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Abstract

There are two parts to this dissertation. The first topic comprises Chapter two

of this document, where we consider classification of nonsimple graph C∗-algebras.

There are many classes of nonsimple graph C∗-algebras that are classified by the

six-term exact sequence in K-theory. In this paper we consider the range of this

invariant and determine which cyclic six-term exact sequences can be obtained by

various classes of graph C∗-algebras. To accomplish this, we establish a general

method that allows us to form a graph with a given six-term exact sequence of

K-groups by splicing together smaller graphs whose C∗-algebras realize portions of

the six-term exact sequence. As rather immediate consequences, we obtain the first

permanence results for extensions of graph C∗-algebras.

The second part considers a problem in dynamical systems. We prove that Lya-

punov exponents of infinite-dimensional dynamical systems can be computed from

observational data. Crucially, our hypotheses are placed on the observations, rather

than on the underlying infinite-dimensional system. We formulate checkable con-

ditions under which a Lyapunov exponent computed from experimental data is a

Lyapunov exponent of the underlying infinite-dimensional dynamical system (pro-

vided that the observational scheme is typical in the sense of prevalence).
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CHAPTER 1

Introduction

There are two parts to this dissertation. The first topic comprises chapter two of

this document, where we consider nonsimple graph C∗-algebras. We are interested in

studying the range of the invariant used to classify these objects, that is the six-term

exact sequence in K-theory.

We are able to create a general method that allows us to construct a graph with a

given six-term exact sequence of K-groups by splicing together smaller graphs whose

C∗-algebras realize portions of the six-term exact sequence.

It is our hope that our methods will contribute to future research into more
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general cases, such as situations where the C∗-algebras under investigations have

more than one ideal. At present, there are no existing classification theories in this

case.

The second part considers a problem in dynamical systems. We ask the question:

Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by

projecting the dynamics into RN using a ‘typical’ nonlinear projection map?

We answer this question affirmatively by developing embedding theorems for

compact invariant sets associated with C1 maps on Hilbert spaces.

Examples of such discrete-time dynamical systems include time-T maps and

Poincaré return maps generated by the solution semigroups of evolution partial dif-

ferential equations.

We make every effort to place hypotheses on the projected dynamics rather than

on the underlying infinite-dimensional dynamical system.

In so doing, we adopt an empirical approach and formulate checkable conditions

under which a Lyapunov exponent computed from experimental data will be a Lya-

punov exponent of the infinite-dimensional dynamical system under study (provided

the nonlinear projection map producing the data is typical in the sense of prevalence).
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CHAPTER 2

Ranges of K-theoretic Invariants for Nonsimple Graph Algebras

2.1 Introduction

The following paper was published in Transactions of the American Mathematical

Society in 2016 [18]. The authors of this work are Søren Eilers, Takeshi Katsura,

Mark Tomforde, and myself.

In any classification program for a given class of mathematical objects there are

three goals one wishes to accomplish:
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2.1. INTRODUCTION

1. Associate an invariant to each object in the class in such a way that the invari-

ant completely classifies objects in the class up to some notion of equivalence.

2. Describe a tractable method to compute the invariant for a given object.

3. Determine the range of the invariant; i.e., identify all invariants that can be

realized from the objects in the class.

In this paper we accomplish goal (3) for certain classes of graph C∗-algebras that are

classified up to stable isomorphism by a six-term exact sequence of abelian groups

in K-theory.

For the class of C∗-algebras classification programs have been very successful in

the past few decades, particularly the classification of C∗-algebras using K-theoretic

data as the invariant. Two classification results were especially groundbreaking and

opened several avenues for further research. The first classification is the seminal

work of Elliott in the 1970’s, where it was shown that the AF-algebras are classified up

to stable isomorphism by their ordered K0-group [24]. Later Effros, Handelman, and

Shen showed that the range of this invariant is the class of all unperforated countable

Riesz groups [17]. The second classification, occurring in the 1990’s, showed that

Kirchberg algebras (i.e., purely infinite, simple, separable, nuclear C∗-algebras) in

the bootstrap class are classified up to stable isomorphism by the pair consisting of

the K0-group and the K1-group [38, 56]. Moreover, it has been shown (cf. [61, 4.3.3])

that the range of this invariant is all pairs (G0, G1) of countable abelian groups.

In recent years more attention has been paid to the classification of nonsimple

C∗-algebras [60, 49, 59], and in this paper we focus on the classification of graph
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2.1. INTRODUCTION

C∗-algebras. It is known that any simple graph C∗-algebra is either an AF-algebra

or a Kirchberg algebra in the bootstrap class, and hence is classified by either El-

liott’s Theorem or the Kirchberg-Phillips Classification. In particular, for a simple

graph C∗-algebra the pair (K0(C
∗(E)), K1(C

∗(E))) is a complete stable isomorphism

invariant, where we view K0(C
∗(E)) as a pre-ordered group.

A calculation for the K-theory without order was determined by Raeburn and

Szymański [58, Theorem 3.2] and by Drinen and the third author [16, Theorem 3.1],

and it is a consequence of these results that the K1-group of a graph C∗-algebra must

be a free abelian group. The order of the K0-group was completely determined in

[1] and [68]. The range of this invariant for simple graph C∗-algebras was calculated

in independent work of Drinen and Szymański. Drinen showed that any AF-algebra

is stably isomorphic to a graph C∗-algebra of a row-finite graph, and it follows

from this that all simple Riesz groups are attained as the K0-group of a simple AF

graph C∗-algebra. Szymański [66] proved that for simple graph C∗-algebras that

are Kirchberg algebras, all pairs of countable abelian groups (G0, G1) with G1 free

abelian may be attained, and moreover for any such pair one may choose a graph

C∗-algebra associated with a graph that is row-finite, transitive, and has a countably

infinite number of vertices.

In classification efforts for the nonsimple graph C∗-algebras, the first and third

author have shown that if C∗(E) is a graph C∗-algebra with a unique nontrivial ideal
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2.1. INTRODUCTION

I, then the six-term exact sequence in K-theory

K0(I)
ι∗ // K0(C

∗(E))
π∗ // K0(C

∗(E)/I)

∂0
��

K1(C
∗(E)/I)

∂1

OO

K1(C
∗(E))π∗

oo K1(I)ι∗
oo

is a complete stable isomorphism invariant [23, Theorem 4.5]. Additionally, it was

shown in [23, Theorem 4.7] that this six-term exact sequence is also a complete stable

isomorphism invariant in the case when I is a largest ideal in the graph C∗-algebra

and I is an AF-algebra. More recently [20], the first author, Restorff, and Ruiz

have shown that the six-term exact sequence is also a complete stable isomorphism

invariant in the case when I is a smallest ideal in the graph C∗-algebra C∗(E), and

C∗(E)/I is an AF-algebra. Thus there are several classes of graph C∗-algebras for

which the six-term exact sequence arises as a complete stable isomorphism invariant.

Consequently, these results accomplish goal (1) for several classes of nonsimple graph

C∗-algebras, and even more results have been announced recently. With regards to

goal (2), the computation of the invariant, it was shown by the first author, Carlsen,

and the third author that the six-term exact sequence can be calculated from data

provided by the vertex matrix of the graph [11, Theorem 4.1].

In this paper we turn our attention to goal (3) of classification: computing the

range of the six-term exact sequence. Following [28] (cf. [21]) we focus our attention

to stenotic extensions given by an ideal I that contains, or is contained in, any

other ideal of the C∗-algebra C∗(E) in question. We note that the classification

results mentioned above cover all such extensions where ideal and quotient are either

AF or simple. Basic results regarding the K-theory of extensions given by graph
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2.1. INTRODUCTION

C∗-algebras lead to the conditions that the K1-groups must be free abelian groups,

that the connecting map from K0(C
∗(E)/I) to K1(I) must vanish, and when the

extensions are stenotic with ideals and quotients that are either AF or simple we

obtain certain further restrictions on the order of K0(C
∗(E)). We prove that these

are the only restrictions, and combine our results with classification results to obtain

the first permanence results for graph C∗-algebras, which allow us to determine from

inspection of the K-theory when a given stable extension of AF or simple graph

C∗-algebras is itself a graph C∗-algebra. As far as we can tell, this result is the first

of its kind, even when restricted to the classical case of Cuntz-Krieger algebras where

the necessary classification theory has been available since the work of [19, 30, 31].

We also provide complete results on the case when C∗(E) is unital, determining the

possible position of the order unit of K0(C
∗(E)) in this case.

This paper is organized as follows. In Section 2.2 we establish some preliminaries

and explain a key observation for our main results, namely, that for a graph C∗-

algebra the six-term exact sequence from K-theory may be obtained by applying the

Snake Lemma to a certain commutative diagram determined by the vertex matrix

of the graph. In Section 2.3 we obtain some range results for the K-theory of simple

graph C∗-algebras and AF graph C∗-algebras. In particular, we prove that there exist

graph C∗-algebras from various classes (e.g., stable Kirchberg algebras, AF-algebras,

simple Cuntz-Krieger algebras, unital Kirchberg algebras) that realize various K0-

groups and K1-groups. We also need a slightly stronger version of Szymański’s

Theorem [66, Theorem 1.2]. We are able to give a new, shorter proof of Szymański’s

Theorem (see Theorem 2.3.3) that allows us to choose a graph with the additional
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2.1. INTRODUCTION

properties that we need. In Section 2.4 we establish the main technical results of

our paper. We prove a homological algebra result in Proposition 2.4.3 that allows

us to produce various six-term exact sequences using the Snake Lemma and develop

methods to arrange for positivity of the block matrices found there. Recasting our

findings in the context of graphs in Section 2.5, we provide sufficient conditions on

a pair of graphs E1, E3 with K-theory fitting in a given six-term exact sequence to

ensure in Proposition 2.5.5 that a new graph E2 may be created in a way realizing

the given K-theory. This new graph is formed by taking the disjoint union of E1

and E3, and then drawing a number of edges from vertices in E3 to vertices in

E1 as determined by Proposition 2.4.3. We also analyze the pre-order on the K0-

group of a graph C∗-algebra in terms of the pre-order on the K0-groups of an ideal

and its quotient. In Section 2.6 we present the main results of this paper. We

apply all of our results to calculate the range of the six-term exact sequence in K-

theory for various classes of graph C∗-algebras. We show that for graph C∗-algebras

with a unique nontrivial ideal we are able to attain any six-term exact sequence

satisfying the obvious obstructions mentioned earlier. We also determine exactly

which six-term exact sequences are obtained in various other classes, including Cuntz-

Krieger algebras with a unique nontrivial ideal, graph C∗-algebra extensions of unital

Kirchberg algebras, graph C∗-algebras with a largest ideal that is AF, and graph C∗-

algebras with a smallest ideal whose quotient is AF. In all these cases, the proof

is obtained by using results from Section 2.3 to obtain graphs whose C∗-algebras

realize portions of the six-term exact sequence, and then using Proposition 2.5.5 to

splice these graphs together into a larger graph whose C∗-algebra has the required

8



2.2. PRELIMINARIES

invariant. Finally, in Section 2.7 we show how to obtain permanence results from

our results, giving a complete description in several cases of when an extension of

two graph C∗-algebras is again a graph C∗-algebra.

The authors wish to thank Mike Boyle for inspiring discussions in the early phases

of this work, and the authors would also like to thank Efren Ruiz for suggesting

improvements in the later phases.

2.2 Preliminaries

For a countable set X, we let ZX denote the free abelian group generated by the basis

{δx}x∈X indexed by X. For n ∈ N, we denote Z{1,2,...,n} by Zn which is the direct

sum of n copies of Z, and denote ZN by Z∞, which is the direct sum of countably

infinite copies of Z.

For two countable sets X and Y , a column-finite Y ×X matrix with entries in Z

is A = (ay,x)(y,x)∈Y×X with ay,x ∈ Z such that for each x ∈ X there are only finitely

many y with ay,x 6= 0. The collection of all such matrices is denoted by MY,X(Z). If

X = Y , we denote MX,X(Z) by MX(Z). As above, we use notations like Mm,n(Z)

for m,n ∈ {1, 2, . . . ,∞} which is the collection of all column-finite m × n matrices

with entries in Z.

Suppose X and Y are countable sets, and that A = (ay,x)(y,x)∈Y×X and B =

(by,x)(y,x)∈Y×X are matrices with ay,x ∈ Z and by,x ∈ Z for all x ∈ X and for all

y ∈ Y . We write A ≤ B (respectively, A < B) to mean ay,x ≤ by,x (respectively,

9



2.2. PRELIMINARIES

ay,x < by,x) for all x ∈ X and for all y ∈ Y . In this case, we say B dominates A

(respectively, B strictly dominates A) or that A is subordinate to B (respectively, A

is strictly subordinate to B).

For two countable sets X and Y , there is a one-to-one correspondence between

elements of MY,X(Z) and Z-module maps from ZX to ZY : Each matrix A = (ay,x) in

MY,X(Z) corresponds to a Z-module map φ from ZX to ZY by φ(δx) =
∑

y∈Y ay,xδy

which makes sense by the column-finite condition. When we have a matrix A we

will often identify the matrix itself with the corresponding Z-module map, using the

notation A for both, and for ξ ∈ ZX we will often write Aξ in place of A(ξ). If X is

a subset of Y , we denote by I ∈ MY,X(Z) the map defined by I(δx) = δx for every

x ∈ X, and by P ∈ MX,Y (Z) the map defined by P (δx) = δx for every x ∈ X and

P (δy) = 0 for every y ∈ Y \X.

We note that the trivial abelian group {0} is denoted by 0, and the unique Z-

module map from or to 0 is also denoted by 0. We have Z∅ = Z0 = 0 and for a

countable set X the X×∅ matrix and the ∅×X matrix corresponding to the unique

Z-module maps 0 are denoted by ∅. Thus M∅,X(Z) = {∅} and MX,∅(Z) = {∅} by

definition.

2.2.1 Extension and K-theory preliminaries

In this paper, an ideal of a C∗-algebra will mean a closed two-sided ideal. Every

nonzero C∗-algebra A has at least two ideals, 0 and A, which are called trivial ideals.

A nontrivial ideal is an ideal that is nonzero and proper, and a simple C∗-algebra
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2.2. PRELIMINARIES

has no nontrivial ideals).

Definition 2.2.1. An ideal I of A is said to be a smallest ideal (respectively, a largest

ideal) if I is nontrivial and whenever J is a nontrivial ideal of A, we have I ⊆ J

(respectively, J ⊆ I). An ideal I of A is called stenotic if for any ideal J , either

J ⊆ I or I ⊆ J .

The notion of stenosis was introduced to C∗-algebras in [28]. Obviously any

smallest or largest ideal is stenotic. Note that if I is a smallest (respectively, largest)

ideal then I (respectively, A/I) is simple, but the converses are not true in general.

A C∗-algebra A need not have a smallest ideal nor a largest ideal, but if it does, it

will be unique. The uniqueness shows the following easy but useful observation.

Lemma 2.2.2. Let A and A′ be C∗-algebras. Suppose both A and A′ have smallest

(or largest) ideals I and I ′. Then A and A′ are isomorphic if and only if there exists

a commutative diagram

0 // I //

��

A //

��

A/I //

��

0

0 // I ′ // A′ // A′/I ′ // 0

in which the three vertical maps are isomorphisms.

