the main result, we prove a claim regarding step 3 of the algorithm

for our pathological vector, before we show that this applies to the entire algorithm.

Lemma 2.6.9. For any x ∈ Cd, if ε ∈ R3d−2 such that ε0 6= 0 and all other components
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εj = 0 and if {ej}d−1
j=0 is an orthonormal basis such that x is full with respect to {ej}d−1

j=0, and

|〈x, e0〉|2 + ε0 > 0, then a vector y may be obtained such that for some ξ between |x0|2 + ε0

and |x0|2,

y0 −
x0

|x0|
x0 =

ε0

2
√
ξ

and for all k from 1 to d− 1,

yk −
x0

|x0|
xk =

x1xk
|x1|2

 1
2(1− i)

√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2 + ε0

 ε0

by using the generalized step 3 algorithm presented in section 2.4 with the phaseless mea-

surements

{|〈x, ek〉|2 + εk}d−1
k=0

{|〈x, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈x, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 .

Proof. For the case k = 0, we let y0 =
√
|〈x, e0〉|2 + ε0. Then by the mean value theorem

and concavity of the square root, there exists a ξ between |〈x, e0〉|2 + ε0 and |〈x, e0〉|2 such

that

(
y0 −

x0

|x0|
x0

)
=
√
|〈x, e0〉|2 + ε0 −

√
|〈x, e0〉|2

=
ε0

2
√
ξ
.

For other values of k, the proof proceeds by induction on k. The base case for this
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induction is the case k = 1. Note that for all k from 0 to d− 1,

xkxk+1 = 1
2

(
(1− i)|xk|2 + (1− i)|xk+1|2 − |xk − xk+1|2 + i|xk − ixk+1|2

)
so an approximation for xkxk+1 may be obtained as a linear combination of the perturbed

measurements. If we let

tk =1
2

(
(1− i)

(
|〈x, ek〉|2 + εk + |〈x, ek+1〉|2 + εk+1

)
−
(
|〈x, ek − ek+1〉|2 + εk+d

)
+ i
(
|〈x, ek − iek+1〉|2 + εk+2d−1

))
and

yk+1 =
tk

|〈x, ek〉|2 + εk
yk ,

then tk ≈ xkxk+1 and yk+1 ≈ xkxk+1

|〈x,ek〉|2+εk
yk. A direct computation shows the error for the

approximation of the term used in phase propagation,

tk − xkxk+1 =

(
(1− i)(|xk|2 + εk) + (1− i)(|xk+1|2 + εk+1)

2

− (|xk − xk+1|2 + εd+k)− i(|xk − ixk+1|2 + ε2d+k−1)

2

− (1− i)|xk|2 + (1− i)|xk+1|2

2

+
|xk − xk+1|2 − i|xk − ixk+1|2

2

)
=

(
(1− i)εk + (1− i)εk+1 − εd+k + iε2d+k−1

2

)

By the assumption on the components of ε,

tk − xkxk+1 = δ0,k
(1− i)ε0

2
.
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We then directly compute the relationship between the vector and approximate recovery,

yk+1 −
x0

|x0|
xk+1 =

tk
|〈x, ek〉|2 + εk

yk −
xkxk+1

|xk|2
x0

|x0|
xk

=
|xk|2tkyk − xkxk+1

x0
|x0|xk(|xk|

2 + εk)

(|xk|2 + εk)|xk|2

=
|xk|2(tk − xkxk+1)yk + |xk|2xkxk+1(yk − x0

|x0|xk)− xkxk+1
x0
|x0|xkεk

(|xk|2 + εk)|xk|2

=
(tk − xkxk+1)yk + xkxk+1(yk − x0

|x0|xk)− xk+1
x0
|x0|εk

|xk|2 + εk

In the base (k = 1) case, we plug in k = 0 into the above equation to get

y1 −
x0

|x0|
x1 =

(t0 − x0x1)y0 + x0x1(y0 − x0
|x0|x0)− x1

x0
|x0|ε0

|x0|2 + ε0

=

(1−i)ε0
2 y0 + x0x1(y0 − x0

|x0|x0)− x1
x0
|x0|ε0

|x0|2 + ε0

and use the fact that y0 =
√
|x0|2 + ε0 and y0 − x0

|x0|x0 = ε0
2
√
ξ

to get

=

(1−i)ε0
2

√
|x0|2 + ε0 + x0x1

ε0
2
√
ξ
− x1

x0
|x0|ε0

|x0|2 + ε0

=

 1
2(1− i)

√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2 + ε0

 ε0 ,

which proves the base case.

For the kth (with 2 < k < d) inductive step, we assume that we have obtained yk with

the given information such that yk − x0
|x0|xk = x1xk

|x1|2

(
1
2 (1−i)

√
|x0|2+ε0+x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2+ε0

)
ε0.
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Then because (tk − xkxk+1) = 0 and εk = 0, we get

yk+1 −
x0

|x0|
xk+1 =

(tk − xkxk+1)yk + xkxk+1(yk − x0
|x0|xk)− xk+1

x0
|x0|εk

|xk|2 + εk

=
xkxk+1(yk − x0

|x0|xk)

|xk|2

=
xkxk+1

|xk|2
x1xk
|x1|2

 1
2(1− i)

√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2 + ε0

 ε0

=
x1xk+1

|x1|2

 1
2(1− i)

√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2 + ε0

 ε0

which proves the claim.

Now we establish a lower bound on the error of each component of this pathological

vector.

Corollary 2.6.10. Let α0 ∈
(

1
4 , 1
)

and α1 ∈ (0, 1). For any x ∈ Cd, if ε ∈ R3d−2

such that ε0 < 0 and all other components εj = 0 and if {ej}d−1
j=0 is an orthonormal basis

such that x is full with respect to {ej}d−1
j=0, and |〈x, e0〉| ≤

√
2
(

1− 1
2
√
α0

)
α1|〈x, e1〉|, and

ε0 ≥ −(1− α0)|〈x, e0〉|2, then a vector y may be obtained such that

∣∣∣∣y0 −
x0

|x0|
x0

∣∣∣∣ ≥ |ε0|2|x0|

and for all k from 1 to d− 1,

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ ≥ |xk||x0|

(
1− 1

2
√
α0

)
(1− α1)

|ε0|
|x0|
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by using the generalized step 3 algorithm presented in section 2.4 with the phaseless mea-

surements

{|〈x, ek〉|2 + εk}d−1
k=0

{|〈x, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈x, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 .

Proof. By the previous Lemma, we know that there exists a ξ such that |x0|2 + ε0 ≤ ξ ≤

|x0|2, and

y0 −
x0

|x0|
x0 =

ε0

2
√
ξ

and for all k from 1 to d− 1,

yk −
x0

|x0|
xk =

x1xk
|x1|2

 1
2(1− i)

√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2 + ε0

 ε0 .

Thus, ∣∣∣∣y0 −
x0

|x0|
x0

∣∣∣∣ =
|ε0|
2
√
ξ
≥ |ε0|

2|x0|

and for all k from 1 to d− 1,

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ =
|x1||xk|
|x1|2

∣∣∣∣∣∣
1
2(1− i)

√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2 + ε0

∣∣∣∣∣∣ |ε0|
=
|xk|
|x1|

∣∣∣∣∣∣
1
2(1− i)

√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)
|x0|2 + ε0

∣∣∣∣∣∣ |ε0| .
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Note that

1

|x0|
− 1

2
√
ξ
≥ 1

|x0|
− 1

2
√
|x0|2 + ε0

≥ 1

|x0|
− 1

2
√
α0|x0|2

=
1

|x0|

(
1− 1

2
√
α0

)
> 0 .

By the above equation and the assumption that ε0 < 0,

∣∣∣∣x0x1

(
1

|x0|
− 1

2
√
ξ

)∣∣∣∣− ∣∣∣12(1− i)
√
|x0|2 + ε0

∣∣∣ ≥ |x0||x1|
1

|x0|

(
1− 1

2
√
α0

)
−
√

2
2 |x0|

= |x1|

(
1− 1

2
√
α0
−
√

2

2

|x0|
|x1|

)

and using the assumption on the ratio |x0||x1| gives

≥ |x1|
(

1− 1

2
√
α0
−
(

1− 1

2
√
α0

)
α1

)
=

(
1− 1

2
√
α0

)
(1− α1)|x1|

> 0 .

Thus, by the reverse triangle inequality

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ =
|xk|
|x1|

∣∣∣12(1− i)
√
|x0|2 + ε0 + x0x1

(
1

2
√
ξ
− 1
|x0|

)∣∣∣
|x0|2 + ε0

|ε0|

≥ |xk|
|x1|

∣∣∣∣∣∣x0x1

(
1
|x0| −

1
2
√
ξ

)∣∣∣− ∣∣∣12(1− i)
√
|x0|2 + ε0

∣∣∣∣∣∣
|x0|2 + ε0

|ε0|

≥ |xk|
|x1|

(
1− 1

2
√
α0

)
(1− α1)|x1|

|x0|2 + ε0
|ε0|

≥ |xk|
|x0|

(
1− 1

2
√
α0

)
(1− α1)

|ε0|
|x0|
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We remove the dependence on the unknown α0 and α1 on lower bound on the error

of each component of this pathological vector, by assuming a ration between the first two

components of x.

Corollary 2.6.11. For any x ∈ Cd, if ε ∈ R3d−2 such that ε0 < 0 and all other components

εj = 0 and if {ej}d−1
j=0 is an orthonormal basis such that x is full with respect to {ej}d−1

j=0, and

|〈x, e0〉| ≤ 1
2
√

2

(√
2− 1

)2 |〈x, e1〉|, and ε0 ≥ −1
2 |〈x, e0〉|2, then a vector y may be obtained

such that ∣∣∣∣y0 −
x0

|x0|
x0

∣∣∣∣ ≥ |ε0|2|x0|

and for all k from 1 to d− 1,

∣∣∣∣yk − x0

|x0|
xk

∣∣∣∣ ≥ 1

4

|xk|
|x0|
|ε0|
|x0|

by using the generalized step 3 algorithm presented in section 2.4 with the phaseless mea-

surements

{|〈x, ek〉|2 + εk}d−1
k=0

{|〈x, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈x, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 .

Proof. Plug in α0 = 1
2 and α1 =

√
2−1

2
√

2
into the previous corollary.

We sum the squares of the values in the above lemma to obtain a lower bound on the

`2 norm of the difference between the recovered vector and the original signal.

Corollary 2.6.12. For any x ∈ Cd, if ε ∈ R3d−2 such that ε0 < 0 and all other components

εj = 0 and if {ej}d−1
j=0 is an orthonormal basis such that x is full with respect to {ej}d−1

j=0, and
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|〈x, e0〉| ≤ 1
2
√

2

(√
2− 1

)2 |〈x, e1〉|, and ε0 ≥ −1
2 |〈x, e0〉|2, then a vector y may be obtained

such that ∥∥∥∥y − x0

|x0|
x

∥∥∥∥
2

≥ 1

4

‖x‖2
|x0|

|ε0|
|x0|

by using the generalized step 3 algorithm presented in section 2.4 with the phaseless mea-

surements

{|〈x, ek〉|2 + εk}d−1
k=0

{|〈x, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈x, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 .

If, in addition, we have |〈x, e1〉| ≤ 1
C ‖x‖2, then

∥∥∥∥y − x0

|x0|
x

∥∥∥∥
2

≥ C2

4

|ε0|
‖x‖2

Proof. By the previous corollary

∥∥∥∥y − x0

|x0|
x

∥∥∥∥
2

=

√√√√d−1∑
k=0

∣∣∣yk − x0
|x0|xk

∣∣∣2 ≥
√√√√d−1∑

k=0

(
1

4

|xk|
|x0|
|ε0|
|x0|

)2

=
1

4

‖x‖2
|x0|

|ε0|
|x0|

Theorem 2.6.13. Let d be an even integer with d > 11 and let p ∈ Pd be a polynomial

with roots

zk = e
iπ
d cos

(
(2k−1)π
2(d−1)

)
.

Then p(z) = a
∏d−1
k=1(z − zk) for some a ∈ C. Let α ∈ (0, 1

2 |p(1)|2], N ≥ d, and ω2N−1

be the 2N − 1 root of unity. For z0 = 1 and noise vectors η0, η1, η2 ∈ R2N−1 such that
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η0 =
(
−α|K1(ωk2N−1)|2

)2N−2

k=0
and η1 = η2 = 0, if C =

√
d‖p‖2
|p(1)| , then an approximation

p̃ ∈ Pd can be obtained by using the algorithm given in section 2.3 with the phaseless

measurements

{|p|2(ωk2N−1) + (η0)k}2N−2
k=0

{|(I −R0,ωd)p|
2(ωk2N−1) + (η1)k}2N−2

k=0

{|(I − iR0,ωd)p|
2(ωk2N−1) + (η2)k}2N−2

k=0

such that for some c0 ∈ T

‖p̃− c0p‖2 ≥
C2
√

3

4d
√

(2N − 1)(2d3 + d)

‖η0‖2
‖p‖2

.

Proof. Note that any trigonometric polynomial in Td may be recovered using Dirichlet

kernel interpolation on TN for any N ≥ d, as shown in Lemma 2.5.2. This requires the use

of point evaluations at {ωj2N−1}
2N−2
j=0 . Note that |p|2, |(I − R0,ωd)p|2, and |(I − iR0,ωd)p|2

are in Td, and using the above, these functions may be interpolated from the perturbed

values at {ωj2N−1}
2N−2
j=0 . The approximating trigonometric polynomials obtained from this

interpolation are f0 =
∑2N−2

j=0 (|p(ωj2N−1)|2 + η0) 1
2N−1Dωj2N−1,d−1

, f1 = |(I −R0,ωd)p|2, and

f2 = |(I − iR0,ωd)p|2. then

f0 − |p|2 =

2N−2∑
j=0

(η0)j
1

2N − 1
D
ωj2N−1,d−1

= −α|K1|2 .

The set { 1√
d
K
z0ω

j
d
}d−1
j=0 is an ordered orthonormal basis for Pd. Let x be the vector p

represented in this ordered basis. Then for any j from 0 to d− 1,

|xj |2 =

∣∣∣∣〈p, 1√
d
K
z0ω

j
d

〉∣∣∣∣2 =
1

d
|〈p,K

z0ω
j
d
〉|2 =

1

d
|p(z0ω

j
d)|

2 .
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Then by Corollary 2.6.8, we know that

|x0|
|x1|

=
|p(1)|
|p(e

2iπ
d )|
≤ (
√

2− 1)2

2
√

2

If we define ε ∈ R3d−2 such that

εj =


1
d

(
|f0(z0ω

j
d)| − |p(z0ω

j
d)|

2
)

if 0 ≤ j ≤ d− 1

1
d

(
|f1(z0ω

j
d)| − |p(z0ω

j
d)− p(z0ω

j+1
d )|2

)
if d ≤ j ≤ 2d− 2

1
d

(
|f2(z0ω

j+1
d )| − |p(z0ω

j+1
d )− ip(z0ω

j+2
d )|2

)
if 2d− 1 ≤ j ≤ 3d− 3

then ε0 = −α
d ≥ −

1
2 |x0|2 and all other εj = 0. Note that

‖η0‖2 = α

√√√√2N−1∑
k=1

|K1(ωk2N−1)|4 = α
√

2N − 1
∥∥|K1|2

∥∥
2

=
α√
3

√
(2N − 1)(2d3 + d) .

Then by the corollary 2.6.12, the algorithm from section 2.4 produces a vector y such that

∥∥∥∥y − x0

|x0|
x

∥∥∥∥
2

≥ C2

4

|ε0|
‖x‖2

=
C2
√

3

4d
√

(2N − 1)(2d3 + d)

‖η0‖2
‖p‖2

Then, if we define p̃ =
∑d−1

k=0 yk
1√
d
Kz̃0ωkd

,

∥∥∥∥∥p̃− p(1)

|p(1)|
p

∥∥∥∥∥
2

=

∥∥∥∥∥
d−1∑
k=0

yk
1√
d
Kz̃0ωkd

− p(1)

|p(1)|

d−1∑
k=0

p(z̃0ω
k
d)

1√
d
Kz̃0ωkd

∥∥∥∥∥
2

=

∥∥∥∥∥
d−1∑
k=0

(
yk −

p(1)

|p(1)|
p(z̃0ω

k
d)

)
1√
d
Kz̃0ωkd

∥∥∥∥∥
2

=

∥∥∥∥y − x0

|x0|
x

∥∥∥∥
2

≥ C2
√

3

4d
√

(2N − 1)(2d3 + d)

‖η0‖2
‖p‖2

.
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Stability of phase retrieval for pathological signal

Figure 2.2: The L2 distance between the signal recovered by the phase retrieval algorithm
and the actual signal for the worst-case polynomial in d = 7, with no oversampling, as a
function of input noise. Each point represents the worst error out of 100 random noise
vectors of the chosen norm.
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This result gives us the desired lower bound on the recovery error for our pathological

signal. Figure 2.2 shows the error resulting from attempting to reconstruct the pathologi-

cal signal using the algorithm. The behavior is still linear, as predicted, but the algorithm

magnifies the noise by a factor of 107. Note that the behavior observed in the case of

a pathological signal is very abnormal behavior. In fact, in experiments, randomly cho-

sen signals reduced noise of the magnitude depicted here to the square root of machine

precision.