If a C∗-algebra A has a unique nontrivial ideal I, then I is smallest and largest

(conversely a smallest and largest ideal is a unique nontrivial ideal). Thus we have

an analogous result for C∗-algebras having unique nontrivial ideals.

One advantage of Lemma 2.2.2 is that a short exact sequence gives us a powerful

11



2.2. PRELIMINARIES

invariant. From a short exact sequence

0 // I ι // A π // A/I // 0

of C∗-algebras, K-theory gives a cyclic six-term exact sequence

K0(I)
ι∗ // K0(A)

π∗ // K0(A/I)

∂0
��

K1(A/I)

∂1

OO

K1(A)π∗
oo K1(I)ι∗

oo

(2.1)

of abelian groups. For convenience of notation, we let Ksix(A, I) denote this cyclic

six-term exact sequence of abelian groups.

If we have a cyclic six-term exact sequence E of the form

G1
ε // G2

γ
// G3

δ0
��

F3

δ1

OO

F2
γ′
oo F1

ε′oo

(2.2)

of abelian groups, then we say that Ksix(A, I) is isomorphic to E if there exist

isomorphisms αi, βi for i = 1, 2, 3 making

K0(I)
ι∗ //

α1
$$

K0(A)
π∗ //

α2

��

K0(A/I)

∂0

��

α3
zz

G1
ε // G2

γ
// G3

δ0
��

F3

δ1

OO

F2
γ′

oo F1
ε′oo

K1(A/I)

∂1

OO

β3
::

K1(A)
π∗oo

β2

OO

K1(I)
ι∗oo

β1
dd

(2.3)

commute. We see from Lemma 2.2.2 and functoriality of K-theory that when two

isomorphic C∗-algebras with smallest or largest ideals are given, the associated cyclic

six-term exact sequences are isomorphic.

12



2.2. PRELIMINARIES

2.2.2 Ordered K-theory preliminaries

Lemma 2.2.2 shows that Ksix(A, I) is an invariant of a C∗-algebra A in the case the

ideal I is either smallest or largest (or both). However to get a finer invariant we

need to consider a pre-order on K0-groups.

A pre-ordered abelian group is a pair (G,G+), where G is an abelian group and

G+ is a subset of G satisfying G+ + G+ ⊆ G+ and 0 ∈ G+. For x, y ∈ G we write

x ≤ y to mean y − x ∈ G+. A group homomorphism h : G1 → G2 between pre-

ordered abelian groups is called an order homomorphism if h(G+
1 ) ⊆ G+

2 . If h is also

a group isomorphism with h(G+
1 ) = G+

2 , then we call h an order isomorphism.

If A is a C∗-algebra, then K0(A) is a pre-ordered abelian group with K0(A)+ :=

{[p]0 : p ∈ M∞(A)}. If A contains an approximate unit consisting of projections

(which is the case for a graph C∗-algebra), then K0(A)+−K0(A)+ = K0(A) (see [7,

Proposition 5.5.5]).

For a C∗-algebra A and its ideal I, we let K+
six(A, I) denote the same sequence

as (2.1) but the three K0-groups are considered as pre-ordered abelian groups. If we

have a cyclic six-term exact sequence E+ of the same form as (2.2) but G1, G2, and

G3 are pre-ordered abelian groups, then we say that K+
six(A, I) is order isomorphic

to E+ if αi is an order isomorphism of pre-ordered groups for i = 1, 2, 3.

A Riesz group is an ordered abelian group G that is unperforated (i.e., if g ∈ G,

n ∈ N, and ng ∈ G+ then g ∈ G+) and has the Riesz interpolation property (i.e., for

all g1, g2, h1, h2 ∈ G with gi ≤ hj for i, j = 1, 2 there is an element z ∈ G such that

gi ≤ z ≤ hj for i, j = 1, 2). If A is an AF-algebra, then K0(A) is a countable Riesz

13
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group. Moreover, there is a lattice bijection between the ideals of A and the ideals

of K0(A) given by I 7→ ι∗(K0(I)), where ι : I → A is the inclusion map. If G is an

ordered abelian group, then an ideal in G is a subgroup H of G with H+ = H ∩G+,

H = H+ − H+, and whenever x, y ∈ G with 0 ≤ x ≤ y and y ∈ H+, then x ∈ H.

An ordered abelian group is simple if it has no nontrivial ideals.

A pre-ordered abelian group G is called trivially pre-ordered if G+ = G. If A

is a simple purely infinite C∗-algebra, then K0(A) is trivially pre-ordered (see [62,

Exercise 4.6 and Exercise 5.7]).

2.2.3 Graph and graph C∗-algebra preliminaries

A (directed) graph E = (E0, E1, r, s) consists of a countable set E0 of vertices, a

countable set E1 of edges, and maps r, s : E1 → E0 identifying the range and source

of each edge. A vertex v ∈ E0 is called a sink if |s−1(v)| = 0, and v is called an

infinite emitter if |s−1(v)| = ∞. A graph E is said to be row-finite if it has no

infinite emitters. If v is either a sink or an infinite emitter, then we call v a singular

vertex. We write E0
sing for the set of singular vertices. Vertices that are not singular

vertices are called regular vertices and we write E0
reg for the set of regular vertices.

A cycle is a sequence of edges α = α1α2 . . . αn with r(αi) = s(αi+1) for 1 ≤ i < n

and r(αn) = s(α1). We call the vertex r(αn) = s(α1) the base point of the cycle α.

A loop is a cycle of length 1.

If E is a graph, a Cuntz-Krieger E-family is a set of mutually orthogonal pro-

jections {pv : v ∈ E0} and a set of partial isometries {se : e ∈ E1} with orthogonal

14
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ranges which satisfy the Cuntz-Krieger relations :

1. s∗ese = pr(e) for every e ∈ E1;

2. ses
∗
e ≤ ps(e) for every e ∈ E1;

3. pv =
∑

s(e)=v ses
∗
e for every v ∈ E0 that is not a singular vertex.

The graph C∗-algebra C∗(E) is defined to be the C∗-algebra generated by a universal

Cuntz-Krieger E-family. The graph C∗-algebra is unital if and only if E0 is a finite

set in which case 1C∗(E) =
∑

v∈E0 pv.

For any graph E, the regular vertex matrix is the E0 × E0
reg matrix RE with

RE(v, w) := |{e ∈ E1 : r(e) = v and s(e) = w}|.

Since w ∈ E0
reg, all entries of RE are finite, and RE is column-finite. Hence we get

RE ∈ ME0,E0
reg

(Z). We note that by the definition of regular vertices each column

contains at least one nonzero entry. If E has no regular vertices then RE = ∅ ∈

ME0,∅(Z). Recall that I ∈ME0,E0
reg

(Z) is defined by I(δv) = δv for v ∈ E0
reg.

Proposition 2.2.3 ([58, Theorem 3.2], [16, Theorem 3.1]). Let E be a graph. Then

we have

K0(C
∗(E)) ∼= coker(RE − I) and K1(C

∗(E)) ∼= ker(RE − I).

From this proposition, we see that K0(C
∗(E)) and K1(C

∗(E)) are countable

abelian groups, and in addition, K1(C
∗(E)) is a free abelian group because any

subgroup of a free abelian group is free. We also have

rankK0(C
∗(E)) + |E0

reg| = rankK1(C
∗(E)) + |E0|. (2.4)

15
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Let E be a graph. A subset H ⊆ E0 is hereditary if whenever e ∈ E1 and

s(e) ∈ H, then r(e) ∈ H. A hereditary subset H is saturated if whenever v ∈ E0
reg

with r(s−1(v)) ⊆ H, then v ∈ H. For a hereditary subset H, we can define two

graphs E1 and E3 by

E1 = (H, s−1(H), r, s), E3 = (E0 \H,E1 \ r−1(H), r, s) (2.5)

where r and s are restrictions of those for E. The set H is saturated if and only if we

have (E3)
0
reg ⊇ E0

reg\H. If a saturated hereditary subset H satisfies (E3)
0
reg = E0

reg\H

then we say that H has no breaking vertices. Note that if E is row-finite, then every

saturated hereditary subset has no breaking vertices.

For a saturated hereditary subset H, we denote by IH the ideal of C∗(E) gener-

ated by {pv : v ∈ H}.

Proposition 2.2.4. Let E = (E0, E1, r, s) be a graph, and let H be a saturated

hereditary subset of E0 such that H has no breaking vertices. Let E1 and E3 be the

two graphs as in (2.5) for H. Then we have the following:

1. There is a natural embedding from C∗(E1) onto a full corner of IH .

2. We have C∗(E)/IH ∼= C∗(E3).

3. We have E0 = E0
1 t E0

3 and E0
reg = (E1)

0
reg t (E3)

0
reg.

4. There exists a row-finite matrix X ∈ ME0
1 ,(E3)0reg

(Z+) such that under the de-

composition in (3), we get RE =
(
RE1

X

0 RE3

)
.

16
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5. Ksix(C
∗(E), IH) is isomorphic to

coker(RE1 − I) // coker
(
RE1
−I X

0 RE3
−I

)
// coker(RE3 − I)

0

��

ker(RE3 − I)

[X]

OO

ker
(
RE1
−I X

0 RE3
−I

)
oo ker(RE1 − I)oo

where the horizontal maps are the obvious inclusions or projections, and [X] is

the map implemented by multiplication by X.

Proof. Statements (1) and (2) are standard (see [11]). It is straightforward to check

(3) and (4). Finally (5) follows from [11, Remark 4.2] and [11, Theorem 1].

Remark 2.2.5. One can show that the sequence (5) above is nothing but the long

exact sequence obtained by applying the Snake Lemma from homological algebra

(see [47]) to the commutative diagram

0 // Z(E1)0reg //

RE1
−I
��

ZE0
reg //

RE−I
��

Z(E3)0reg //

RE3
−I
��

0

0 // ZE0
1 // ZE0

// ZE0
3 // 0

with exact rows. See Proposition 2.4.1.

Remark 2.2.6. For a graph E and a gauge-invariant ideal I of C∗(E), there is a

computation of Ksix(C
∗(E), I) in [11, 4.1] similar to (5) of Proposition 2.2.4. In

particular, the index map from K0(C
∗(E)/I) to K1(I) is always 0 in this case.

Remark 2.2.7. If C∗(E) has a unique nontrivial ideal I, then I = IH for a saturated

hereditary subset H of E0 such that H has no breaking vertices [23, Lemma 3.1].
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2.3 K-groups of AF graph C∗-algebras and simple

graph C∗-algebras

It has been shown by the work of many hands that K-theoretic invariants completely

classify, up to stable isomorphism, the class of AF graph C∗-algebras and the class

of simple graph C∗-algebras. The range of the invariants has also been computed.

We review and reprove some of these results in this section to get sharper results

regarding realization of graphs.

The following is a refined realization of AF graph C∗-algebras.

Proposition 2.3.1. If (G,G+) is a countable Riesz group, then there exists a row-

finite graph E such that

(1) E has no sinks, no sources, and a countably infinite number of vertices,

(2) E has no cycles (so that, in particular, C∗(E) is an AF-algebra),

(3) (K0(C
∗(E)), K0(C

∗(E))+) ∼= (G,G+), and

(4) C∗(E) is stable

Proof. By the Effros-Handelman-Shen Theorem [17], there exists an AF-algebra A

whose K0-group is order isomorphic to (G,G+). By Drinen’s Theorem [14, Theo-

rem 1] there exists a row-finite graph F such that F has no cycles and C∗(F ) is

stably isomorphic to A. Let E be the graph obtained by adding a tail (cf. [15]) to

every sink of F and a head to every source of F (cf. [15]). Then E has no sinks or
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sources, E has a countably infinite number of vertices, E has no cycles, and C∗(E)

is isomorphic to C∗(F )⊗K so that (K0(C
∗(E)), K0(C

∗(E))+) ∼= (G,G+).

We next consider simple graph C∗-algebras. The “Dichotomy for simple graph

C∗-algebras” [15, Remark 2.16] states that any simple graph C∗-algebra C∗(E) is

either purely infinite (if E contains a cycle) or AF (if E contains no cycles). Conse-

quently, the Kirchberg-Phillips Classification Theorem and Elliott’s Theorem imply

that any simple graph C∗-algebra is classified up to stable isomorphism by the pair

(K0(C
∗(E)), K1(C

∗(E))), where we consider K0(C
∗(E)) as a pre-ordered abelian

group. If C∗(E) is purely infinite, then K0(C
∗(E)) is trivially pre-ordered; i.e.

K0(C
∗(E))+ = K0(C

∗(E)). If C∗(E) is AF, then K0(C
∗(E)) is an ordered group

(in fact, a Riesz group) and K0(C
∗(E))+ is a proper subset of K0(C

∗(E)). Thus the

ordering on the K0-group can distinguish whether the simple graph C∗-algebra is

purely infinite or AF. We have already seen in Proposition 2.3.1 that all simple Riesz

groups are realized as the K0-group of an AF graph C∗-algebra (and, moreover, that

the graph may be chosen to have certain properties). Since an AF-algebra whose

K0-group is a simple Riesz group is simple, AF graph C∗-algebras given in Propo-

sition 2.3.1 for simple Riesz groups are necessarily simple. So in order to complete

the description of the range of K-theoretic invariants for simple graph C∗-algebras,

we only need to consider simple purely infinite graph C∗-algebras. We know that

the pre-order of the K0-group has to be trivial. We also know that the K1-group

has to be free by Proposition 2.2.3. Szymański proved that these are the only re-

strictions on the K-groups, and we prove a sharper version of his result below (see

Proposition 2.3.3) that gives us extra control of the choice of a graph.
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Lemma 2.3.2. Let G be a countable abelian group and let F be a countable free

abelian group. Then there exists an exact sequence

0 // F ι // Z∞ φ
// Z∞ π // G // 0.

Proof. Let X be a generating set for G, which must be countable since G is countable.

Let F(X) be the free abelian group generated by X. Then F(X) ∼= Zm, where

m = |X|, and by the universal property of free abelian groups there exists a surjective

homomorphism π0 : Zm → G. Define π : Z∞ ⊕ Zm → G by π(x, y) := π0(y).

Since ker π is a subgroup of a countable free abelian group, kerπ is a countable

free abelian group. Moreover, since Z∞ ⊕ 0 ⊆ kerπ, it follows that there is an

isomorphism ψ : Z∞ → kerπ. In addition, since F is a countable free abelian group

there exists an isomorphism i0 : F → Zn for some n ∈ {0, 1, 2, . . . ,∞}. Define

φ : Z∞ ⊕ Zn → Z∞ ⊕ Zm by φ(x, y) = ψ(x), and define i : F → Z∞ ⊕ Zn by

i(x) := (0, i0(x)). One can verify that

0 // F
i // Z∞ ⊕ Zn φ

// Z∞ ⊕ Zm π // G // 0

is exact. Since Z∞ ⊕ Zn ∼= Z∞ and Z∞ ⊕ Zm ∼= Z∞, the result follows.

Proposition 2.3.3 (Szymański’s Theorem). Let G be a countable abelian group and

let F be a countable free abelian group. Then there exists a row-finite graph E with

countably infinite E0 that satisfies the following properties:

(1) Every vertex in E is the base point of at least two loops,

(2) E is transitive (so that, in particular, C∗(E) is simple and purely infinite),
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(3) K0(C
∗(E)) ∼= G and K1(C

∗(E)) ∼= F , and

(4) C∗(E) is stable.