2.7 Mean squared error

Much of the above work dealt with calculating what happens when the input error is

the worst-possible error of any particular norm, or close to it, and when we are using the

polynomial that has the worst interaction with such an error. For a more typical case,

we calculate the mean squared error for a fixed polynomial. We still use the worst-case

polynomial for this. To calculate the mean squared error, we need a precise value for the

`1 norm of the weight vector.

Lemma 2.7.1. Let m̃ ∈ (0, 1]. Define C(t1, t2) ∈ R+ by C(t1, t2) =
(1+
√

2)
√

2d−1t1+d‖p‖22
t2
√
d‖p‖22

and w(C, u) ∈ R3d−2 by

w(C, u)j =



∑d−1
k=1

Ck−1(1+
√
2

2
)

u +
∑d−1

k=0
Ck

2
√
u

if j = 0∑d−j−1
k=1

Ck−1(1+
√
2
2

)

u +
∑d−j−1

k=0

Ck
√
2

2
u if 1 ≤ j ≤ d− 1∑2d−1−j

k=1
Ck−1

2u if d ≤ j ≤ 2d− 2∑3d−2−j
k=1

Ck−1

2u if 2d− 1 ≤ j ≤ 3d− 3

.

If for each k from 0 to 2d− 2, J(k) = d− |d− 1− k|, B1(k) =
(

1
2

√
m̃+ (d− k)(2 +

√
2)
)

,
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and B2(k) =
∑J(k)

j=1 B1(k − j + 2)B1(j), then

‖w(C(t1, m̃), m̃)‖21 =
2d−2∑
n=0

(
2d−2∑
k=n

1

m̃k+2

(
k

n

)(
(1 +

√
2)
√

2− 1
d

)n
d
k−n
2 B2(k)

)(
t1
‖p‖22

)n
.

Proof. Note that by rearranging terms in the `1 norm

‖w(C, u)‖1 =

d−1∑
k=1

Ck−1(1 +
√

2
2 )

u
+

d−1∑
k=0

Ck

2
√
u

+

d−1∑
j=1

(
d−j−1∑
k=1

Ck−1(1 +
√

2
2 )

u
+

d−j−1∑
k=0

Ck
√

2
2

u

)

+ 2
d−2∑
j=0

d−j−1∑
k=1

Ck−1

2u

=
d−1∑
k=0

Ck

2
√
u

+
d−1∑
j=0

d−j−1∑
k=1

Ck−1(2 +
√

2
2 )

u

+
d−1∑
j=1

d−j−1∑
k=0

Ck
√

2
2

u

=
d−1∑
k=0

Ck

2
√
u

+
d−1∑
k=1

d−k∑
j=1

Ck−1(2 +
√

2)

u

=
d∑

k=1

Ck−1

(
1

2
√
u

+
(d− k)(2 +

√
2)

u

)

=
1

u

d∑
k=1

Ck−1B1(k)
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Then, if we square both sides

‖w(C, u)‖21 =
1

u2

d∑
k=1

d−1∑
j=0

Cj+k−2B1(k)B1(j)

=
1

u2

2d−2∑
k=0

J(k)∑
j=1

CkB1(k − j + 2)B1(j)

=
1

u2

2d−2∑
k=0

CkB2(k)

and after plugging in the formula for C(t1, m̃) in place of C, and m̃ in place of u

=
1

m̃2

2d−2∑
k=0

(
(1 +

√
2)
√

2d− 1t1 + d‖p‖22
m̃
√
d‖p‖22

)k
B2(k)

and using the binomial theorem

=

2d−2∑
k=0

1

m̃k+2

k∑
n=0

(
k

n

)(1 +
√

2)
√

2− 1
d t1

‖p‖22

n

d
k−n
2 B2(k)

=
2d−2∑
n=0

2d−2∑
k=n

1

m̃k+2

(
k

n

)(1 +
√

2)
√

2− 1
d t1

‖p‖22

n

d
k−n
2 B2(k) .

With the above bound on the norm of the weight vector, we can begin to calculate the

mean squared error. Here, we calculate the mean squared error conditioned on a lower

bound for the values of the perturbed polynomial.

Theorem 2.7.2. Let m̃ ∈ (0, 1] and σ > 0. For any nonzero p ∈ Pd, and any noise vectors

η0, η1, η2 ∈ R2N−1 composed of i.i.d. Gaussian entries with variance σ2, if there exists a

z0 ∈ T such that min{|p(z0ω
j
d)|

2 +
∑2N−1

k=1 η0,k
1

2N−1Dωk2N−1,d−1(z0ω
j
d)}

d−1
j=0 ≥ m̃d‖p‖22 and
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|p(z0ωd)|2 ≥ dm̃‖p‖22, then an approximation p̃ ∈ Pd can be constructed using the Dirichlet

Kernel and the the phaseless measurements

{|p|2(ωk2N−1) + (η0)k}2N−2
k=0

{|(I −R0,ωd)p|
2(ωk2N−1) + (η0)k}2N−2

k=0

{|(I − iR0,ωd)p|
2(ωk2N−1) + (η0)k}2N−2

k=0

such that if C(t1, t2), J(k), B1(k), and B2(k) are as defined in the previous lemma, then

for some c0 ∈ T

E[‖p̃− c0p‖22] ≤ 2

(
2d−2∑
k=0

1

m̃k+2
d
k
2B2(k)

)
6d− 3

2N − 1

σ2

‖p‖22
+O

((
σ√

2N − 1

)3
)
.

Proof. Let m ∈ (0, 1]d such that each entry mj = m̃. Note any trigonometric polynomial in

Td may be recovered using Dirichlet kernel interpolation on TN for any N ≥ d, as shown in

Lemma 2.5.2. This requires the use of point evaluations at {ωj2N−1}
2N−2
j=0 . Note that |p|2,

|(I−R0,ωd)p|2, and |(I− iR0,ωd)p|2 are in Td, and using the above , these functions may be

interpolated from the values at {ωj2N−1}
2N−2
j=0 . Approximating trigonometric polynomials

f0 ≈ |p|2, f1 ≈ |(I−R0,ωd)p|2, and f2 ≈ |(I−iR0,ωd)p|2 are obtained from this interpolation.

Then by Lemma 2.5.3

E[‖f0 − |p|2‖22] =
2d− 1

(2N − 1)2
E[‖η0‖22]

E[‖f1 − |(I −R0,ωd)p|
2‖22] =

2d− 1

(2N − 1)2
E[‖η1‖22]

and

E[‖f2 − |(I − iR0,ωd)p|
2‖22] =

2d− 1

(2N − 1)2
E[‖η2‖22] .

We may apply lemma 2.6.1 to get an approximation p̃ ∈ Pd such that for some c0 ∈ T, if
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E = {‖f0 − |p|2‖2, ‖f1 − |(I −R0,ωd)p|2‖2, ‖f2 − |(I − iR0,ωd)p|2‖2}, then

‖p̃− c0p‖2 ≤‖w(C(‖E‖∞,min(m)),min(m))‖2
√

2‖E‖2
‖p‖2

and because all components of w are increasing in C,

≤‖w(C(‖E‖2, m̃), m̃)‖2
√

2‖E‖2
‖p‖2

and by equivalence of norms

≤‖w(C(‖E‖2, m̃), m̃)‖1
√

2‖E‖2
‖p‖2

.

Then, by squaring both sides, and taking the expectation, we get

E[‖p̃− c0p‖22] ≤E
[
‖w(C(‖E‖2, m̃),m)‖21

2‖E‖22
‖p‖22

]

and by Lemma 2.7.1

=2

2d−2∑
n=0

(
2d−2∑
k=n

1

m̃k+2

(
k

n

)(
(1 +

√
2)
√

2− 1
d

)n
d
k−n
2 B2(k)

)
E[‖E‖n+2

2 ]

‖p‖2n+2
2

Note that E[‖E‖22] = 2d−1
(2N−1)2

E[‖η0‖22 + ‖η1‖22 + ‖η2‖22] = 3 2d−1
2N−1σ

2 and that ‖E‖2 has a

scaled Chi distribution with 6d− 3 degrees of freedom, so that

E[‖E‖n+2
2 ] = 2

n
2

+1 Γ(6d−3+n+2
2 )

Γ(6d−3
2 )

(
σ√

2N − 1

)n+2

≤ (6d− 3 + n)
n+2
2

(
σ√

2N − 1

)n+2
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Thus,

E[‖p̃− c0p‖22] ≤2
2d−2∑
n=0

(
2d−2∑
k=n

1

m̃k+2

(
k

n

)(
(1 +

√
2)
√

2− 1
d

)n
d
k−n
2 B2(k)

)
E[‖E‖n+2

2 ]

‖p‖2n+2
2

≤2

(
2d−2∑
k=0

1

m̃k+2
d
k
2B2(k)

)
(6d− 3)

(
σ√

2N−1

)2

‖p‖22
+O

((
σ√

2N − 1

)3
)
.

This conditional mean squared error is not useful without knowing the probability of

the conditional statement being true. Thus, we establish an upper bound on the falsehood

of the statement.

Theorem 2.7.3. Let r = sin( 2π
(d−1)d2

), β =
r
(d−1)d

2 ( d−1
2d )

d 2
d−1

(
∏d−1
k=1(rk+1))

, L > 0, and σ > 0 such that

σ <
4√eβ2L2
√

2d−1
. Let m̃ = 1

d

(
β2 − 1

L2

√
(2d−1)σ2

2N−1 W ((2N − 1)2)

)
, where W is the Lambert W

function, which is the inverse of the function g(x) = xex. Note that 0 < m̃ < β2

d . For any

p ∈ Pd with ‖p‖2 ≥ L, and any noise vectors η0, η1, η2 ∈ R2N−1 composed of i.i.d. Gaussian

entries with variance σ2, if we define f ∈ Td by f =
∑2N−1

k=1 η0,k
1

2N−1Dωk2N−1,d−1 and let F

denote the event that there does not exist a z on the unit circle such that |p(zωd)|2 ≥ m̃d‖p‖22

and min{|p(zωjd)|
2 + f(zωjd)}

d−1
j=0 ≥ m̃d‖p‖22, then

Pr(F ) ≤ d

(2N − 1)
√

2π

Proof. Note that the probability of every z on the unit circle satisfying the equation

min
{
|p(zωjd)|

2 + f(zωjd)
}d−1

j=0
< m̃d‖p‖22

is less than the probability of this being true for the value of z0 given by Lemma A.1.3.
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Then, if we let Fj be the event that

|p(z0ω
j
d)|

2 + f(z0ω
j
d) < m̃d‖p‖22

we get that

Pr(F ) ≤ Pr(∪d−1
j=0Fj) ≤

d−1∑
j=0

Pr(Fj) .

By Lemma A.1.4 we know that for all j from 1 to d, |p(z0ω
j
d)| ≥ β‖p‖1 ≥ β‖p‖2 where we

define ‖p‖1 to be the `1 norm of the monomial coefficients of p. Also note that f has i.i.d.

Gaussian entries with variance σ2

2N−1 , so for each j from 0 to d − 1, f(z0ω
j
d) is Gaussian

with variance (2d−1)σ2

2N−1 . Thus,

Pr(Fj) =Pr(|p(z0ω
j
d)|

2 + f(z0ω
j
d) < m̃d‖p‖22)

=Pr(f(z0ω
j
d) > |p(z0ω

j
d)|

2 − m̃d‖p‖22)

≤Pr(f(z0ω
j
d) > β2‖p‖22 − m̃d‖p‖22)

≤Pr

(
f(z0ω

j
d) >

1

L2

√
(2d− 1)σ2

2N − 1
W ((2N − 1)2)‖p‖22

)

≤Pr

(
f(z0ω

j
d) >

√
(2d− 1)σ2

2N − 1
W ((2N − 1)2)

)

≤ e−
1
2
W ((2N−1)2)√

W ((2N − 1)2)2π

=
1√

eW ((2N−1)2)W ((2N − 1)2)2π

=
1

(2N − 1)
√

2π

With the failure probability given above, we may now write the mean squared error as
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a sum of the error in the fail condition and the mean square error conditioned on the lower

bound.

Theorem 2.7.4. Let r = sin( 2π
(d−1)d2

), β =
r
(d−1)d

2 ( d−1
2d )

d 2
d−1

(
∏d−1
k=1(rk+1))

, L > 0, and σ > 0 with

σ <
4√eβ2L2
√

2d−1
. Let m̃ = 1

d

(
β2 − 1

L2

√
(2d−1)σ2

2N−1 W ((2N − 1)2)

)
, where W is the Lambert

W function, which is the inverse of the function g(x) = xex. For any analytic polynomial

p ∈ Pd with ‖p‖2 ≥ L, and any noise vectors η0, η1, η2 ∈ R2N−1 composed of i.i.d. Gaussian

entries with variance σ2, an approximation p̃ ∈ Pd can be obtained by the algorithm given

in section 2.3 with the phaseless measurements

{|p|2(ωk2N−1) + (η0)k}2N−2
k=0

{|(I −R0,ωd)p|
2(ωk2N−1) + (η1)k}2N−2

k=0

{|(I − iR0,ωd)p|
2(ωk2N−1) + (η2)k}2N−2

k=0

such that if J(k), B1(k), and B2(k) are as defined in lemma 2.7.1, and we define B3 as

B3 =
∑2d−2

k=0
1

m̃k+2d
k
2B2(k), then for some c0 ∈ T

E[‖p̃− c0p‖22] ≤ ‖p‖22
d

(2N − 1)
√

2π
+ 2B3

6d− 3

2N − 1

σ2

‖p‖22
+O

((
σ√

2N − 1

)3
)
.

Proof. Define f ∈ Td by f =
∑2N−1

k=1 η0,k
1

2N−1Dωk2N−1,d−1 and let F denote the event that

there does not exist a z on the unit circle such that min{|p(zωjd)|
2 + f(zωjd)}

d−1
j=0 ≥ m̃d‖p‖22

and |p(zωd)|2 ≥ m̃d‖p‖22. Then Pr(F c) ≤ 1 and by Theorem 2.7.3 Pr(F ) ≤ d
(2N−1)

√
2π

. If

event F occurs, let p̃ = 0. Otherwise p̃ is constructed using the algorithm, and by Theorem
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2.7.2

E
[
‖p̃− c0p‖22|F c

]
≤2

(
2d−2∑
k=0

1

m̃k+2
d
k
2B2(k)

)
6d− 3

2N − 1

σ2

‖p‖22
+O

((
σ√

2N − 1

)3
)

=2B3
6d− 3

2N − 1

σ2

‖p‖22
+O

((
σ√

2N − 1

)3
)
.

Thus, by the law of total expectation

E[‖p̃− c0p‖22] ≤E
[
‖p̃− c0p‖22|F

]
Pr(F ) + E

[
‖p̃− c0p‖22|F c

]
Pr(F c)

≤‖p‖22
d

(2N − 1)
√

2π
+ 2B3

6d− 3

2N − 1

σ2

‖p‖22
+O

((
σ√

2N − 1

)3
)
.
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Chapter 3

Recovery from randomized noisy

measurements

3.1 Randomized polynomials

There are many benefits to considering random polynomials rather than fixed polyno-

mials. Among these is the fact that the worst-case polynomial is now a rare occurrence,

and so we may make probabilistic statements with better error bounds. To get a random

polynomial from a fixed polynomial, we will consider the polynomial Φx, where Φ is a

random matrix. If Φ is invertible, then we gain all of the error benefits of a random poly-

nomial while still having the ability to recover a fixed polynomial. If x is a sparse vector,

then we can recover x even when Φ has much fewer rows than columns.

To gain all of these benefits, we need to know what distribution Φx will have.