Proof. By Lemma 2.3.2 there exists a group homomorphism φ : Z∞ → Z∞ with

cokerφ ∼= G and kerφ ∼= F . Let A0 ∈ M∞(Z) be the matrix representation of

φ. Then A0 is a column-finite matrix. Define |A0| ∈ M∞(Z) to be the entry-wise

absolute value of A0; i.e., |A0|(i, j) := |A0(i, j)|. Also define

A1 := |A0|+



1 1 0 0 · · ·

1 1 1 0 · · ·

0 1 1 1

0 0 1 1

...
...

. . .


.

Let I denote the identity matrix in M∞(Z), and define

A :=

A0 + A1 + I A1

I 2I

 .

We observe that A is a column finite square matrix with non-negative entries, and

also observe that the diagonal is everywhere greater or equal to 2. Hence we can

find a graph E with no singular vertices such that RE = A. Since A is indexed by

a countably infinite set, the set E0 of vertices is countable and infinite. Since every

vertex in E is regular, E is row-finite. In addition, the fact that every diagonal entry

of A is two or larger shows that every vertex in E is the base point of at least two

loops. Furthermore, one can see from the definition of A that E is transitive. Finally,
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we have

A− I =

A0 + A1 A1

I I

 =

I A1

0 I


A0 0

0 I


I 0

I I

 .

Since the matrices
(
I A1
0 I

)
and ( I 0

I I ) are invertible (with the inverses
(
I −A1
0 I

)
and(

I 0
−I I

)
), A− I has a kernel and cokernel which is isomorphic to those of the matrix(

A0 0
0 I

)
, and hence to those of A0. Thus

K0(C
∗(E)) ∼= coker(A− I) ∼= cokerA0

∼= G

and

K1(C
∗(E)) ∼= ker(A− I) ∼= kerA0

∼= F.

Finally, since C∗(E) is a nonunital Kirchberg algebra, it is stable by [72].

Remark 2.3.4. Proposition 2.3.3, together with Lemma 2.3.2, gives a shorter proof

of Szymański’s Theorem [66, Theorem 1.2] with the added conclusion (1).

The following proposition summarizes the arguments above.

Proposition 2.3.5. The class of graph C∗-algebras that are either AF or simple is

classified up to stable isomorphism by K0-groups as pre-ordered abelian groups and

K1-groups as abelian groups. A pair (G,F ) of a countable pre-ordered abelian group

G and a countable abelian group F is in the range of invariants in this class if and

only if either

• G is a Riesz group and F = 0, or

• G is trivially preordered and F is free.
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Moreover, one can realize the above invariants by a stable graph C∗-algebra C∗(E)

for a row-finite graph E with no sinks and no sources.

In order to get a finer invariant for the classification up to isomorphism, one

needs to consider scales of K0-groups in the AF case, and positions of units in K0-

groups in unital simple purely infinite case. With this extra data, one can classify,

up to isomorphism, all graph C∗-algebras that are either AF or simple. However, the

computation of the range of this finer invariant is not as straightforward as above. In

fact, the (nonunital, but nonstable) case of AF graph C∗-algebras is very complicated

(see [37]). For the nonunital simple purely infinite case, K0-groups and K1-groups

are already a complete invariant up to isomorphism since they are stable. In what

follows, we complete the computation of the range of the invariant for the unital

simple purely infinite case.

For a unital simple purely infinite C∗-algebra A, the extra information we need

for classification up to isomorphism is the element [1A]0 ∈ K0(A) defined by the unit

1A of A. For a group G and an element g0, we write (K0(A), [1A]0) ∼= (G, g0) if there

exists an isomorphism from K0(A) to G sending [1A]0 to g0.

Recall that a graph C∗-algebra C∗(E) is unital if and only if the set E0 of ver-

tices is finite, and in this case the unit 1C∗(E) is
∑

v∈E0 pv. Under the isomorphism

K0(C
∗(E)) ∼= coker(RE − I) in Proposition 2.2.3 the element [1C∗(E)]0 corresponds

to the equivalence class [1] where 1 :=
∑

v∈E0 δv ∈ ZE0
is the vector all of whose

entries are 1.

Note that if E0 is finite, then Proposition 2.2.3 and (2.4) shows that the two
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groups G := K0(C
∗(E)) and F := K1(C

∗(E)) satisfy

• G is a finitely generated abelian group,

• F is a finitely generated free abelian group with rankF ≤ rankG.

The following proposition shows that these are the only restrictions for the K-groups,

and there is no restriction on the position of [1C∗(E)] in K0(C
∗(E)). In this case, as

opposed to what we saw above, not every vertex may be chosen regular.

Proposition 2.3.6. Let G be a finitely generated abelian group, and let F be a free

abelian group with rankF ≤ rankG. Let g0 be an element of G.

Then there exists a graph E with finite E0 that satisfies (1)–(2) of Proposi-

tion 2.3.3 as well as

(3’) (K0(C
∗(E)), [1C∗(E)]0) ∼= (G, g0) and K1(C

∗(E)) ∼= F .

Proof. By the fundamental theorem of finitely generated abelian groups, there exist

unique integers k, n ≥ 0 and m1,m2, . . . ,mk ≥ 2 with m1 | m2 | · · · | mk such that

G ∼= (Z/m1Z)⊕ (Z/m2Z)⊕ · · · ⊕ (Z/mkZ)⊕ Zn. (2.6)

We can then find a generating set {γi}k+ni=1 of G with the relations miγi = 0 for

i = 1, . . . , k. There exist integers (ai)
k+n
i=1 such that g0 =

∑k+n
i=1 aiγi. By subtracting

mi from ai for i ≤ k many times and replacing γi with −γi for i > k if necessary, we

may assume that ai ≤ 0 for all i. Let n′ = rankF , which is at most rankG = n by

the assumption.
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We denote the bases of Z1+k+n and Z1+k+n′ by {δi}k+ni=0 and {δi}k+n
′

i=0 (the indices

have been shifted compared to the convention in Section 2.2). We define a surjective

map π0 : Z1+k+n → G by π0(δ0) = 0 and π0(δi) = γi for i = 1, 2, . . . , k + n, and we

define A0 ∈ M1+k+n,1+k+n′(Z) by A0(δ0) = δ0, A0(δi) = miδi, for i = 1, . . . , k and

A0(δi) = 0 for i = k + 1, . . . , k + n′. Then we have imA0 = kerπ0. In matrix form,

we have

A0 =


1
m1

m2

...
mk

0
...

 .

We set bi = 1 − ai ≥ 1 for i = 1, 2, . . . , k + n. Consider two square matrices

P ∈M1+k+n,1+k+n(Z) and Q ∈M1+k+n′,1+k+n′(Z) by

P =


1
b1 1
b2 1
...

...
bk 1

...
...

bk+n 1

 , Q =


1 1 ··· 1 ··· 1
1

...
1

...
1

 .

Note that P and Q are invertible. We set A ∈M1+k+n,1+k+n′(Z) by

A = PA0Q =



1 1 1 . . . 1 . . . 1

b1 b1 +m1 b1 . . . b1 . . . b1

b2 b2 b2 +m2 b2 . . . b2
...

...
. . .

...

bk bk bk bk +mk
... bk

...
...

... · · · ...

bk+n bk+n bk+n · · · bk+n · · · bk+n



.

Since bi ≥ 1 and mi ≥ 2, all entries of A are positive. We define π : Z1+k+n → G by
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π = π0 ◦ P−1. Then π is a surjection satisfying

kerπ = P (kerπ0) = P (imA0) = im(PA0) = imA,

and hence π induces an isomorphism

π̄ : cokerA 3 [x] 7→ π(x) ∈ G,

and therefore kerA is a free abelian group whose rank is n+(1+k+n′)−(1+k+n) =

n′.

We set 1 =
∑k+n

i=0 δi ∈ Z1+k+n. We are going to show π̄([1]) = g0. Since bi+ai = 1

for i = 1, 2, . . . , k + n, we have

P
(
δ0 +

k+n∑
i=1

aiδi

)
=

k+n∑
i=0

δi = 1,



1

b1 1

...
. . .

bk+n 1





1

a1
...

ak+n


=



1

1

...

1


.

Hence we have

π̄([1]) = π(1) = π0(P
−1(1)) = π0

(
δ0 +

k+n∑
i=1

aiδi

)
=

k+n∑
i=1

aiγi = g0.

Let E be the graph such that

• E0 = {0, 1, . . . , k + n},

• there are infinitely many edges from i ∈ E0 with k + n′ < i ≤ k + n to every

vertex, and

• 0, 1, . . . , k + n′ are regular, and the regular vertex matrix RE of E is A+ I.
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Then E is a graph with 1 + k + n vertices, each vertex is the base point of at

least two loops, and E is transitive. The computation of K-theory follows from

Proposition 2.2.3 and the first part of this proof.

Remark 2.3.7. LetG, F , and g0 ∈ G be as in Proposition 2.3.6, and let k, n,m1, . . . ,mk

be as in (2.6). Below we will show that if a graph E satisfies the condition (3’) in

Proposition 2.3.6 then the number |E0| of vertices of E is at least k + n. We also

show that in many cases including the case that G and F are arbitrary, but g0 = 0,

it is necessary that |E0| is strictly greater than k+ n. Thus the number 1 + k+ n of

vertices of the graph E in the proof above is the smallest possible in these cases.

Observe that if E satisfies condition (3) then we have a surjective map ZE0 → G

sending 1 to g0. Choose a prime number p with p | m1. Tensoring with Z/pZ, we

get a surjective map

(Z/pZ)E
0 ∼= ZE0 ⊗ (Z/pZ)→ G⊗ (Z/pZ) ∼= (Z/pZ)k+n.

This shows that |E0| ≥ k + n. Since 1 ⊗ 1 is a nonzero element of (Z/pZ)E
0
, if

g0 ⊗ 1 ∈ G⊗ (Z/pZ) is zero, then the above surjection is not injective. Thus in this

case we have |E0| > k + n.

We also note that for arbitrary G and F , there exists g0 ∈ G such that we can

find a graph E satisfying the condition (3) with |E0| = k + n. However, in the case

G is free and F 6= 0, or in the case G = F = 0, there exists no such E with C∗(E) is

simple. Thus for such G and F and for arbitrary g0 ∈ G, the graph E constructed in

the proof of Proposition 2.3.6 has the smallest possible number of vertices, namely

|E0| = 1 + k + n, such that C∗(E) is simple and satisfies condition (3’). For a pair
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(G,F ) other than the ones mentioned above, there exists some g0 ∈ G (necessarily

nonzero) such that we can find a graph E with |E0| = k+n satisfying conditions (1)

and (2) of Proposition 2.3.5 and condition (3’) of Proposition 2.3.6.

We need the next small variation of Proposition 2.3.6 in order to control the unit

in the extension. As explained in Remark 2.3.7, if G,F and g0 ∈ G satisfies either

g0 = 0 or G is free (and F is nonzero) then a graph E as in Proposition 2.3.6 has at

least 1 + k + n vertices. If G satisfies both of the two conditions, then we need one

more vertex to get the next result.

Proposition 2.3.8. Let G, F , and g0 ∈ G be as in Proposition 2.3.6. Then there

exists a graph E with a finite number of vertices and with E satisfying conditions (1)

and (2) of Proposition 2.3.5 and condition (3’) of Proposition 2.3.6, as well as

(4) there exist two vertices v, w ∈ E0 such that (RE − I)(w, v′) < (RE − I)(v, v′)

for all v′ ∈ E0
reg.

When G is written in the form of (2.6) we may choose the graph E with |E0| =

1 + k + n.

Proof. First consider the case g0 6= 0. In this case we show that the graph E

constructed in the proof of Proposition 2.3.6 satisfies (4). For (ai)
k+n
i=1 as in that

proof, there exists i ∈ {1, 2, . . . , k + n} with ai < 0. Then we have bi ≥ 2. Hence

A(0, j) = 1 < bi ≤ A(i, j) for all j = 0, 1, . . . , k+n′. Since RE − I = A for the graph

E, the vertices v = i and w = 0 satisfy (4).
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Next consider the case G is not free. Then we can choose (ai)
k+n
i=1 in the proof of

Proposition 2.3.6 such that a1 ≤ −m1 < 0. As in the case g0 6= 0, the vertices v = 1

and w = 0 satisfy (4).

Finally suppose g0 = 0 and G is free. Let n and n′ be the ranks of G and F

respectively. We define a (n+ 2)× (n′ + 2) matrix A by

A :=



3 2 . . . 2

2 1 . . . 1

2 1 . . . 1

...
... . . .

...

2 1 . . . 1


,

whose image is generated by two elements

1 :=



1

1

1

...

1


= A



1

−1

0
...

0


and



1

0

0

...

0


= A



−1

2

0
...

0


.

Hence kerA ∼= Zn′ , cokerA ∼= Zn and [1] = 0 in cokerA. We define a graph E so

that

• E0 = {1, 2, . . . , n+ 2},

• there are infinitely many edges from i ∈ E0 with n′ + 2 < i ≤ n + 2 to every

vertex,
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• 1, 2, . . . , n′ + 2 are regular, and the regular vertex matrix RE of E is A+ I.

Then E satisfies conditions (1) and (2) of Proposition 2.3.5 and condition (3’) of

Proposition 2.3.6. Finally, v = 1 and w = 2 satisfy (4).

A Cuntz-Krieger algebra OA is isomorphic to the C∗-algebra of a finite graph

with no sinks or sources. For such a graph E, every vertex is regular. Therefore,

Proposition 2.2.3 and (2.4) shows that the K-groups G = K0(OA) and F = K1(OA)

of a Cuntz-Krieger algebra OA satisfy

• G is a finitely generated abelian group,

• F is a finitely generated free abelian group with rankF = rankG.

The following proposition shows that these are the only restrictions for the K-groups

of simple Cuntz-Krieger algebras, and there is no restriction on the position of [1OA
]0

in K0(OA).

Proposition 2.3.9. Let G be a finitely generated abelian group, and let F be a

finitely generated free abelian group with rankF = rankG. Let g0 be an element of

G. Then there exists a graph E with finite vertex set E0 and finite edge set E1 that

satisfies properties (1)–(4) of Proposition 2.3.8. Moreover, if G is of the form of

(2.6), we may choose E with |E0| = 1 + k + n.

Proof. The graph E constructed in the proof of Proposition 2.3.6 or Proposition 2.3.8

has finitely many edges because the rank n′ of F coincides with the rank n of G.

Hence this graph E has the desired properties.

30



2.4. A METHOD FOR REALIZING SIX-TERM EXACT SEQUENCES

2.4 A method for realizing six-term exact sequences

In Proposition 2.4.3 of this section we prove a result that will allow us to realize a

given six-term exact sequence with four groups already given as kernels and cokernels

of certain matrices A and B of a certain form determined by a block matrix ( A Y
0 B ),

just as in (5) of Proposition 2.2.4. We start by observing that every such sequence

has this form, provided only that the relevant index map vanishes:

Proposition 2.4.1. Suppose A ∈Mn1,n′1
(Z) and B ∈Mn3,n′3

(Z) for some n1, n
′
1, n3, n

′
3 ∈

{0, 1, 2, . . . ,∞}. Then Y 7→ ( A Y
0 B ) is a bijection from Mn′3,n1

(Z) to the set of all ma-

trices X ∈Mn1+n3,n′1+n
′
3
(Z) for which the diagram

0 // Zn′1 I′ //

A

��

Zn′1 ⊕ Zn′3 P ′ //

X
��

Zn′3

B

��

// 0

0 // Zn1

I
// Zn1 ⊕ Zn3

P
// Zn3 // 0

commutes, where I and I ′ are the obvious inclusions x 7→ (x, 0), and P and P ′ are

the obvious projections (x, y) 7→ y.