Proposition 3.1.1. Fix x ∈ CM . If Φ is a d ×M complex random matrix with entries

0Portions of this chapter c©2015 IEEE. Reprinted with permission, from Bernhard G. Bodmann and
Nathaniel Hammen, Error bounds for noisy compressive phase retrieval, Proceedings of the 11th Interna-
tional Conference on Sampling Theory and Applications (SampTA), May 2015.
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whose real and imaginary parts are drawn independently at random from a normal distribu-

tion with mean 0 and variance 1
2d , then Φx ∈ Cd has entries whose real and imaginary parts

are drawn independently at random from a normal distribution with mean 0 and variance

‖x‖2
2d .

The following corollary is a special case of the above proposition.

Corollary 3.1.2. Fix x ∈ CM . If Φ is a d×M complex random matrix with entries whose

real and imaginary parts are drawn independently at random from a normal distribution

with mean 0 and variance 1
2d , and if p ∈ Pd is the polynomial whose coefficients are equal

to Φx, then for any z on the unit circle, the values 1√
d
p(zωjd) have real and imaginary

parts that are drawn independently at random from a normal distribution with mean 0 and

variance ‖x‖22d , by a change of basis.

With this knowledge of the distribution of our random vector, we may obtain a proba-

bilistic lower bound on the coefficients with respect to our chosen basis.

Proposition 3.1.3. Let c ≥ 0. For any y ∈ Cd with entries whose real and imaginary parts

are drawn independently at random from a normal distribution with mean 0 and variance

c
2d , the probability that any one value |yj | is greater than c

d2
is e

−2
d2 and the probability that

all values |yj | are greater than c
d2

is e
−2
d .

Proof. Note that for any j,

Pr(|yj | ≥ c
d2

) = Pr(|yj |2 ≥ c2

d4
)

which is the tail probability of a Chi squared distribution with 2 degrees of freedom. Then

Pr(|yj |2 ≥ c2

d4
) = Pr

(
|yj |2(
c

2d

)2 ≥ 4

d2

)
= e

−2
d2
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Then the probability all values satisfy this bound is

(
e
−2
d2

)d
= e

−2
d .

These bounds allow reconstruction of a noisy signal without using polynomial inter-

polation, but with a small probability of failure. In fact, this allows reconstruction using

fewer measurements than the theoretical minimum needed for perfect reconstruction.

Theorem 3.1.4. Fix x ∈ Cd. Let Φ be an invertible d × d complex random matrix with

entries whose real and imaginary parts are drawn independently at random from a normal

distribution with mean 0 and variance 1
2d . For any α ∈ (0, 1) and any ε ∈ R3d−2 with

‖ε‖∞ ≤ α
d4
‖x‖22, define C ∈ R such that C = (1+

√
2)‖ε‖∞+‖Φx‖2∞
1−α
d4
‖Φx‖2∞

. If w is as defined in

lemma 2.4.3 then with probability e
−2
d , a vector y may be obtained such that

∥∥∥∥∥y − 〈Φx, e1〉
|〈Φx, e1〉|

x

∥∥∥∥∥
2

≤ ‖Φ−1‖2‖w(C, 1−α
d4

)‖2
‖ε‖2
‖Φx‖∞

by using the generalized step 3 algorithm presented in section 2.4 with the phaseless mea-

surements

{|〈Φx, ek〉|2 + εk}d−1
k=0

{|〈Φx, ek − ek+1〉|2 + εk+d}d−2
k=0

{|〈Φx, ek − iek+1〉|2 + εk+2d−1}d−2
k=0 .

Proof. By Proposition 3.1.1, Φx ∈ Cd has entries whose real and imaginary parts are drawn

independently at random from a normal distribution with mean 0 and variance ‖x‖22d . Then

by Proposition 3.1.3, minj{|〈Φx, ej〉|} ≥ ‖x‖2d2
with probability e

−2
d . If this holds, then for

all j from 1 to d, |〈Φx, ej〉|2 + εj ≥ ( 1
d4
− α

d4
)‖x‖22 ≥ 1−α

d4
‖x‖2∞. Thus, by Lemma 2.4.3, a
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vector ỹ may be obtained such that

d∑
k=1

∣∣∣∣∣ỹk − 〈Φx, e1〉
|〈Φx, e1〉|

〈Φx, ek〉

∣∣∣∣∣ ≤ ‖w(C, 1−α
d4

)‖2
‖ε‖2
‖Φx‖∞

.

Thus

∥∥∥∥∥Φ−1ỹ − 〈Φx, e1〉
|〈Φx, e1〉|

x

∥∥∥∥∥
2

≤‖Φ−1‖2

∥∥∥∥∥ỹ − 〈Φx, e1〉
|〈Φx, e1〉|

Φx

∥∥∥∥∥
2

≤‖Φ−1‖2

∥∥∥∥∥ỹ − 〈Φx, e1〉
|〈Φx, e1〉|

Φx

∥∥∥∥∥
1

≤‖Φ−1‖2‖w(C, 1−α
d4

)‖2
‖ε‖2
‖Φx‖∞

.

3.2 Compressive sensing

We say a vector x is s-sparse if x has only s or fewer nonzero entries, and we say a

vector x is nearly s-sparse if there exists an s-sparse vector that is a small l1 distance away

from x. For any vector x, we define ‖x‖0 to be equal to the number of nonzero entries of x,

which is the smallest number s such that x is s-sparse. For any vector x ∈ CN , we define

the error of best s-term approximation to x by

σs(x)1 = min
z∈CN ,‖z‖0≤s

‖x− z‖1

where a best s-term approximation to x is given by

Hs(x) = arg min
z∈CN ,‖z‖0≤s

‖x− z‖1 .
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Note that this best s-term approximation is not necessarily unique for a given x, but that

the error σs(x) and the norm ‖Hs(x)‖2 are independent of the choice of Hs(x).

The idea behind compressive sensing is that a system of measurements that would be

underdetermined for recovery of an arbitrary vector can be sufficient to recover a sparse

or nearly sparse vector to a high degree of accuracy. This is usually established using the

restricted isometry property or the more general robust null space property[40].

Definition 3.2.1. For a real or complex d ×M matrix Φ and a positive integer s ≤ M ,

we say that Φ satisfies the s-restricted isometry property with isometry constant δs if for

each s-sparse vector x ∈ RN or x ∈ CN , respectively, we have

(1− δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22 .

Definition 3.2.2. For a matrix Φ ∈ Cd×M and a positive integer s ≤ M , we say that Φ

satisfies the `2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0

if, for each set S ⊂ {1, . . . ,M} with |S| ≤ s, and each x ∈ CM , we have

‖xS‖2 ≤
ρ√
s
‖xSc‖1 + τ‖Φx‖2

or equivalently,

‖Hs(x)‖2 ≤
ρ√
s
σs(x)1 + τ‖Φx‖2 .

It has been shown that the appropriate restricted isometry property implies the robust

null space property.

Theorem 3.2.3 (Theorem 6.13 in [40]). Suppose that Φ ∈ Cd×M satisfies the 2s-restricted

isometry property with isometry constant δ2s <
4√
41

. Then Φ satisfies the `2-robust null
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space property of order s with constants

ρ =
δ2s√

1− δ2
2s − δ2s/4

and

τ =

√
1 + δ2s√

1− δ2
2s − δ2s/4

.

It has also been shown that for any matrix Φ satisfying the `2-robust null space property,

minimizing the `1 norm of a vector x subject to constraints involving Φx can recover any

s-sparse vector.

Theorem 3.2.4 (Theorem 4.22 in [40]). Suppose that Φ ∈ Cd×M satisfies the `2-robust

null space property of order s with constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ CM

and y ∈ Cd satisfying ‖y − Φx‖2 ≤ η, the solution x# to

arg min
x̃∈CM

‖x̃‖1 subject to ‖y − Φx̃‖2 ≤ η

satisfies

‖x− x#‖2 ≤
(1 + ρ)2

(1− ρ)
√
s

(
inf

z∈CN ,‖z‖0≤s
‖x− z‖1

)
+

(3 + ρ)τ

1− ρ
η

3.3 Compressive phase retrieval

In this section we combine the oversampling results for the phase retrieval algorithm

with the compressive sensing result above as in [45] to obtain a combined algorithm with

a linear error bound. If it is known that the signal is sparse, then this combined algorithm

may be used with undersampled measurements compared to what would be needed in the

non-compressive case. The oversampling results mean that if there are more measurements

than this needed (undersampled) amount of measurements, the accuracy of the combined
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algorithm is improved.

To combine these results, we first need a matrix that satisfies the `2-robust null space

property. By 3.2.3 a matrix satisfying the appropriate restricted isometry property will

suffice. Using exercises from [40] it is shown that complex Gaussian matrixes satisfy the

restricted isometry property with high probability.

Proposition 3.3.1 (Exercise 9.5 in [40]). If Φ is a d × s complex random matrix with

d > s and entries whose real and imaginary parts are drawn independently at random from

a normal distribution with mean 0 and variance 1, then the maximal and minimal singular

values σmax and σmin of Φ/
√

2d are for t > 0 contained in the interval [1−
√

s
d−t, 1+

√
s
d+t]

with a probability of

P
(

1−
√

s
d − t ≤ σmin, σmax ≤ 1 +

√
s
d + t

)
≥ 1− 2e−dt

2
.

The proof of this is similar to the real case [40, Theorem 9.26], by identifying the space

Cd×s with the space R2ds instead of Rds.

Using a union bound as in the proof of [40, Theorem 9.27], we then get that the

restricted isometry constant δs of Φ/
√

2d is bounded by

P
(
δs > 2

(√
s
d + t

)
+
(√

s
d + t

)2
)
≤ 2

(
eM

s

)s
e−dt

2
.

Combining these results from [40], we achieve the appropriate restricted isometry prop-

erty.

Proposition 3.3.2. A complex random matrix Φ with entries whose real and imaginary

parts are drawn independently at random from a normal distribution with mean 0 and

variance 1/(2d) achieves an RIP constant δ2s < 4/
√

41 with probability 1− 2
(
eM
2s

)2s
e−dt

2
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if there exists

t >

√
2s

d
ln

(
eM

2s

)
such that

2(
√

2s/d+ t) + (
√

2s/d+ t)2 <
4√
41
.

Note that if we solve the above equations for d, we get that such a t exists if and only

if

d >

2s

(√
ln( eM2s ) + 1

)2

(√
1 + 4√

41
− 1
)2 .

Thus, for any fixed M and s, if d is sufficiently large, then a random Gaussian d×M

matrix Φ will satisfy the conditions of Theorem 3.2.4 with high probability. We let B be

the matrix associated with the linear measurements

{p(ωk2N−1)}2N−2
k=0

{(I −R0,ωd)p(ω
k
2N−1)}2N−2

k=0

{(I − iR0,ωd)p(ω
k
2N−1)}2N−2

k=0

and consider measurements of a vector x of the form |BΦx|2 +ε, where ε ∈ R6m−3 is a noise

vector and | • |2 is the squared modulus taken component-wise. This gives the framework

that we use for compressive phase retrieval.

Theorem 3.3.3. Let N ≥ d ≥ s. Let x ∈ CM , let η0, η1, η2 ∈ R2N−1, and let Φ ∈ Cd×M

satisfy the `2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0.

If ω2N−1 = e
2iπ

2N−1 and ωd = e
2iπ
d , then for j from 0 to 6d − 4 and k from 0 to d − 1 let
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B ∈ C(6N−3)×d be given by

Bj,k =


ωjk2N−1 if 0 ≤ j < 2N − 1,

ωjk2N−1 − (ωj2N−1ωd)
k if 2N − 1 ≤ j < 4N − 2,

ωjk2N−1 − i(ω
j
2N−1ωd)

k if 4N − 2 ≤ j < 6N − 3

and let ε ∈ R6N−3 be given by

εj =


(η0)j if 0 ≤ j < 2N − 1,

(η1)j−(2N−1) if 2N − 1 ≤ j < 4N − 2,

(η2)j−(4N−2) if 4N − 2 ≤ j < 6N − 3 .

Let r = sin( 2π
(d−1)d2

), 0 < α < 1, and β =
r
(d−1)d

2 ( d−1
2d )

d 2
d−1

(
∏d−1
k=1(rk+1))

. If ‖η0‖2 ≤
√

2N−1√
2d−1

αβ2‖Φx‖22

and x satisfies the approximate sparsity requirement

σs(x)1 <

√
s

ρ
‖Hs(x)‖2

then an approximation x# for x can be reconstructed from the vector |BΦx|2 + ε (where

| • |2 is taken component-wise), such that

‖c0x− x#‖2 ≤
C1√
s
σs(x)1 +

C2√
2N − 1

‖ε‖2
‖Hs(x)‖2 − ρ√

s
σs(x)1

where

C1 = (1+ρ)2

1−ρ , and C2 = (3+ρ)τ2

1−ρ
∥∥w (C, 1

dβ
2(1− α)

)∥∥
2

√
2 with w and C from Theorem

2.6.3, and c0 ∈ C, with |c0| = 1.

Proof. Consider the polynomial pΦx ∈ Pd defined such that pΦx(z) =
∑d

k=1〈x, φ∗k〉zk−1,

where φk is the k-th row of Φ. This polynomial has monomial coefficients that are precisely
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equal to the coefficients of the vector Φx. Thus, the measurements
(
|BAx|2 + ε

)
j

are

precisely the measurements needed to apply the 3-step phase retrieval algorithm to recover

pΦx. The recovered vector will have an error as specified by Theorem 2.6.3. Using Theorem

2.6.3, for some c0 on the unit circle, we obtain a polynomial p̃ ∈ Pd satisfying

‖p̃− c0pΦx‖2 ≤
∥∥∥∥w(C, 1

d
β2(1− α)

)∥∥∥∥
2

√
2√

2N − 1

√
‖η0‖22 + ‖η1‖22 + ‖η2‖22

‖p‖2
.

where C and w are as in Theorem 2.6.3. If y is the vector of monomial coefficients of p̃,

then

‖y − c0Φx‖2 = ‖p̃− c0pΦx‖2 ≤
∥∥∥∥w(C, 1

d
β2(1− α)

)∥∥∥∥
2

√
2√

2N − 1

‖ε‖2
‖Φx‖2

.

Using this, we may apply Theorem 3.2.4 to show that the solution x# to

arg min
x̃∈CN

‖x̃‖1 subject to ‖y − c0Ax̃‖2 ≤
∥∥∥∥w(C, 1

d
β2(1− α)

)∥∥∥∥
2

√
2√

2N − 1

‖ε‖2
‖Φx‖2

satisfies the random bound

‖c0x− x#‖2 ≤
(1 + ρ)2

(1− ρ)
√
s
σs(x)1 +

(3 + ρ)τ

1− ρ
∥∥w (C, 1

dβ
2(1− α)

)∥∥
2

√
2√

2N − 1

‖ε‖2
‖Φx‖2

=
C1√
s
σs(x)1 +

C2

τ
√

2N − 1

‖ε‖2
‖Φx‖2

.

To eliminate the random term ‖Φx‖2 in the denominator, we use the robust null space

property to get

‖Φx‖2 ≥
1

τ

(
‖Hs(x)‖2 −

ρ√
s
σs(x)1

)
.
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Thus,

‖c0x− x#‖2 ≤
C1√
s
σs(x)1 +

C2

τ
√

2N − 1

‖ε‖2
‖Φx‖2

≤C1√
s
σs(x)1 +

C2√
2N − 1

‖ε‖2
‖Hs(x)‖2 − ρ√

s
σs(x)1

.

If x is s-sparse, then the error bound simplifies to a linear bound in the noise-to-signal

ratio. An example of this can be seen in figure 3.1. In this experiment, a single sparse

vector was randomly generated, and then 100 matrices were randomly generated, and 100

noise vectors with varying norms were randomly generated. The results show a linear

relationship between the input noise and the recovery error.

Corollary 3.3.4. If the assumptions of the theorem 3.3.3 hold and x is s-sparse, then the

recovery algorithm results in x# such that

min
|c|=1
‖cx− x#‖2 ≤

C2√
2N − 1

‖ε‖2
‖x‖2

.

Together with the random selection of normally, independently distributed entries as

in Proposition 3.3.2, we achieve overwhelming probability of approximate recovery.

Corollary 3.3.5. If Φ ∈ Cd×M is a complex random matrix with entries whose real and

imaginary parts are drawn independently at random from a normal distribution with mean

0 and variance 1/(2d), with s, d, M and t > 0 chosen according to the assumption of

Proposition 3.3.2, then the error bound in the theorem 3.3.3 holds for each x ∈ CM with a

probability bounded below by 1− 2( eM2s )2se−dt
2
.