Moreover, for each Y ∈Mn′3,n1
(Z), the sequence

cokerA
I
// coker ( A Y

0 B )
P
// cokerB // 0

kerB

[Y ]

OO

ker ( A Y
0 B )P ′oo kerAI′oo 0oo

(2.7)

is exact, where we use the same notation I, P , I ′, and P ′ to denote the induced maps

on cokernels or the restricted maps on kernels, and where [Y ] is the composition of

the restriction of Y to kerB and the natural surjection Zn1 → cokerA.

31



2.4. A METHOD FOR REALIZING SIX-TERM EXACT SEQUENCES

Proof. The former assertion is easy to see, and the latter follows from the Snake

Lemma (see [47]).

Lemma 2.4.2. Let n, n′ ∈ {0, 1, 2, . . . ,∞} and A ∈ Mn,n′(Z). Let G be an abelian

group. Then any homomorphism η : kerA → G extends to ζ : Zn′ → G such that

ζ|kerA = η.

Proof. Since imA is a subgroup of the free abelian group Zn, it follows that imA is

free abelian. Therefore, there exists a homomorphism S : imA→ Zn′ such that

A ◦ S(x) = x for all x ∈ imA. (2.8)

Let I : Zn′ → Zn′ denote the identity map on Zn′ . Since I−SA takes values in kerA,

we can define ζ : Zn′ → G by ζ = η ◦ (I − SA). It is easy to verify ζ|kerA = η.

Proposition 2.4.3. Let E denote the following exact sequence of abelian groups

G1
ε // G2

γ
// G3

0
��

F3

δ

OO

F2
γ′
oo F1

ε′oo

(2.9)

with F1, F2, and F3 free. Suppose that there exist column-finite matrices A ∈

Mn1,n′1
(Z) and B ∈ Mn3,n′3

(Z) for some n1, n
′
1, n3, n

′
3 ∈ {0, 1, 2, . . . ,∞} with iso-

morphisms

α1 : cokerA→ G1, β1 : kerA→ F1,

α3 : cokerB → G3, β3 : kerB → F3.

Then there exist a column-finite matrix Y ∈Mn1,n′3
(Z) and isomorphisms

α2 : coker ( A Y
0 B )→ G2, β2 : ker ( A Y

0 B )→ F2
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such that αi and βi for i = 1, 2, 3 give an isomorphism (see (2.3)) from the exact

sequence

cokerA
I
// coker ( A Y

0 B )
P
// cokerB

0

��

kerB

[Y ]

OO

ker ( A Y
0 B )P ′oo kerA.I′oo

(2.10)

to E, where I, I ′, P , and P ′ are induced by the obvious inclusions or projections.

Proof. By a simple calculation, or applying the Snake Lemma, we see that the se-

quence (2.7) is exact (see Remark 2.4.4).

We define π1 : Zn1 → G1 (respectively, π3 : Zn3 → G3) to be the composition of

the natural surjection to the cokernel and the isomorphism α1 (respectively, α3). We

first construct a homomorphism π2 : Zn1 ⊕ Zn3 → G2 with

0 // Zn1

I
//

π1

��

Zn1 ⊕ Zn3

P
//

π2
��

Zn3

π3

��

// 0

· · · δ // G1
ε // G2

γ
// G3

// 0

(2.11)

commuting, where

I : Zn1 3 x 7→ (x, 0) ∈ Zn1 ⊕ Zn3

P : Zn1 ⊕ Zn3 3 (x, y) 7→ y ∈ Zn3

are the obvious inclusions, and projections.

Since Zn3 is a free abelian group and γ : G2 → G3 is surjective, there exists a

homomorphism µ : Zn3 → G2 such that

γ ◦ µ = π3

Zn3

µ

}}

π3

��

G2 γ
// // G3.
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We define π2 : Zn1 ⊕ Zn3 → G2 by

π2(x, y) := ε(π1(x)) + µ(y).

for x ∈ Zn1 and y ∈ Zn3 . Commutativity in (2.11) can be easily verified as

π2(I(x)) = π2(x, 0) = ε(π1(x))

γ(π2(x, y)) = γ
(
ε(π1(x)) + µ(y)

)
= 0 + π3(y) = π3(P (x, y)).

Next we construct a homomorphism Y : Zn′3 → Zn1 such that

π2 ◦ ( YB ) = 0 Zn′3
(YB )

// Zn1 ⊕ Zn3
π2 // G2 (2.12)

and

π1 ◦ Y |kerB = δ ◦ β3
kerB

Y |kerB
//

β3
��

Zn1

π1
��

F3
δ // G1.

(2.13)

By Lemma 2.4.2, there exists an extension β′3 : Zn′3 → F3 of the isomorphism β3 : kerB →

F3. Since π1 : Zn1 → G1 is surjective and Zn′3 is a free abelian group, there exists a

homomorphism Y1 : Zn′3 → Zn1 such that

π1 ◦ Y1 = δ ◦ β′3
Zn′3 Y1 //

β′3
��

Zn1

π1

��

F3
δ // G1.

(2.14)

Since µ|imB takes values in ker γ = im ε, we see that µ|imB : imB → im ε. Also,

imB is a subgroup of a free abelian group and thus imB is free abelian. Because

ε ◦ π1 : Zn1 → im ε is surjective, there exists a homomorphism Y2 : imB → Zn1 such

that

ε ◦ π1 ◦ Y2 = µ|imB

imB

Y2
��

µ|imB

// G2

Zn1
π1 // G1.

ε

OO
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Define a homomorphism Y : Zn′3 → Zn1 by

Y := Y1 − Y2 ◦B,

and, in line with our convention, we will use the same symbol for the matrix Y ∈

Mn1,n′3
(Z) that implements this homomorphism. For y′ ∈ Zn′3 we have

π2(Y (y′), B(y′)) = ε(π1(Y (y′))) + µ(B(y′))

= ε
(
π1
(
Y1(y

′)− Y2(B(y′))
))

+ µ(B(y′))

= 0− µ(B(y′)) + µ(B(y′))

= 0.

This shows (2.12). The equality (2.13) follows from (2.14) because

Y |kerB = Y1|kerB − (Y2 ◦B)|kerB = Y1|kerB,

and hence we have

π2 ◦ ( A0 ) = π2 ◦ I ◦ A = ε ◦ π1 ◦ A = 0.

This and (2.12) show

π2 ◦ ( A Y
0 B ) = 0.

Hence the map π2 : Zn1 ⊕ Zn3 → G2 factors through a map

coker ( A Y
0 B )→ G2

which is denoted by α2.

Now we shall construct a homomorphism

β2 : ker ( A Y
0 B )→ F2
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fitting into

0 // kerA

β1

��

I′
// ker ( A Y

0 B )
P ′
//

β2
��

kerB

β3

��

0 // F1
ε′ // F2

γ′
// F3

δ // G1

(2.15)

where I ′ and P ′ are the restrictions of obvious inclusion, and projections, as above.

For (x′, y′) ∈ ker ( A Y
0 B ), we have

δ
(
β3(P

′(x′, y′))
)

= π1(Y (y′)) = π1(−A(x′)) = 0.

Hence the image of β3 ◦P ′ is contained in ker δ = im γ′. The abelian group ker ( A Y
0 B )

is free because it is a subgroup of the free group Zn′1 ⊕ Zn′3 . Therefore there exists a

homomorphism ν : ker ( A Y
0 B )→ F2 such that

γ′ ◦ ν = β3 ◦ P ′
ker ( A Y

0 B )

ν

��

P ′
// kerB

β3

��

F2
γ′

// F3.

Since

γ′ ◦ ν ◦ I ′ = β3 ◦ P ′ ◦ I ′ = 0,

the image of ν ◦ I ′ is contained in ker γ′ = im ε′. Since ε′ is injective, there exists a

homomorphism η : kerA→ F1 such that ε′ ◦η = ν ◦I ′. By Lemma 2.4.2, there exists

an extension ζ : Zn′1 → F1 of the homomorphism β1 − η : kerA→ F1. We define

β2 : ker ( A Y
0 B ) 3 (x′, y′) 7→ ν(x′, y′) + ε′(ζ(x′)) ∈ F2

Commutativity of (2.15) can be verified by

β2(I
′(x)) = ν(x, 0) + ε′(ζ(x)) = ν(I ′(x)) + ε′(β1(x)− η(x)) = ε′(β1(x))

γ′(β2(x
′, y′)) = γ′(ν(x′, y′) + ε′(ζ(x′)) = β3(y

′) + 0 = β3(P
′(x′, y′)).
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for x ∈ kerA and (x′, y′) ∈ ker ( A Y
0 B ).

Thus we constructed Y ∈ Mn1,n′3
(Z) and two homomorphisms α2 and β2. The

diagram

cokerA
ι∗ //

α1
##

coker ( A Y
0 B )

π∗ //

α2

��

cokerB

0

��

α3
{{

G1
ε // G2

γ
// G3

0
��

F3

δ

OO

F2
γ′

oo F1
ε′oo

kerB

[Y ]

OO

β3
;;

ker ( A Y
0 B )

π∗oo

β2

OO

kerA
ι∗oo

β1
cc

commutes by (2.11) for the top two squares, by (2.13) for the left square, by (2.15) for

the bottom two squares, and trivially for the right square. Finally, the Five Lemma

shows that α2 and β2 are isomorphisms.

Remark 2.4.4. The content of Proposition 2.4.3 can be summarized in the following

commutative diagram with exact rows and columns:
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0

��

0

��

0

��

0 // F1
ε′ //

β−1
1
��

F2
γ′

//

β−1
2
��

F3

β−1
3
��

δ

···
0 // Zn′1 I′ //

A

��

Zn′1 ⊕ Zn′3 P ′ //

(A Y
0 B )

��

Zn′3

B

��

//

Y

tt

0

0 // Zn1

δ

···

&&

I
//

π1

��

Zn1 ⊕ Zn3

P
//

π2
��

Zn3

π3

��

// 0

G1 ε
//

��

G2 γ
//

��

G3
//

��

0

0 0 0

(2.16)

The solid lines and δ : F3 → G1 are the given data, and the dotted lines indicate the

homomorphisms we need to construct. We also need to show that δ factors through

Y : Zn′3 → Zn1 , the middle column is exact, and the six squares commute. Once we

establish these facts, the snake lemma implies that the sequence (2.7) is isomorphic

to the given one E .

In order to use the matrix Y found above to define a graph, we will need Y to

be non-negative. The two ensuing lemmas are the key to arranging this.

Lemma 2.4.5. Let n, n′ ∈ {0, 1, 2, . . . ,∞}. For A ∈ Mn,n′(Z), the following three

conditions are equivalent:

1. For every i ∈ {1, 2, . . . , n} there exists ξi ∈ Zn′ such that Aξi − δi ∈ (Z+)n.

2. There exists A′ ∈Mn′,n(Z) such that AA′ − I ∈Mn,n(Z+).

3. For every m ∈ {0, 1, 2, . . . ,∞} and every Y ∈ Mn,m(Z), there exists Q ∈

Mn′,m(Z) such that AQ+ Y ∈Mn,m(Z+).
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Proof. (1)⇒(2): By (1) for each i ∈ {1, 2, . . . , n} there exists ξi ∈ Zn′ satisfying

Aξi − δi ∈ (Z+)n. Then A′ := (ξ1ξ2 · · · ξn) ∈ Mn′,n(Z) defined by A′(δi) = ξi for all i

satisfies AA′ − I ∈Mn,n(Z+).

(2)⇒(3): Take m and Y ∈Mn,m(Z). We set |Y | ∈Mn,m(Z) to be the entry-wise

absolute value of Y ; i.e., |Y |(i, j) := |Y (i, j)|. Let A′ ∈ Mn′,n(Z) be as in (2), and

set Q := A′|Y | ∈Mn′,m(Z). Then we have

AQ+ Y = (AA′ − I)|Y |+ (|Y |+ Y ) ∈Mn,m(Z+).

(3)⇒(1): Take arbitrary i ∈ {1, 2, . . . , n}, and apply (3) to Y ∈Mn,1(Z) given by

Y (δ1) = −δi to get Q ∈Mn′,1(Z) with AQ+Y ∈Mn,1(Z+). If we set ξ := Q(δ1) ∈ Zn′

then we have

Aξ − δi = (AQ+ Y )(δ1) ∈ (Z+)n.

The following lemma is analogous to the previous one, and is as easy to prove

when n′ is finite, but substantially more complicated when n′ is infinite. For each

i ∈ {1, 2, . . . , n′}, δti ∈ M1,n′(Z) denotes the transpose of δi, that is, the ith row of

the identity I ∈Mn′,n′(Z).

Lemma 2.4.6. Let n, n′ ∈ {0, 1, 2, . . . ,∞}. For B ∈ Mn,n′(Z), the following three

conditions are equivalent:

1. For every i ∈ {1, 2, . . . , n′} there exists ηi ∈ Zn such that ηtiB−δti ∈M1,n′(Z+),

chosen such that for all finite subsets F ⊂ {1, 2, . . . , n}, there exists a finite

subset G ⊂ {1, 2, . . . , n′} such that for every i 6∈ G and every j ∈ F , we get

ηi,j = 0 .
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2. There exists B′ ∈Mn′,n(Z) such that B′B − I ∈Mn′,n′(Z+).

3. For every m ∈ {0, 1, 2, . . . ,∞} and every Y ∈ Mm,n′(Z), there exists Q ∈

Mm,n(Z) such that QB + Y ∈Mm,n′(Z+).

Proof. (1)⇒(2): When n′ is finite, B′ ∈ Mn′,n(Z) can be defined so that for each

i ∈ {1, 2, . . . , n′} the ith row of B is ηti ∈ M1,n(Z) satisfying ηtiB − δti ∈ M1,n′(Z+)

which exist by condition (1). When n′ is infinite, the condition (1) implies that n is

also infinite. For each integer k, let Gk ⊂ {1, 2, . . . , n′} be a finite set as in (1) for the

finite set F = {1, 2, . . . , k}. We define a finite set G′k ⊂ {1, 2, . . . , n′} for k = 1, 2, . . .

inductively by

G′1 := {1} ∪G1, G′k := {k} ∪Gk \
( k−1⋃
j=1

G′j

)
.

From this definition, it is easy to see that the {G′k}∞k=1 are mutually disjoint, that

their union is the whole of {1, 2, . . . , n′} = N, and G′k ∩Gk−1 = ∅ for all k > 1. For

i ∈ G′1, choose ηi ∈ Zn such that ηtiB − δti ∈ M1,n′(Z+) by the first condition of (1).

For each i ∈ G′k for k > 1, choose ηti ∈ M1,n(Z) such that ηtiB − δti ∈ M1,n′(Z+) and

(ηti)1,j = 0 for j = 1, 2, . . . , k− 1 by the latter condition of (1). We set B′ ∈Mn′,n(Z)

by B′i,j = (ηi)1,j. We need to check that B′ is column-finite, which follows from the

fact that for each j ∈ {1, 2, . . . , n}, B′i,j 6= 0 implies i is in the finite set
⋃j−1
k=1G

′
k.

Now it is easy to see B′B − I ∈Mn′,n′(Z+).

(2)⇒(1): Take B′ ∈ Mn′,n(Z) as in (2), For each i, let ηti ∈ Zn be the ith row of

B. Then we have ηtiB − δti ∈ M1,n′(Z+). Thus we get the former condition of (1).

This choice of ηti ’s also satisfies the latter condition of (1) if for a given finite subset
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F ⊂ {1, 2, . . . , n}, we choose G ⊂ {1, 2, . . . , n′} by

G =
⋃
j∈F

{i : Bi,j 6= 0}

which is finite because B is column-finite.

(2)⇒(3): Take m and Y ∈Mm,n′(Z). We set |Y | ∈Mm,n′(Z) to be the entry-wise

absolute value of Y ; i.e., |Y |(i, j) := |Y (i, j)|. Let B′ ∈ Mn′,n(Z) be as in (2), and

set Q := |Y |B′ ∈Mm,n(Z). Then we have

QB + Y = |Y |(B′B − I) + (|Y |+ Y ) ∈Mm,n′(Z+).

(3)⇒(2): Apply (3) to m = n and Y = −I.

Proposition 2.4.7. In the situation of Proposition 2.4.3, assume that Z ∈Mn1,n′3
(Z)

is given. If A satisfies the equivalent conditions of Lemma 2.4.5 or B satisfies the

equivalent conditions of Lemma 2.4.6, then the matrix Y ∈Mn1,n′3
(Z), along with α2

and β2 inducing the isomorphism, may be chosen with the additional property Y ≥ Z.

Proof. Let Y ′ ∈Mn1,n′3
(Z) denote a matrix already chosen in Proposition 2.4.3, along

with maps α′2 and β′2. Assume first that A satisfies the conditions of Lemma 2.4.5.

Then by (3) of the lemma we may choose Q ∈Mn′1,n
′
3
(Z) such that

AQ+ [Y ′ − Z] ∈Mn1,n′3
(Z+)

One checks directly that with

Y = AQ+ Y ′

β2 = β′2 ◦

I Q

0 I


α2 = α′2
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the conditions are all met. (In particular, one can easily verify that in this case

im ( A Y
0 B ) = im ( A Y ′

0 B ), so that coker ( A Y
0 B ) = coker ( A Y ′

0 B ), and that multiplication by(
I Q
0 I

)
is an isomorphism from ker ( A Y

0 B ) onto ker ( A Y ′
0 B ).)

When B satisfies the conditions of Lemma 2.4.6, we choose Q ∈ Mn1,n3(Z) such

that

QB + [Y ′ − Z] ∈Mn1,n′3
(Z+)

and set

Y = Y ′ +QB

β2 = β′2

α2 = α′2 ◦

I −Q
0 I


and one can check the conditions are met. (In particular, one can easily verify that

in this case ker ( A Y
0 B ) = ker ( A Y ′

0 B ), and that multiplication by
(
I −Q
0 I

)
is an isomor-

phism from im ( A Y
0 B ) onto im ( A Y ′

0 B ), and hence multiplication by
(
I −Q
0 I

)
induces an

isomorphism from coker ( A Y
0 B ) onto coker ( A Y ′

0 B ).)

Proposition 2.4.8. In the situation of Proposition 2.4.3, assume that Z ∈Mn1,n′3
(Z)

is given, that n1, n3 < ∞, and that g2 ∈ G2 is given with α3([1]) = γ(g2). If B

satisfies the condition that for some 1 ≤ i, j < n3 we have

Bik < Bjk 1 ≤ k < n′3,

then the matrix Y ∈Mn1,n′3
(Z), along with α2 and β2 inducing the isomorphism, may

be chosen with the additional properties that α2([1]) = g2 and Y ≥ Z.
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Proof. Take Y ′, β′2 and α′2 as in Proposition 2.4.3 and set

g′2 = α′2([1])− g2.

Observe that γ(g′2) = 0 because

α3([1]) = α3 (( 1
1 )) = γ(g2)

Hence there exists ξ ∈ Zn1 such that ε(α1([ξ])) = g′2. Choose Q′ ∈ Mn1,n3(Z) such

that ξ = Q′1. Find an integer c > 0 so that with Q′′ ∈Mn1,n3(Z) defined by

(Q′′)k,` =



1 ` = i

−1 ` = j

0 else

we have

(Q′ + cQ′′)B ≥ Z − Y ′

This is possible because each row of Q′′B is identically(
Bi,1 −Bj,1 Bi,2 −Bj,2 · · · Bi,n3 −Bj,n3

)
,

which is strictly positive by assumption on B. Set Q = Q′+ cQ′′ and Y = Y ′+QB.

Then Y ≥ Z by how Y was chosen. In addition, if we let

β2 = β′2 and α2 = α′2 ◦

I −Q
0 I

 ,

then since ker ( A Y ′
0 B ) = ker ( A Y ′

0 B ) and since
(
I Q
0 I

)
is an automorphism on im ( A Y ′

0 B )

(to see this use the fact that QB = Y − Y ′), we conclude that β2 : ker ( A Y ′
0 B ) → F2

and α2 : coker ( A Y ′
0 B )→ G2 are well-defined isomorphisms.
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We also have

α2([1]) = α′2


I −Q

0 I


1

1




= α′2


1

1

−
Q1

0




= α′2(1)− α′2(I(Q1))

= α′2(1)− ε ◦ α1([ξ])

= α′2(1)− g′2

= g2

so the conclusion holds.

Proposition 2.4.9. In the situation of Proposition 2.4.3, assume that n1, n3 < ∞,

that F3 = 0, and that there exists a splitting map σ : G3 → G2 for γ. Let g2 ∈ G2

be given, set g3 = γ(g2) ∈ G3, and let g1 be the unique element of G1 with ε(g1) =

g2 − σ(g3). If

α1(1) = g1 and α3(1) = g3,

then there exist homomorphisms

α2 : coker ( A 0
0 B )→ G2 and β2 : ker ( A 0

0 B )→ F2

such that the collection of homomorphisms αi and βi for i = 1, 2, 3 provide an iso-

morphism, and α2([1]) = g2.

Proof. Let
[(

ξ
η

)]
∈ coker ( A 0

0 B ). Then

α2

([(
ξ
η

)])
= ε(α1([ξ])) + σ(α3([η]))
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and

β2
([(

ξ
0

)])
= ε′(β1(ξ)).

2.5 Gluing graphs

Suppose two graphs E1 and E3 are given along with groups G2 and F2 so that the

following diagram E commutes:

K0(C
∗(E1))

ε // G2
γ
// K0(C

∗(E3))

0
��

K1(C
∗(E3))

∂1

OO

F2
γ′
oo K1(C

∗(E1)).
ε′oo

(2.17)

In the present section we investigate circumstances under which it is possible to

glue together E1 and E3 to form a third graph E2 whose C∗-algebra has E as its

six-term exact sequence in K-theory. We shall see that the results of the previous

section allow us to perform such a gluing, and realize the sequence of groups in E ,

under very modest assumptions on either E1 or E3. However, since there are natural

obstructions for the pre-ordering on G2 to originate from a graph C∗-algebra, we

will need to impose further restrictions before being able to realize the pre-ordered

sequence E+ consisting of an exact sequence of partially pre-ordered groups. The

necessity of these conditions follow from the fullness issues considered in [21] and [23],

but for the reader’s convenience we shall develop them by much more elementary

methods at the end of this section.
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2.5.1 Adhesive graphs

Definition 2.5.1. We say that the graph E is left adhesive if for any v0 ∈ E0 there

exist n ≥ 1 and distinct e0, e1, . . . , en ∈ E1 such that

(i) r(e0) = v0

(ii) s(ek) ∈ Vv0 for all k = 0, 1, . . . , n

(iii) Vv0 ⊆ E0
reg

where Vv0 := {r(ek) | k = 1, . . . , n}.

Definition 2.5.2. We say that the graph E is right adhesive if for any v0 ∈ E0
reg there

exist n ≥ 1 and distinct e0, e1, . . . , en ∈ E1 such that

(i) s(e0) = v0

(ii) r(ek) ∈ Wv0 for all k = 0, 1, . . . , n

(iii) the collection {Wv0 : v0 ∈ E−reg} satisfies the property that for each w ∈ E0,

the set {v0 ∈ E0
reg | w ∈ Wv0} is finite

where Wv0 := {r(ek) | k = 1, . . . , n}.

The reader is requested to note the similarities between these concepts, and how

there is only partial symmetry. The relevance of adhesiveness in our situation is

explained by the following lemma.
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Lemma 2.5.3. When E = (E0, E1, r, s) is left adhesive, then RE − I satisfies the

equivalent conditions of Lemma 2.4.5. When E is right adhesive, RE − I satisfies

the equivalent conditions of Lemma 2.4.6.

Proof. In the first case, define ξv0 ∈ ZE0
reg by

ξv0 =
∑
w∈Vv0

δw.

The for each v ∈ E0 we have

[(RE − I)ξv0 ]v =


|{e ∈ E1 | r(e) = v, s(e) ∈ Vv0}| − 1 if v ∈ Vv0

|{e ∈ E1 | r(e) = v, s(e) ∈ Vv0}| if v 6∈ Vv0 .

For every v ∈ Vv0 we have at least one edge starting in Vv0 and ending in v, so

(RE − I)ξv0 ≥ 0. We also have (RE − I)ξv0 ≥ δv0 in the case when v 6∈ Vv0 . When

v0 ∈ Vv0 we have that v0 = r(ei) for ei 6= e0, so that two different edges start in Vv0

and end in v0, as required. Thus (RE − I)ξv0 ≥ δv0 as desired.

In the second case, define ηv0 ∈ ZE0
by

ηv0 =
∑
w∈Wv0

δw.

For any v ∈ E0
reg, we have

[ηtv0(RE − I)]v =


|{e ∈ E1 | s(e) = v, r(e) ∈ Wv0}| − 1 if v ∈ Wv0 ∩ E0

reg

|{e ∈ E1 | s(e) = v, r(e) ∈ Wv0}| if v 6∈ Wv0 ∩ E0
reg

and we obtain the desired conclusion ηtv0(RE−I) ≥ δtv0 . We also see by Condition (iii)

that for finite F ⊆ E0 we may take

G =
⋃
w∈F

{v0 ∈ E0
reg | w ∈ Wv0}
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to arrange that ηv,w = 0 when v ∈ F and w 6∈ G.

Checking adhesiveness by the definition is rarely necessary, and frequently we will

be able to appeal to one of these simpler sets of conditions:

Lemma 2.5.4. Let E = (E0, E1, r, s) be a graph. Then E is left adhesive when any

of the conditions hold:

(`1) E0 = E0
reg, and each v0 ∈ E0 supports two loops.

(`2) For each v0 ∈ E0, there exist edges e1, . . . , en ∈ E1 forming a cycle so that each

s(ek) ∈ E0
reg, and e0 ∈ E1 so that e0 6= e1, s(e0) = s(e1), and r(e0) = v0

In addition, E is right adhesive when any of the following conditions hold:

(r0) E0
reg = ∅

(r1) Each v0 ∈ E0
reg supports two loops.

(r2) E0
reg is finite, and for each v0 ∈ E0

reg, there exist edges e1, . . . , en ∈ E1 forming

a cycle, and e0 ∈ E1 so that e0 6= e1, r(e0) = r(e1), and s(e0) = v0.

Proof. In (`1) and (r1), we choose at each v0 ∈ E0
reg the two loops as our e0, e1.

Condition (r0) implies that the criteria to be right adhesive vacuously hold, and for

(`2) and (r2) we choose the indicated sets of edges, noting in the latter case that the

finiteness condition is automatically true because E0
reg is finite.
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Proposition 2.5.5. Let E denote the exact sequence of abelian groups

G1
ε // G2

γ
// G3

0
��

F3

δ

OO

F2
γ′
oo F1

ε′oo

(2.18)

with F1, F2, and F3 free abelian. Let E1 = (E0
1 , E

1
1 , rE1 , sE1) and let E3 = (E0

3 , E
1
3 , rE3 , sE3)

be graphs such that isomorphisms

αi : K0(C
∗(Ei))→ Gi and βi : K1(C

∗(Ei))→ Fi

are given for i = 1, 3. If E1 is left adhesive or E3 is right adhesive, then there exists

a graph E2 = (E0
2 , E

1
2 , rE2 , sE2) with the properties

(1) E0
2 = E0

1 t E0
3 ;

(2) E1
2 is equal to the disjoint union of E1

1 and E1
3 together with

(a) a finite and nonzero number of edges from each v ∈ (E0
3)reg to vertices in

E0
1

(b) an infinite number of edges from each v ∈ (E0
3)sing to each vertex in E0

1

so that with I the ideal of C∗(E2) given by E1, the ideal I is essential, and there

exist isomorphisms α2 : K0(C
∗(E2)) → G2 and β2 : K1(C

∗(E2)) → F2 so that

Ksix(C
∗(E2), I) is isomorphic to E via the maps αi and βi, for i = 1, 2, 3.

Proof. Let RE1 and RE3 denote the vertex matrices of E1 and E3, respectively, and

set A = RE1− I and B = RE3− I. By Lemma 2.5.3, either A satisfies the conditions
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of Lemma 2.4.5 or B those of Lemma 2.4.6, so we may apply Proposition 2.4.7 to

find Y such that Y ≥ Z where we set

Z =


1 1 · · ·

0 0 · · ·
...

 .

Thus we obtain that Y is nonnegative, with a positive entry in each column. Using

Y to read off how many edges to add, and adding an infinite number of edges from

every v ∈ (E3)
0
sing to every w ∈ E0

1 we create E3 with regular vertex matrix RE3 so

that RE3 − I takes the form ( A Y
0 B ). Note that we have arranged that E0

1 is saturated

and hereditary in E2, and that

(E0
2)reg ∩ E0

3 = (E0
3)reg.

Hence E0
1 defines a gauge-invariant ideal I. To show that I is essential, it suffices

to prove that I nontrivially intersects every nonzero gauge-invariant ideal. Let such

an ideal be given by a hereditary and saturated set H along with a set of breaking

vertices B. It then suffices to prove that H ∩ E0
1 6= ∅. This follows by noting that

if H ⊆ E0
3 , then some v ∈ H ∩ E0

3 may be chosen, and since this vertex has at least

one edge to E0
1 , we have found the desired contradiction.

Proposition 2.5.6. In the situation of Proposition 2.5.5, if one of the following

conditions holds:

(i) E0
1 is the smallest hereditary and saturated subset of itself containing v1, . . . , vn

for some finite choice of vi
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(ii) E3 is transitive, and either

(1) (E0
3)sing 6= ∅; or

(2) |E0
3 | =∞

then I may be chosen stenotic.

Proof. For (i), arrange the vertices of E1 such that v1, . . . , vn are listed first. Choosing

Y dominating

Z =



1 1 1 · · ·
...