If we are willing to accept nonuniform recovery, then the results from proposition 3.1.3

give a smaller coefficient for the linear bound on the error.
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Stability of compressive phase retrieval

Figure 3.1: The L2 distance between the signal recovered by the compressive phase retrieval
algorithm and the actual signal for a 20-sparse vector in dimension M = 512 with 120
measurements as a function of the maximal noise magnitude.
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Theorem 3.3.6. Given x ∈ CM and η0, η1, η2 ∈ R2N−1, let Φ ∈ Cd×M be a complex

random matrix with entries whose real and imaginary parts are drawn independently at

random from a normal distribution with mean 0 and variance 1/(2d), with s, d, M and

t > 0 chosen according to the assumption of Proposition 3.3.2. If ω2N−1 = e
2iπ

2N−1 and

ωd = e
2iπ
d , then for j from 0 to 6d− 4 and k from 0 to d− 1 let B ∈ C(6N−3)×d be given by

Bj,k =


ωjk2N−1 if 0 ≤ j < 2N − 1,

ωjk2N−1 − (ωj2N−1ωd)
k if 2N − 1 ≤ j < 4N − 2,

ωjk2N−1 − i(ω
j
2N−1ωd)

k if 4N − 2 ≤ j < 6N − 3

and let ε ∈ R6N−3 be given by

εj =


(η0)j if 0 ≤ j < 2N − 1,

(η1)j−(2N−1) if 2N − 1 ≤ j < 4N − 2,

(η2)j−(4N−2) if 4N − 2 ≤ j < 6N − 3 .

Let r = sin( 2π
(d−1)d2

) and 0 < α < 1. If ‖η0‖2 ≤
√

2N−1√
2d−1

α
d2
‖Φx‖22 and x satisfies the

approximate sparsity requirement

σs(x)1 <

√
s

ρ
‖Hs(x)‖2

then with probability bounded below by e−
2
d −2( eM2s )2se−dt

2
, an approximation x# for x can

be reconstructed from the vector |BΦx|2 + ε (where | • |2 is taken component-wise), such

that

‖c0x− x#‖2 ≤
C1√
s
σs(x)1 +

C2√
2N − 1

‖ε‖2
‖Hs(x)‖2 − ρ√

s
σs(x)1

where
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C1 = (1+ρ)2

1−ρ , and C2 = (3+ρ)τ2

1−ρ
∥∥w (C, 1

d3
(1− α)

)∥∥
2

√
2 with w and C from Theorem

2.6.3, and c0 ∈ C, with |c0| = 1.

Proof. First, we note that Φ satisfies the `2-robust null space property of order s with

constants 0 < ρ < 1 and τ > 0 with probability bounded below by 1 − 2( eM2s )2se−dt
2
. In

this case ρ = δ2s√
1−δ22s−δ2s/4

and τ =
√

1+δ2s√
1−δ22s−δ2s/4

for any choice of δ2s < 4/
√

41.

Consider the polynomial pΦx ∈ Pd defined such that pΦx(z) =
∑d

k=1〈x, φ∗k〉zk−1, where

φk is the k-th row of Φ. This polynomial has monomial coefficients that are precisely equal

to the coefficients of the vector Φx. Thus, the measurements
(
|BAx|2 + ε

)
j

are precisely

the measurements needed to apply the 3-step phase retrieval algorithm to recover pΦx. By

corollary 3.1.2 and proposition 3.1.3, for any choice of z0 ∈ T, all values 1√
d
p(z0ω

j
d) are

greater than ‖x‖2
d2

with probability e−
2
d . Thus,

min

{
|p(ωjdz0)|2 −

√
2d− 1√
2N − 1

‖η0‖1
}d−1

j=0

≥ 1

d2
‖p‖22 −

√
2d− 1√
2N − 1

‖η0‖1 ≥
1

d2
(1− α)‖p‖22

for all j from 0 to d− 1 and we may use z0 and m̃ = 1
d3

(1−α) in theorem 2.6.2. When we

apply the theorem, we get p̃ ∈ Pd such that

‖p̃− c0p‖2 ≤
∥∥∥∥w(C, 1

d3
(1− α)

)∥∥∥∥
2

√
2√

2N − 1

√
‖η0‖22 + ‖η1‖22 + ‖η2‖22

‖p‖2
.

If y is the vector of monomial coefficients of p̃, then

‖y − c0Φx‖2 = ‖p̃− c0pΦx‖2 ≤
∥∥∥∥w(C, 1

d3
(1− α)

)∥∥∥∥
2

√
2√

2N − 1

‖ε‖2
‖Φx‖2

.

Using this, we may apply Theorem 3.2.4 to show that the solution x# to

arg min
x̃∈CN

‖x̃‖1 subject to ‖y − c0Ax̃‖2 ≤
∥∥∥∥w(C, 1

d3
(1− α)

)∥∥∥∥
2

√
2√

2N − 1

‖ε‖2
‖Φx‖2
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satisfies the random bound

‖c0x− x#‖2 ≤
(1 + ρ)2

(1− ρ)
√
s
σs(x)1 +

(3 + ρ)τ

1− ρ
∥∥w (C, 1

d3
(1− α)

)∥∥
2

√
2√

2N − 1

‖ε‖2
‖Φx‖2

=
C1√
s
σs(x)1 +

C2

τ
√

2N − 1

‖ε‖2
‖Φx‖2

.

To eliminate the random term ‖Φx‖2 in the denominator, we use the robust null space

property to get

‖Φx‖2 ≥
1

τ

(
‖Hs(x)‖2 −

ρ√
s
σs(x)1

)
.

Thus,

‖c0x− x#‖2 ≤
C1√
s
σs(x)1 +

C2

τ
√

2N − 1

‖ε‖2
‖Φx‖2

≤C1√
s
σs(x)1 +

C2√
2N − 1

‖ε‖2
‖Hs(x)‖2 − ρ√

s
σs(x)1

.
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Appendix A

Appendix

A.1 A max-min principle for magnitudes

To ensure the stability of our phase retrieval algorithm, we need a lower bound on the

magnitude of any polynomial with a given degree and norm for some choice of d equally

spaced points on T. Obtaining the needed lower bound on the magnitude requires a few

lemmas and definitions.

Lemma A.1.1. Let (ak)
d−1
k=0 ∈ Cd. For any t ∈ (0, 1), there exists at least one n between

0 and d− 1 such that |an| ≥ ‖a‖1td−n(t−1 − 1).

Proof. By way of contradiction, let |aj | < ‖a‖1td−j(t−1− 1) for all j from 0 to d− 1. Then

‖a‖1 =
d−1∑
j=0

|aj | <
d−1∑
j=0

‖a‖1td−j(t−1 − 1) = ‖a‖1(t−1 − 1)
d∑
l=1

tl ≤ ‖a‖1

This is a contradiction, so the claim holds.

Definition A.1.2. For n from 1 to d, recall that for any x ∈ Cd, px ∈ Pd such that

px(z) =
∑d−1

j=0 xjz
j . We define the n-th truncation of px to be the polynomial px,n ∈ Pn
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such that px,n(z) =
∑n−1

j=0 xjz
j . Note that the d-th truncation of a polynomial is the

polynomial itself. Also note that even if a polynomial is nonzero, it may have truncations

that are zero polynomials.

To obtain a lower bound on the entries of a full vector originating from a polynomial, a

proper choice of basis is needed. It must be shown that there exists a choice of basis that

provides a lower bound on the distance between any basis element and any roots of any

truncations of the base polynomial.

Lemma A.1.3. For any polynomial p ∈ Pd, there exists a z0 on the unit circle such

that the linear distance between any element of {ωjdz0}d−1
j=0 and any roots of any nonzero

truncations of p is at least sin( 2π
(d−1)d2

).

Proof. For any n from 1 to d, let Nn be the number of distinct roots of the n-th truncation

of p if that truncation is nonzero, and let Nn = 0 if the n-th truncation of p is a zero

polynomial. Then the number of distinct roots of all nonzero truncations of p is

N ≤
d∑

n=1

Nn ≤
d∑

n=1

(n− 1) =
(d− 1)d

2

Then for the set S = { w|w|ω
j
d| j = 1, . . . , d and w is a root of a nonzero truncation of p},

we know |S| = Nd ≤ (d−1)d2

2 . If the elements of S are ordered by their angle around the

unit circle, then the average angle between adjacent elements is 2π
|S| ≥

4π
(d−1)d2

, and so there

is at least one pair of adjacent elements that is separated by at least this amount. Thus,

if we let z0 be the midpoint between these two maximally separated elements on the unit

circle, then the angle between z0 and any element of S is at least 2π
(d−1)d2

. Thus the linear

distance between z0 and any element of the set S is at least sin( 2π
(d−1)d2

).