1 1 1 · · ·

0 0 0 · · ·
...


in the previous proof we may arrange that there is an edge from each vertex in E3

to each hereditary and saturated subset in E1. Let J be an ideal of C∗(E2) which,

as above, we may assume is gauge invariant and hence given by (H,B). Since no

vertex in E3 is breaking for any subset of E1, we see that if J 6⊆ I, H must intersect

E0
3 . But then, by our construction and the condition that H is hereditary, we see

that E0
1 ⊆ H, and hence that I ⊆ J .

In the case (ii)(2) we choose instead Y dominating Z = I and for (ii)(1) recall

that every singular vertex of E3 emits, by our construction, an edge to any vertex of

E1. Now when J 6⊆ I and (H,B) are given as above, we again get that H ∩E0
3 6= ∅,

which implies by transitivity that E0
3 ⊆ H. Then if v ∈ E0

3 is singular, since it emits

an edge to each vertex in E1, we get that H = E0
2 since H is hereditary. Similarly,
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if v1, v2, . . . are regular in E0
3 , we have that {v1, . . . , vn} emits to the first n vertices

of E1 so that again H = E0
2 .

2.5.2 Order obstructions

Proposition 2.5.7. Let A be a C∗-algebra with real rank zero, and let I be an ideal

that is simple and purely infinite. If π : A → A/I denotes the quotient map, we have

K0(A)+ = {x ∈ K0(A) | π∗(x) ≥ 0}

Proof. The containment K0(A)+ ⊂ {x ∈ K0(A) | π∗(x) ≥ 0} is clear since π∗ is

positive. For the reverse inclusion, suppose x ∈ K0(A) with π∗(x) ≥ 0. Then π∗(x) ∈

K0(A/I)+, and hence π(x) is equal to the K0-class of a projection in Mn(A/I) for

some n ∈ N. Since A has real rank zero, it follows that Mn(A) has real rank zero (see

[9, Theorem 2.10]). Furthermore, since Mn(A/I) ∼= Mn(A)/Mn(I), and projections

in quotients of real rank zero C∗-algebras lift to projections (see [9, Theorem 3.14]),

it follows that there exists x′ ∈ K0(A)+ with π∗(x
′) = π∗(x). Thus π(x − x′) = 0

and x − x′ ∈ K0(I). Because I is simple and purely infinite, we have K0(I)+ =

K0(I), so that x − x′ ∈ K0(I)+, and hence x − x′ ∈ K0(A)+. We conclude that

x = (x− x′) + x′ ∈ K0(A)+.

Proposition 2.5.8. Let a C∗-algebra A be given with an approximate unit of pro-

jections, and with I a largest ideal. When there exists a projection p ∈ A such

that

(i) p 6∈ I
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(ii) [p] = 0 in K0(A)

then K0(A)+ = K0(A).

Proof. We have noted that K0(A) = K0(A)+−K0(A)+ whenever A has an approx-

imate unit of projections, so it suffices to prove that −K+
0 (A) ⊆ K0(A). Note that

p ∈ A ⊆ A⊗K is full since it is not an element of the largest ideal I. Hence for any

projection q ∈ A⊗K there exists n with the property that q is Murray-von Neumann

equivalent to a subprojection r of p⊕n, and we get that

−[q]0 = n[p]0 − [q]0 = [p⊕n − r]0 ≥ 0

in K0(A).

Proposition 2.5.9. Let C∗(E) be a graph C∗-algebra with a gauge-invariant ideal

I such that C∗(E)/I is purely infinite and simple. Then there exists a projection

p ∈ C∗(E) such that p 6∈ I and such that [p]0 = 0 in K0(A).

Proof. We may choose a subgraph E3 ⊆ E so that C∗(E)/I ∼= C∗(E3), and in the

subgraph E3 there exists a vertex v ∈ E0
3 supporting two different cycles ξ, η ∈ E∗3 .

Let p = pv − sξs
∗
ξ ∈ C∗(E). Then [p]0 = 0. But since p ≥ sηs

∗
η we have that

p 6∈ I.

Corollary 2.5.10. Let E be a graph, let I be an ideal of C∗(E), and let π : C∗(E)→

C∗(E)/I be the quotient map. Then the following two statements hold.

(1) If C∗(E) has real rank zero and I is purely infinite and simple, then

K0(C
∗(E))+ = {x ∈ K0(C

∗(E)) | π∗(x) ≥ 0}.
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(2) If I is the largest ideal of C∗(E) and C∗(E)/I is purely infinite and simple,

then

K0(C
∗(E))+ = K0(C

∗(E)).

2.6 Six-term exact sequences realized by graph

C∗-algebras

In this section we consider the range of the ordered six-term exact sequence from

K-theory for various classes of graph C∗-algebras that are classified by this invariant.

2.6.1 Range of the Non-Unital Invariant

It was proven in [23, Theorem 4.7] that the six-term exact sequence K+
six(C

∗(E), Imax)

is a complete stable isomorphism invariant when C∗(E) is a graph C∗-algebra, Imax

is a largest ideal in C∗(E), and Imax is an AF-algebra. It was also proven in [20,

Corollary 6.4] that the six-term exact sequence K+
six(C

∗(E), Imin) is a complete stable

isomorphism invariant when C∗(E) is a graph C∗-algebra, Imin is a smallest nontrivial

ideal in C∗(E), and C∗(E)/Imin is an AF-algebra. In the first case, C∗(E)/Imax is

simple and hence either purely infinite or AF. If C∗(E)/Imax is AF, then C∗(E) is

an AF-algebra and the ordered group K0(C
∗(E)) is a complete stable isomorphism

invariant. Thus the case that we are concerned with the six-term exact sequence

is when C∗(E)/Imax is purely infinite. Likewise, Imin is simple and hence either

purely infinite or AF. When Imin is AF, then C∗(E) is AF and the ordered group
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K0(C
∗(E)) is again a complete stable isomorphism invariant. Thus the case that we

are concerned with is when Imin is purely infinite.

Theorem 2.6.1. Let C∗(E) be a graph C∗-algebra with a largest nontrivial ideal I

such that I is an AF-algebra and C∗(E)/I is purely infinite. Then K+
six(C

∗(E), I)

is a complete stable isomorphism invariant within this class, and the range of this

invariant is all six-term exact sequences of countable abelian groups

R1
ε // G2

γ
// G3

0
��

F3

δ

OO

F2
γ′
oo 00oo

where F2 and F3 are free abelian groups, R1 is a Riesz group, and G2 and G3 have

the trivial pre-ordering (i.e., G+
i = Gi for i = 2, 3).

Proof. It follows from [23, Theorem 4.7] that K+
six(C

∗(E), I) is a complete stable iso-

morphism invariant within this class. The necessity of the form of the exact sequence

stated above follows from the fact that the descending map ∂0 : K0(C
∗(E)/I) →

K1(I) is always zero [11, Theorem 4.1], by well-known facts about the ordered K-

theory of AF or purely infinite C∗-algebras, and from Corollary 2.5.10(2).

To see that all such exact sequences are attained, we know by Proposition 2.3.1

that there exists a row-finite graph with no sinks E1 such that C∗(E1) is an AF-

algebra and K0(C
∗(E1)) is order isomorphic to R1. By Proposition 2.3.3 there exists

a row-finite graph with no sinks E3 satisfying Conditions (1)–(3) of Proposition 2.3.3,

with K0(C
∗(E3)) ∼= G3 and K1(C

∗(E3)) ∼= F3. Then C∗(E3) is purely infinite and

simple. By Condition (2) of Proposition 2.3.3 each vertex of the graph E3 contains
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two loops, and hence E3 is right adhesive appealing to condition (r1) of Lemma

2.5.4. We have arranged that |E0
3 | =∞ and that E3 is transitive, so by Proposition

2.5.6(ii)(2) we may glue together E1 and E3 in such a way that the ideal I of C∗(E2)

corresponding to E1 is stenotic. Since C∗(E2)/I ∼= C∗(E3) is simple, it follows that

I is the largest ideal of C∗(E2). We have arranged that I is AF. Moreover, Corollary

2.5.10(2) implies K0(C
∗(E2))

+ = K0(C
∗(E2)), so since we have assumed that G+

2 =

G2, our constructed map α2 will automatically be an order isomorphism. Hence

K+
six(C

∗(E2), I) is order isomorphic to the required six-term exact sequence.

Theorem 2.6.2. Let C∗(E) be a graph C∗-algebra with a smallest nontrivial ideal I

such that C∗(E)/I is an AF-algebra and I is purely infinite. Then K+
six(C

∗(E), I)

is a complete stable isomorphism invariant within this class, and the range of this

invariant is all six-term exact sequences of countable abelian groups

G1
ε // G2

γ
// R3

0
��

0

0

OO

F2
0oo F1

ε′oo

where F1 and F2 are free abelian groups, R3 is a Riesz group, the group G1 has the

trivial pre-ordering G+
1 = G1, and G2 has the pre-ordering G+

2 = {x ∈ G2 : γ(x) ≥

0}.

Proof. It follows from [20, Corollary 6.4] that K+
six(C

∗(E), I) is a complete stable iso-

morphism invariant within this class. The necessity of the form of the exact sequence

stated above follows from the fact that the descending map ∂0 : K0(C
∗(E)/I) →

K1(I) is always zero [11, Theorem 4.1], the fact that the K0-group of an AF-algebra

is always a Riesz group, the fact that the K1-group of an AF-algebra is always zero,
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the fact that the homomorphisms that appear are always order homomorphisms, and

from Corollary 2.5.10(2).

To see that all such exact sequences are attained, we know by Proposition 2.3.1

that there exists a row-finite graph with no sinks E3 such that C∗(E3) is an AF-

algebra and K0(C
∗(E3)) is order isomorphic to R3. By Proposition 2.3.3 there exists

a row-finite graph with no sinks E1 satisfying Conditions (1)–(3) of Proposition 2.3.3,

with K0(C
∗(E1)) ∼= G1 and K1(C

∗(E1)) ∼= F1. Then C∗(E1) is purely infinite and

simple. By Condition (2) of Proposition 2.3.3 each vertex of the graph E1 contains

two loops. Thus the regular vertex matrix RE1− I has non-negative entries and pos-

itive entries down its diagonal. It follows from Lemma 2.5.4 that E1 is left-adhesive.

Thus Proposition 2.5.5 shows that there exists a graph E2 satisfying Conditions (1)–

(4) of Proposition 2.5.5. Furthermore, C∗(E2)/I is an AF-algebra, and I is Morita

equivalent to C∗(E1) and thus purely infinite and simple. Because every vertex of

E0
3 has a finite and nonzero number of edges from this vertex to E0

1 , and because

E1 is strongly connected, it follows that any nonempty hereditary subset of E2 must

contain E0
1 . Thus I is the smallest ideal of C∗(E2). Moreover, Corollary 2.5.10(1)

implies K0(C
∗(E2))

+ = {x ∈ K0(C
∗(E2)) : π∗(x) ≥ 0} and thus in the commutative

diagram (2.3) we have that φ is an order isomorphism. Hence K+
six(C

∗(E2), I) is

order isomorphic to the required six-term exact sequence.

Next we consider graph C∗-algebras with a unique nontrivial ideal. Recall that

if E is a graph and I is a unique nontrivial ideal in C∗(E), then I and C∗(E)/I are

simple. Since I and C∗(E)/I are both graph C∗-algebras, by [13, Lemma 1.3] and

[6, Corollary 3.5], and since any simple graph C∗-algebra is either an AF-algebra or
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a Kirchberg algebra, there are four cases to consider:

Type [∞∞] : I and C∗(E)/I are both Kirchberg algebras.

Type [1∞] : I is an AF-algebra and C∗(E)/I is a Kirchberg algebra.

Type [∞1] : I is a Kirchberg algebra and C∗(E)/I is an AF-algebra.

Type [11] : I and C∗(E)/I are both AF-algebras.

Theorem 2.6.3. If C∗(E) is a graph C∗-algebra with a unique nontrivial ideal I,

then K+
six(C

∗(E), I) is a complete stable isomorphism invariant within this class.

The range of this invariant for the four possible types are precisely the collections of

six-term exact sequences

G1
ε // G2

γ
// G3

0
��

F3

δ

OO

F2
γ′
oo F1

ε′oo

where each of F1, F2, and F3 are free abelian groups, and the following additional

properties are satisfied for each type:

Type [∞∞] : All the groups G1, G2, and G3 have the trivial pre-ordering (i.e.,

G+
i = Gi for i = 1, 2, 3).

Type [1∞] : F1 = 0, G1 is a simple Riesz group, and both G2 and G3 have the trivial

pre-ordering (i.e., G+
i = Gi for i = 2, 3).
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Type [∞1] : F3 = 0, G3 is a simple Riesz group, the group G1 has the trivial pre-

ordering (i.e., G+
1 = G1), and G2 has the pre-ordering G+

2 = ε(G1) t {x ∈ G2 :

γ(x) > 0}.

Type [11] : F1 = 0, F2 = 0, F3 = 0, all three of the groups G1, G2, and G3 are Riesz

groups, G1 and G3 are simple ordered groups, and the sequence is lexicographically

ordered (see [29]); i.e., ε(G+
1 ) = ε(G1) ∩G+

2 and γ(G+
2 ) = G+

3 .

Proof. It follows from [23, Theorem 4.5] that K+
six(C

∗(E), I) is a complete stable

isomorphism invariant for the class of graph C∗-algebras with a unique nontrivial

ideal. Also, the necessity of the forms of the exact sequences stated for the four

types follows from the fact that the descending map ∂0 : K0(C
∗(E)/I) → K1(I) is

always zero [11, Theorem 4.1], the fact that the K0-group of an AF-algebra is always

a Riesz group, the fact that the K1-group of an AF-algebra is always zero, the fact

that the homomorphisms that appear are always order homomorphisms, and from

Corollary 2.5.10. To see that all sequences in the four types are attained, we consider

the four cases separately.

Case [∞∞]: By Proposition 2.3.3 there exist row-finite graphs with no sinks E1 and

E3, each satisfying Conditions (1)–(3) of Proposition 2.3.3, with K0(C
∗(E1)) ∼= G1

and K1(C
∗(E1)) ∼= F1 and with K0(C

∗(E3)) ∼= G3 and K1(C
∗(E3)) ∼= F3. Then

C∗(E1) and C∗(E3) are purely infinite and simple, and in fact both are left and right

adhesive. Thus it follows from Proposition 2.5.5 that E1 and E3 may be glued to

obtain a graph E2 with an essential ideal I such that C∗(E2)/I ∼= C∗(E3) is purely

infinite and simple, and I is Morita equivalent to C∗(E1) and thus also purely infinite
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and simple. It follows that I is the nontrivial ideal of C∗(E2) and that C∗(E2) is of

type [∞∞]. Moreover, the commutative diagram that appears in (2.3) has that φ is

an order isomorphism due to the fact that K0(C
∗(E2))

+ = K0(C
∗(E2)) by Corollary

2.5.10 and G+
2 = G2. Thus K+

six(C
∗(E2), I) is order isomorphic to the required

six-term exact sequence.

Case [1∞]: This is a special case of Theorem 2.6.1.

Case [∞1]: This is a special case of Theorem 2.6.2.

Case [11]: It follows from Proposition 2.3.1 that there exists a row-finite graph with

no sinks E such that C∗(E) is an AF-algebra and K0(C
∗(E)) is order isomorphic to

R2. Since the extension 0 → R1 → R2 → R3 → 0 is order exact and R1 and R3

are simple, it follows that R2 has exactly one nontrivial order ideal, namely ε(R1).

Thus there exists a unique nontrivial ideal I /C∗(E) with Ksix(C
∗(E), I) isomorphic

to the given sequence. Furthermore, since ideals and quotients of AF-algebras are

AF-algebras, we see that C∗(E) is of type [11].

2.6.2 Range of the Unital Invariant

Next we consider the range of the ordered six-term exact sequence for graph C∗-

algebras that are unital extensions of Kirchberg algebras. The ordered six-term exact

sequence together with the position of the unit in the K0-group of the extension has

been shown to be a complete isomorphism invariant for unital graph C∗-algebras

with a unique nontrivial ideal (see [19] and [22, Theorem 5.3 and Corollary 5.4]). We

describe the range of this invariant here.
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Theorem 2.6.4. If C∗(E) is the C∗-algebra of a graph with a finite number of

vertices that contains a unique nontrivial ideal I, then K+
six(C

∗(E), I) together with

the element [1C∗(E)]0 ∈ K0(C
∗(E) is a complete isomorphism invariant within this

class. The range of this invariant for this class is all six-term exact sequences

G1
ε // G2

γ
// G3

0
��

F3

δ

OO

F2
γ′
oo F1

ε′oo

as in Theorem 2.6.3, satisfying the further conditions:

(1) F1, F3, G1, and G3 are finitely generated abelian groups,

(2) rankF1 ≤ rankG1 and rankF3 ≤ rankG3,

(3) if either (G1, G
+
1 ) or (G3, G

+
3 ) is a Riesz group, that group is (Z,Z+).

In addition, the the order unit g2 of K0(C
∗(E)) can be chosen to be any element of

G2 satisfying

(4) if (G3, G
+
3 ) = (Z,Z+), then γ(g2) > 0.

Moreover, if G1
∼= Zm1 ⊕ . . .⊕Zmk

⊕Zm and G3
∼= Zn1 ⊕ . . .⊕Znl

⊕Zn, then E may

be chosen with m+ k + n+ l + 2 or fewer vertices.

Proof. The fact that K+
six(C

∗(E), I) with the element [1C∗(E)]0 ∈ K0(C
∗(E) is a

complete isomorphism invariant follows from [19] and [22, Theorem 5.3 and Corol-

lary 5.4].
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The necessary conditions on the six-term exact sequence from Theorem 2.6.3 are

of course also relevant here, and we saw in the discussion preceding Proposition 2.3.6

that (1) and (2) must hold in this case. In addition, we note that the only unital

simple graph C∗-algebras that are AF are of the form Mn(C), proving that when G3

is a Riesz group, it must be Z. The same reasoning holds for G1 since the ideal must

be Morita equivalent to Mn(C). And finally, when g2 = [1C∗(E)]0 is given, we get

that γ(g2) is given by the unit of the quotient, which is a strictly positive element of

K0(Mn(C)) in case that is AF, proving necessity of (4).

To realize the invariant we argue separately in each of the following cases.

Case [∞∞]: By appealing to Proposition 2.3.6 rather than Proposition 2.3.3, we

obtain a graph E1 realizing G1 and F1 as above, and a graph E3 realizing G3 and F3

as above but with the added assumptions that |E0
1 | = m + k + 1, |E0

3 | = n + l + 1,

and that [1] = γ(g2) in K0(C
∗(E3)). Moreover, Proposition 2.3.8 shows that we may

choose E3 so that condition (4) of Proposition 2.3.8 holds. For 1 = 1, 3, we get that

C∗(Ei) is purely infinite and simple, as desired. Condition (4) of Proposition 2.3.8

shows that the hypotheses of Proposition 2.4.8 are satisfied by B = RE3 − I. Thus

Proposition 2.4.8 implies we may obtain E2 by gluing E1 and E3 in a way that

the obtained isomorphism α2 sends 1 to g2. The total number of vertices in E2 is

|E0
2 | = |E0

1 |+ |E0
3 | = m+ k + n+ l + 2.

Case [1∞]: In this case G1 = Z and F1 = 0, which we may realize by a graph E1 with

one vertex and no edges. We apply Proposition 2.3.3 to obtain a graph E3 realizing

G3 and F3 and with the added assumptions |E0
3 | = n + l + 1, and that [1] = γ(g2)

in K0(C
∗(E3)). Moreover, Proposition 2.3.8 shows that we may choose E3 so that

62



2.6. SIX-TERM EXACT SEQUENCES REALIZED BY GRAPH C∗-ALGEBRAS

condition (4) of Proposition 2.3.8 holds. We get that C∗(E3) is purely infinite and

simple, as desired. Condition (4) of Proposition 2.3.8 shows that the hypotheses of

Proposition 2.4.8 are satisfied by B = RE3−I. Thus Proposition 2.4.8 implies we may

obtain E2 by gluing E1 and E3 in a way that the obtained isomorphism α2 sends 1 to

g2. The total number of vertices in E2 is |E0
2 | = |E0

1 |+ |E0
3 | = 1+n+ l+1 = n+ l+2.

Since k = 0 and m = 1 in this case, we have |E0
2 | = n+ l + 2 < m+ k + n+ l + 2.

Case [∞1]: In this case G3 = Z and F3 = 0, so there is a splitting map σ for γ.

We realize G3 by a graph E1 with two vertices {v, w} and n − 1 edges from v to w

when n > 1, or by a solitary vertex if n = 1. We apply Proposition 2.3.3 to obtain

a graph E1 realizing G1 and F1 and with the added assumptions |E0
1 | = m + k + 1,

and that [1] = g2 − σ ◦ γ(g2) in K0(C
∗(E1)). Letting E2 be the union of E1 and

E3 with infinitely many edges from the sink in E3 to each vertex in E1, we obtain a

graph C∗-algebra C∗(E2) with a unique ideal. We then appeal to Proposition 2.4.9

to see that the invariant has the desired form. We also see that the graph E2 has

|E0
2 | = |E0

1 |+ |E0
3 | < m+ k + 1 + 2 = m+ k + 3. Since l = 0 and n = 1 in this case,

we have |E0
2 | < m+ k + n+ l + 2.

Case [11]: One checks by elementary methods that a graph E2 of the form

• x // • ∞ +3 • y
// •

where x and y are finite nonzero numbers indicating the number of edges drawn,

can realize all possible choices of order and unit in the given extension. In this case

k = l = 0 and m = k = 1, and we see that |E0
2 | = 4 = m+ k + n+ l + 2.

63



2.6. SIX-TERM EXACT SEQUENCES REALIZED BY GRAPH C∗-ALGEBRAS

Using basic group theory, and the fact that if φ : G → H is a group homomor-

phism, then rankG = rank imφ + rank kerφ, we see that the following relations are

also satisfied:

• F2 and G2 are finitely generated abelian groups

• rankF1 ≤ rankF2 ≤ rankF1 + rankF3

• rankF2−rankG2 = rankF3−rankG3+rankF1−rankG1 (so that, in particular,

rankF2 ≤ rankG2).

Recall that the class of Cuntz-Krieger algebras of matrices satisfying Condi-

tion (II) coincides with the class of C∗-algebras of finite graphs with no sinks that

satisfy Condition (K), which also coincides with the C∗-algebras of finite graphs with

no sinks that have a finite number of ideals (see [4, Theorem 3.13]). The following

result can therefore be interpreted as determining the range of the six-term exact

sequence for Cuntz-Krieger algebras with a unique nontrivial ideal.

Theorem 2.6.5. If C∗(E) is the C∗-algebra of a finite graph with no sinks and with a

unique nontrivial ideal I, then Ksix(C
∗(E), I) and [1C∗(E)] is a complete isomorphism

invariant within this class. The range of this invariant is all six-term exact sequences

G1
ε // G2

γ
// G3

0
��

F3

δ

OO

F2
γ′
oo F1

ε′oo

satisfying the conditions (1),(3),(4) of Theorem 2.6.4 as well as satisfying:

(2’) rankG1 = rankF1 and rankG3 = rankF3.
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The order unit of C∗(E) can be any element of G2. Moreover, if G1
∼= Zm1 ⊕ . . . ⊕

Zmk
⊕Zm and G3

∼= Zn1 ⊕ . . .⊕Znl
⊕Zn, then E may be chosen with no more than

m+ k + n+ l + 2 vertices.

Proof. Proceed as in the proof of Case [∞∞] of Theorem 2.6.3, but use Proposi-

tion 2.3.9 in place of Proposition 2.3.3. Also observe that C∗(E), as well as the ideal

and quotient by the ideal, are purely infinite in this case, and hence the ordering on

the K0-groups is unnecessary in the invariant.

From basic group theory, and using the fact that if φ : G→ H is a group homomor-

phism, then rankG = rank imφ + rank kerφ, we see that the following relations are

also satisfied:

• F2 and G2 are finitely generated abelian groups

• rankF1 ≤ rankF2 ≤ rankF1 + rankF3

• rankF2 = rankG2.

2.7 Permanence

Consider a class of C∗-algebras C with the property that whenever A ∈ C, any ideal

I and any quotient A/I also lies in C. A permanence result for C is a result that

gives conditions for any extension

0 // I ι // A π // A/I // 0
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to have the property that I,A/I ∈ C implies A ∈ C, in terms of the six-term exact

sequence

K0(I)
ι∗ // K0(A)

π∗ // K0(A/I)

∂0
��

K1(A/I)

∂1

OO

K1(A)π∗
oo K1(I)ι∗

oo

from K-theory.

Two well-known permanence results are of direct relevance for the following.

First, Brown in [10] proved that if I and A/I are AF algebras, then so is A. And

second, it follows from [9, Theorem 3.14 and Corollary 3.16] that if I and A/I are

of real rank zero, then A is of real rank zero precisely when ∂0 = 0.

We now set out to prove a permanence result for the class C of stable graph

C∗-algebras of real rank zero. It is known that when A ∈ C, then so is any ideal I

and any quotient A/I. We offer the following permanence result under the added

assumptions that I and A/I are either AF or simple, and I is a stenotic ideal of A.

Our strategy for doing so is as follows: Given an extension of graph C∗-algebras

satisfying the necessary conditions, we build, using the results in the previous section,

a graph realizing its K-theoretic data. And then we appeal to work of the first named

author, Restorff and Ruiz to be able to prove by classification that the given extension

C∗-algebra is in fact isomorphic to the one given by the constructed graph.

Theorem 2.7.1. Let

0 // C∗(E1) // A // C∗(E3) // 0

be a stenotic extension with C∗(E1) and C∗(E2) both stable and either simple or AF.
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The following three statements are equivalent:

(i) A is a graph C∗-algebra.

(ii) A is a graph C∗-algebra of real rank zero.

(iii) (1) ∂0 = 0; and

(2) K0(C
∗(E3))

+ = K0(C
∗(E3)) =⇒ K0(A)+ = K0(A).

Proof. We first note that by Brown’s extension result combined with Proposition

2.3.1, all of the claims hold true in the [11] case, with (iii)(2) being vacuously true.

Turning to the remaining three cases, let I = C∗(E1) considered as an ideal of

A. In these cases, either I or A/I is simple, so that I is necessarily gauge-invariant.

As we have seen, this forces ∂0 = 0, and since both I and A/I have real rank zero,

we conclude the same about A, proving (i) =⇒ (ii). That (ii) =⇒ (iii)(1) is also

clear from [9], and that (ii) =⇒ (iii)(2) follows from Corollary 2.5.10(2) since when

K0(C
∗(F )) is trivially ordered, C∗(F ) must in our case be simple and purely infinite.

The remaining implication (iii) =⇒ (i) is the most difficult. To begin, we

assume that (iii) holds. Since C∗(E1) is a graph C∗-algebra that is either simple or

AF, it follows that C∗(E1) has the corona factorization property. Because C∗(E3) is

a separable stable C∗-algebra, and C∗(E1) has the corona factorization property, it

follows from [40] that A is stable.

In case [∞∞], we know that K0(A) is trivially ordered, and may hence use

Theorem 2.6.3 to realize K+
six(A, I) by some graph E2. Since M(I)/I is simple,

the extension is automatically full, and it follows from [20, Theorem 4.6] that A ∼=
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C∗(E2), and A is a graph C∗-algebra. The case [∞1] is solved precisely the same

way by appealing instead to Theorem 2.6.2 to realize K+
six(A, I). In case [1∞] the

result follows similarly, appealing to Theorem 2.6.1. This time the extension is not

full a priori, but turns out to be so because of condition (iii)(2) combined with [21,

Corollary 3.17], so again we obtain the desired result.

The condition (iii)(2) is vacuously true in the [11] and [∞1] cases, and automat-

ically true in the [∞∞] case as seen in Proposition 2.5.7. It is necessary in the [1∞]

case as noted in [21, Example 4.4].

The class of unital graph C∗-algebras is not closed under taking ideals. Never-

theless, we have the following.

Theorem 2.7.2. Let

0 // C∗(E1)⊗K // A // C∗(E3) // 0

be a unital essential extension with C∗(E1) and C∗(E3) both unital, simple, and purely

infinite C∗-algebras. The following are equivalent:

(i) A is a graph C∗-algebra.

(ii) A has real rank zero.

Proof. That (i) implies (ii) follows as above. To prove the other implication, set

I = C∗(E1) ⊗ K and first realize Ksix(A, I) along with the given element [1A]0 by

some finite graph E2, using Theorem 2.6.4. By [19], we get that A ∼= C∗(E2).

Similarly, by Theorem 2.6.5 we obtain the following result.
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Theorem 2.7.3. Let

0 // OB1 ⊗K // A // OB3
// 0

be a unital essential extension with OB1 and OB3 both simple Cuntz-Krieger algebras.

The following are equivalent:

(1) A is a Cuntz-Krieger algebra.

(2) A is a graph C∗-algebra.

(3) A has real rank zero.

We see no reason why this theorem should not hold when OB1 and OB3 are given

of real rank zero and with an arbitrary ideal lattice, but at the moment proving this

seems outside reach. Substantial progress has been reported in [2] and [3].

69



CHAPTER 3

Observing Lyapunov Exponents of Infinite-dimensional Systems

3.1 Introduction

The paper below was published in The Journal of Statistical Physics in December

2015 [53]. The three authors of the paper are William Ott, Mauricio A. Rivas, and

myself.

This paper is about observing Lyapunov exponents of infinite-dimensional dy-

namical systems by projecting the dynamics into RN . We focus on discrete-time

infinite-dimensional dynamics produced by maps on real Hilbert spaces. Important
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types of such maps include time-T maps and Poincaré return maps generated by the

solution semigroups of evolution partial differential equations.

Let H be a real Hilbert space and let f : H → H be a C1 (continuously Fréchet-

differentiable) map. A Lyapunov exponent ω(x, v) is a limit of the form

ω(x, v) = lim
n→∞

1

n
log ‖Dfnx v‖ , (3.1)

where x ∈ H and v ∈ TxH is a tangent vector.