With a lower bound on the distance between these roots and the chosen evaluation
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points, a lower bound on the minimum magnitude of any component of the reduced vector

can be obtained.

Lemma A.1.4. Let r ≤ 1. For any x ∈ Cd, if there exists a z0 on the unit circle such

that the linear distance between any element of {ωjdz0}d−1
j=0 and any zeros of any nonzero

truncations of px is at least r, then for all j from 0 to d− 1

|px(ωjdz0)| ≥
r

(d−1)d
2

(
d−1
2d

)d 2
d−1(∏d−1

k=0(rk + 1)
) ‖x‖1 .

Proof. Let n0 be the smallest n obtained by applying Lemma A.1.1 to x and t = d−1
2d .

Then

|xn0 | ≥ ‖x‖1
(
d− 1

2d

)d−n0
((

d− 1

2d

)−1

− 1

)
= ‖x‖1

(
d− 1

2d

)d−n0 d+ 1

d− 1

and for all j < n0

|xj | < ‖x‖1
(
d− 1

2d

)d−j ((d− 1

2d

)−1

− 1

)
= ‖x‖1

(
d− 1

2d

)d−j d+ 1

d− 1
.

Let

m(n0, n) =
r

(n−1)n
2 ‖x‖1

(
d−1
2d

)d−n0 2
d−1(∏n−1

k=n0
(rk + 1)

)
We prove, by induction on n from n0 + 1 to d, that the n-th truncation of px satisfies the

inequality |px,n(ωjdz0)| ≥ m(n0, n) for all j from 1 to d.
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For the base case n = n0 + 1, we know that

|xn0 | −
n0−1∑
j=0

|xj | ≥‖x‖1

(d− 1

2d

)d−n0

−
n0−1∑
j=0

(
d− 1

2d

)d−j d+ 1

d− 1

=‖x‖1

(d− 1

2d

)d−n0

−
d∑

l=d−n0+1

(
d− 1

2d

)l d+ 1

d− 1

≥‖x‖1

((
d− 1

2d

)d−n0

−
(
d−1
2d

)d−n0+1

1−
(
d−1
2d

) ) d+ 1

d− 1

=‖x‖1
(
d− 1

2d

)d−n0 2

d− 1

and equality only holds if n0 = 0. Then by the reverse triangle inequality

|px,n0+1(ωjdz0)| =

∣∣∣∣∣
n0−1∑
k=0

xk(ω
j
dz0)k

∣∣∣∣∣
≥

∣∣∣∣∣∣|xn0 | −
n0−1∑
j=0

|xj |

∣∣∣∣∣∣
≥‖x‖1

(
d− 1

2d

)d−n0 2

d− 1

≥
r

(n0−1)n0
2 ‖x‖1

(
d−1
2d

)d−n0 2
d−1(∏n0−1

k=n0
(rk + 1)

)
=m(n0, n0)

For the inductive step, assume that we have proven that |px,n(ωjdz0)| ≥ m(n0, n) for

a chosen value of n, and all j from 1 to d. Then we choose a threshold τn = m(n0,n)
rn+1 .

If the leading coefficient xn of px,n+1 satisfies |xn| > τn, then px,n+1 is clearly a nonzero

truncation of px, so by using the factored form of px,n+1, for all j from 1 to d

|px,n+1(ωjdz0)| ≥ |xn|rn > τnr
n =

m(n0, n)rn

rn + 1
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On the other hand, if the leading coefficient satisfies |xn| ≤ τn ≤ m(n0, n), then for all j

from 1 to d

|px,n+1(ωjdz0)| ≥ m(n0, n)− |cn| ≥ m(n0, n)− τn = m(n0, n)− m(n0, n)

rn + 1
=
m(n0, n)rn

rn + 1

Either way, for all j from 1 to d,

|px,n+1(ωjdz0)| ≥ m(n0, n)rn

rn + 1
=
r

(n−1)n
2 ‖p̂‖1

(
d−1
2d

)d−n0 2
d−1r

n(∏n
k=n0

(rk + 1)
) = m(n0, n+ 1)

Thus, by using the fact that the d-th truncation of a polynomial is the polynomial itself,

for all j from 1 to d,

|px(ωjdz0)| ≥ m(n0, d) =
r

(d−1)d
2 ‖x‖1

(
d−1
2d

)d−n0 2
d−1(∏d−1

k=n0
(rk + 1)

) ≥
r

(d−1)d
2 ‖x‖1

(
d−1
2d

)d 2
d−1(∏d−1

k=0(rk + 1)
)

89



Bibliography

[1] Edwin J. Akutowicz, On the determination of the phase of a Fourier integral, I.,

Transactions of the American Mathematical Society 83 (1956), 179–192.

[2] Edwin J. Akutowicz, On the determination of the phase of a Fourier integral, II.,

Proceedings of the American Mathematical Society 8 (1957), 234–238.

[3] Boris Alexeev, Afonso S. Bandeira, Matthew Fickus, and Dustin G. Mixon, Phase

retrieval with polarization, SIAM Journal on Imaging Sciences 7 (2014), no. 1, 35–66.

[4] Radu Balan, Bernhard G. Bodmann, Peter G. Casazza, and Dan Edidin, Fast algo-

rithms for signal reconstruction without phase, Proceedings of SPIE 6701, Wavelets

XII, 67011L (2007), available at doi:10.1117/12.731117.

[5] Radu Balan, Bernhard G. Bodmann, Peter G. Casazza, and Dan Edidin, Painless

reconstruction from magnitudes of frame coefficients, Journal of Fourier Analysis and

Applications 15 (August 2009), no. 4, 488–501.

[6] Radu Balan, Peter G. Casazza, and Dan Edidin, Equivalence of reconstruction from

the absolute value of the frame coefficients to a sparse representation problem, IEEE

Signal Processing Letters 14 (2007), no. 5, 341–343.

[7] Radu Balan, Peter G. Casazza, and Dan Edidin, On signal reconstruction without

phase, Applied and Computational Harmonic Analysis 20 (May 2006), no. 3, 345–356.

90



[8] Radu Balan and Yang Wang, Invertibility and robustness of phaseless reconstruction,

Applied and Computational Harmonic Analysis 38 (May 2015), no. 3, 469–488.

[9] Afonso S. Bandeira, Jameson Cahill, Dustin G. Mixon, and Aaron A. Nelson, Saving

phase: Injectivity and stability for phase retrieval, Applied and Computational Har-

monic Analysis 37 (July 2014), no. 1, 106–125.

[10] Afonso S. Bandeira, Yutong Chen, and Dustin G. Mixon, Phase retrieval from power

spectra of masked signals, Information and Interference 3 (June 2014), no. 2, 83–102.

[11] Afonso S. Bandeira and Dustin G. Mixon, Near-optimal phase retrieval of sparse vec-

tors, Proceedings of SPIE, 2013.

[12] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin, A simple

proof of the restricted isometry property for random matrices, Constructive Approxi-

mation 28 (2008), no. 3, 253263.

[13] Shaby Barel, Oren Cohen, Yonina C. Eldar, Dustin G. Mixon, and Pavel Sidorenko,

Sparse phase retrieval from short-time Fourier measurements, IEEE Signal Processing

Letters 22 (2015), no. 5, 638–642.

[14] Bernhard G. Bodmann and Nathaniel Hammen, Stable phase retrieval with low-

redundancy frames, Advances in Computational Mathematics 40 (May 2014), 1-15.

[15] Bernhard G. Bodmann and Nathaniel Hammen, Algorithms and error bounds for

noisy phase retrieval with low-redundancy frames (December 2014), available at

arXiv:1412.6678. pre-print.

[16] Bernhard G. Bodmann and Nathaniel Hammen, Error bounds for noisy compressive

phase retrieval, Proceedings of the 11th International Conference on Sampling Theory

and Applications (SampTA), May 2015.

91



[17] Oliver Bunk, Ana Diaz, Franz Pfeiffer, Christian David, Bernd Schmitt, Dillip K. Sata-

pathy, and J. Frisco van der Veen, Diffractive imaging for periodic samples: Retrieving

one-dimensional concentration profiles across microfluidic channels, Acta Crystallo-

graphica Section A 63 (2007), no. 4, 306–314.

[18] Emmanuel J. Candès, The restricted isometry property and its implications for com-

pressed sensing, Comptes Rendus de l’Acadèmie des Sciences, Sèrie I, Mathèmatique
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