3.1.1 Lyapunov exponents in finite dimensions

Lyapunov exponents play a central role in the theory of nonuniformly hyperbolic

dynamical systems in finite dimensions (here the domain of f is a compact Rieman-

nian manifold M). They are deeply related to a number of dynamical quantities

of interest, including entropy, dimension, and rates of escape in open systems. Al-

though Lyapunov exponents encode information about the infinitesimal behavior of

f , a vast array of results demonstrates that local and even global information about

the nonlinear dynamics of f can be deduced from them (see e.g. [5, 8, 71]).

The limit in (3.1) does not necessarily exist for every (x, v) in the tangent bundle

TM ; nevertheless, Lyapunov exponents exist for almost every x ∈ M assuming sta-

tionarity. Oseledec [51] proves that if µ is an f -invariant Borel probability measure,

then for µ almost every x ∈M , there exist numbers

ω1(x) > ω2(x) > · · · > ωq(x)(x)

with corresponding multiplicities m1(x), . . . ,mq(x)(x) such that

71



3.1. INTRODUCTION

(a) for every tangent vector v ∈ TxM , ω(x, v) exists and equals ωj(x) for some

j;

(b)
∑q(x)

i=1 mi(x) = dim(M);

(c)
∑q(x)

i=1 ωi(x)mi(x) = limn→∞
(
1
n

)
log |det(Dfnx )|.

Further, if f is a diffeomorphism of M , then the tangent space TxM admits a de-

composition

TxM = E1(x)⊕ E2(x)⊕ · · · ⊕ Eq(x)(x)

with dim(Ei(x)) = mi(x) and ω(x, v) = ωi(x) for every v ∈ Ei(x). If µ is ergodic,

then the ωi(·) are constant µ almost everywhere; in this case we call the ωi the

Lyapunov exponents of the system (f, µ).

While the Oseledec multiplicative ergodic theorem makes conclusions about Lya-

punov exponents given an invariant measure, the existence of important invariant

measures for dynamical systems that exhibit some degree of hyperbolicity is another

matter entirely. Researchers actively work to identify mechanisms that may produce

nonuniform hyperbolicity and then prove that these mechanisms do produce nonuni-

form hyperbolicity for concrete systems of interest in the physical and biological

sciences. This program has been carried out for limit cycles and homoclinic orbits

in [70] and [69], respectively.
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3.1.2 Lyapunov exponents in infinite dimensions

Here one starts with a dynamical system σ : Ω→ Ω, selects a Banach space B, and

then assigns to each ω ∈ Ω a bounded linear operator Lω on B. The assignment

ω 7→ Lω is known as a cocycle over the dynamical system. Having defined the cocycle,

one then hopes to prove a multiplicative ergodic theorem in the spirit of Oseledec

that applies to the compositions L(n)
ω = Lσn−1(ω) ◦ · · · ◦Lσ(ω) ◦Lω. For a smooth map

f on a real Hilbert space H, Ruelle proves a multiplicative ergodic theorem for the

derivative cocycle assuming Dfx is compact [63]. Cocycles into operators on Banach

spaces (possibly with nontrivial essential spectrum) are treated in [26, 41, 48, 67].

Transfer operator techniques have led to substantial understanding of the sta-

tistical properties of deterministic autonomous dynamical systems. With an eye

on applications, multiplicative ergodic theorists in recent years have sought to ex-

tend transfer operator techniques to nonautonomous and random dynamical systems.

This effort has led to beautiful multiplicative ergodic theorems for transfer operator

cocycles [26, 27].

The program aimed at deducing global dynamical information about infinite-

dimensional systems from Lyapunov exponent data is in its early stages of develop-

ment. Results in this direction include the existence of Sinai-Ruelle-Bowen (SRB)

measures for periodically-kicked supercritical Hopf bifurcations in a concrete PDE

context [46] and the existence of horseshoes in a general context [42, 43].
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3.1.3 Observation of Lyapunov exponents

Suppose A ⊂ H satisfies f(A) = A (we call A an invariant set). For example, A may

be the global attractor of a dissipative PDE such as the two-dimensional incompress-

ible Navier-Stokes system. We are interested in observing Lyapunov exponents of

the restriction f |A by projecting the dynamics into RN . For a map ϕ : H → RN (we

call ϕ an observable or measurement map), we say that ϕ induces dynamics on ϕ(A)

if there exists a map f∗ : ϕ(A)→ ϕ(A) such that the following diagram commutes:

A
f−−−→ Ayϕ yϕ

ϕ(A)
f∗−−−→ ϕ(A)

Question 1. For a ‘typical’ observable ϕ, if ϕ induces dynamics on ϕ(A) and if ω(z, w)

is a Lyapunov exponent for f∗, do there exist x ∈ A and a vector v such that ω(x, v)

is a Lyapunov exponent for f |A and ω(x, v) = ω(z, w)?

Ott and Yorke [54] develop an affirmative answer to Question 1 for the case

H = RD. In this work we treat the infinite-dimensional case by developing an

embedding result of the following type: For a ‘typical’ observable ϕ, if ϕ induces

dynamics on ϕ(A), then ϕ embeds A into RN . We then use this embedding result

(Theorem 3.3.10) to answer Question 1 in the affirmative (Corollary 3.3.11). Keep

the following in mind as we develop the theory.

(a) (Placement of hypotheses) Since we develop a theory of observation, we

strive to place the hypotheses on the observed set ϕ(A) and the induced

dynamics thereon rather than on f and A. Indeed, we view f and A as
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objects that are not known a priori.

(b) (Notion of ‘typical’) We use the measure-theoretic notion of prevalence [12,

33, 34, 35, 55]. Prevalence is suitable for spaces of observables such as

C1(H,RN). See Section 3.2 for a brief overview.

(c) (Generalized tangent spaces) We expect the set A to have fractal properties.

We therefore use a generalized notion of tangent space suitable for such sets

(Definition 3.3.2).

We finish the introduction by briefly examining an alternate approach to the

embedding problem: Use assumptions about dimension to embed A into RN (in the

spirit of the Whitney embedding theorem) rather than formulating results in terms

of induced dynamics. As we will see, one encounters an unresolved challenge when

using dimension characteristics.

3.1.4 Embedding results via dimension characteristics

Here we discuss a prototype result that makes use of dimension.

Prototype Theorem 3.1.1. Let H be a real Hilbert space and let A ⊂ H be com-

pact. Fix N ∈ N. For almost every (in the sense of prevalence) ϕ ∈ C1(H,RN), if

dim(ϕ(A)) < N/2, then ϕ is one-to-one on A.

Observe that the hypothesis involving dimension is placed on ϕ(A) rather than

A. We do not know if there exists a dimension characteristic for which the proto-

type theorem holds. Natural candidates include box-counting dimension dimB and
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Hausdorff dimension dimH. Sets with finite box-counting dimension project well:

Theorem 3.1.2 ([32]). Let H be a real Hilbert space and let A ⊂ H be a compact set

with dimB(A) = d < ∞ and with thickness exponent τ(A) (see [32, Definition 3.4]

for the definition of thickness exponent). Let N > 2d be an integer and let α ∈ R

satisfy

0 < α <
N − 2d

N(1 + τ(A)/2)
.

For almost every (in the sense of prevalence) C1 map ϕ : H → RN , there exists

K > 0 such that for all x, y ∈ A, we have

K ‖ϕ(x)− ϕ(y)‖α > ‖x− y‖ .

That is, ϕ is one-to-one on A with Hölder-continuous inverse.

Remark 3.1.3. Theorems 3.1.2 and 3.1.4 remain true when one replaces the thickness

exponent of A with the Lipschitz deviation dev(A) [57]. Roughly speaking, τ(A)

measures how well A can be approximated by finite-dimensional subspaces of H,

while dev(A) measures how well A can be approximated by the graphs of Lipschitz

functions defined on finite-dimensional subspaces of H (with lower values of τ(A)

and dev(A) indicating better approximability). One always has dev(A) 6 τ(A).

However, it is difficult to infer the box-counting dimension of a set from that of

its images. Sauer and Yorke [65] construct a compact set Q ⊂ R10 with dimB(Q) = 5

such that dimB(ϕ(Q)) < 4 for every C1 map ϕ : R10 → R6. See [25, 36] for additional

examples in the same spirit. By contrast, Hausdorff dimension is preserved by typ-

ical smooth maps (for sets with thickness exponent zero, a condition automatically

satisfied when H is finite-dimensional).
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Theorem 3.1.4 ([52]). Let H be a real Hilbert space and let A ⊂ H be a compact

set with thickness exponent τ(A). Let N ∈ N. For almost every (in the sense of

prevalence) C1 map ϕ : H → RN , we have

dimH(ϕ(A)) > min

{
N,

dimH(A)

1 + τ(A)/2

}
.

In particular, dimH(ϕ(A)) = dimH(A) if τ(A) = 0 and N > dimH(A).

However, sets with low Hausdorff dimension may be difficult to project in a one-

to-one way. Kan [64, Appendix] constructs a set X ⊂ RD with Hausdorff dimension

zero such that every linear map ϕ : RD → RN fails to be one-to-one on X if N < D.

For H = RD, the difficulties associated with Hausdorff dimension and box-

counting dimension can be overcome by using the notion of tangent dimension

dimT(Y ). Introduced in [54], dimT(Y ) is given for Y ⊂ RD by

dimT(Y ) = sup
x∈Y

dim(TxY ),

where TxY denotes the tangent space at x relative to Y (Definition 3.3.2). Ott

and Yorke formulate a ‘Platonic’ version of the Whitney embedding theorem using

tangent dimension.

Theorem 3.1.5 ([54]). Let A be a compact subset of RD and let N ∈ N. For almost

every (in the sense of prevalence) ϕ ∈ C1(RD,RN), if dimT(ϕ(A)) < N/2, then ϕ is

one-to-one on A.

The proof of Theorem 3.1.5 uses the fact that if A ⊂ RD is compact, then

dimB(A) 6 dimT(A). This inequality is a consequence of a manifold extension
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theorem [54, Theorem 3.5]: For every x ∈ A, there exists a neighborhood N(x) of

x in RD and a C1 manifold M such that M ⊃ A ∩ N(x) and TxA = TxM . The

manifold extension theorem, however, does not hold in general for compact subsets

of infinite-dimensional real Hilbert spaces.

3.2 Linear prevalence

Prevalence is a measure-theoretic notion of genericity for infinite-dimensional spaces.

We summarize the theory here in the context of complete metric linear spaces. For

more information, see [12, 33, 34, 35, 55].

Definition 3.2.1. Let V be a complete metric linear space. A Borel set S ⊂ V is said

to be shy if there exists a Borel measure µ on V satisfying

(a) 0 < µ(K) <∞ for some compact set K ⊂ V ;

(b) µ(S + x) = 0 for all x ∈ V .

We say that such a measure is transverse to S. More generally, a set S is said to be

shy if it is contained in a shy Borel set. The complement of a shy set is said to be a

prevalent set.

Prevalence has the following properties [34].

(LP1) All prevalent sets are dense.

(LP2) Every subset of a shy set is shy.
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(LP3) Every translate of a shy set is shy.

(LP4) The union of a countable collection of shy sets is shy.

(LP5) A set S ⊂ Rm is shy if and only if it has Lebesgue measure zero.

Property (LP5) shows that prevalence generalizes the translation-invariant notion

of Lebesgue almost every to infinite-dimensional complete metric linear spaces.

It is useful to view a Borel measure µ on V as an object that defines a family of

perturbations. From this point of view, a Borel set E ⊂ V is prevalent if there exists

a Borel measure µ such that for every x ∈ V , x+ y ∈ E for µ almost every y in the

support of µ. An often useful choice for µ is Lebesgue measure on a finite-dimensional

subspace of V .

Definition 3.2.2. Let V be a complete metric linear space. A finite-dimensional

subspace P ⊂ V is said to be a probe for a Borel set E ⊂ V provided

λP ({p ∈ P : x+ p /∈ E}) = 0

for every x ∈ V , where λP denotes Lebesgue measure on P .

Notice that if a Borel set E ⊂ V has a probe, then E is prevalent.

3.3 Projection of dynamics: the Hilbert space case

Throughout this section, let H be a real Hilbert space with norm ‖·‖ induced by the

inner product 〈·, ·〉 and let H∗ denote the dual of H. Let f : H → H be a map and

let A ⊂ H satisfy f(A) = A (we call A an invariant set). For a map ϕ : H → RN , we
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say that ϕ induces dynamics on ϕ(A) if there exists a map f∗ : ϕ(A) → ϕ(A) such

that the following diagram commutes:

A
f−−−→ Ayϕ yϕ

ϕ(A)
f∗−−−→ ϕ(A)

We focus on the following question. For a typical observable ϕ : H → RN , does the

existence of an induced map f∗ with specified properties imply that A is ‘equivalent’

to ϕ(A) and that the dynamical systems (f, A) and (f∗, ϕ(A)) are ‘equivalent’? This

question has been answered affirmatively in the continuous category.

3.3.1 Continuous observables

We establish some notation before stating the result. For a map g : X → X and

k ∈ N, let Perk(g) denote the set of periodic points of g of period k. More precisely,

Perk(g) = {x ∈ X : gk(x) = x and gi(x) 6= x for 1 6 i 6 k − 1}.

Theorem 3.3.1 ([45]). Let H be a separable real Hilbert space and let f : H → H be

a map. Suppose that A ⊂ H is a compact set satisfying f(A) = A. Let N ∈ N and

let V be any closed subspace of C0(H,RN) that contains the bounded linear functions.

For prevalent ϕ ∈ V , if f induces a map f∗ on ϕ(A) satisfying f∗ ◦ ϕ = ϕ ◦ f on A

and if

(a) f∗ : ϕ(A)→ ϕ(A) is invertible;

(b) Per1(f∗) ∪ Per2(f∗) is countable;
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then ϕ|A is a homeomorphism and the dynamical systems (f, A) and (f∗, ϕ(A)) are

topologically conjugate.

3.3.2 Observing differentiable dynamics

In order to formulate versions of Theorem 3.3.1 for differentiable dynamics, we must

first define a notion of differentiability suitable for maps defined on arbitrary subsets

of real Hilbert spaces. We call this notion quasi-differentiability; it is defined in terms

of generalized tangent spaces.

Definition 3.3.2. Let X be a real Hilbert space and let E ⊂ X. For x ∈ E, let ∆xE

be the set of all directions v ∈ X for which there exist sequences (xi)
∞
i=1 and (yi)

∞
i=1

in E such that xi → x, yi → x, xi 6= yi for all i, and

lim
i→∞

yi − xi
‖yi − xi‖

= v.

The tangent space at x relative to E, denoted TxE, is the smallest closed subspace

of X that contains ∆xE. The tangent bundle over E is defined by TE = {(x, v) :

x ∈ E, v ∈ TxE}.

Definition 3.3.3. Let X be a real Hilbert space. A map f : X → X is said to be

quasi-differentiable on a set E ⊂ X if for each x ∈ E there exists a bounded

linear operator Dfx on X such that

lim
i→∞

f(yi)− f(xi)−Dfx(yi − xi)
‖yi − xi‖

= 0

for all sequences (xi)
∞
i=1 in E and (yi)

∞
i=1 in E satisfying xi → x, yi → x, and xi 6= yi

for all i. We call the operator Dfx a quasi-derivative of f at x.
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Now assume for the remainder of Subsection 3.3.2 that f : H → H is C1 and

recall that A ⊂ H satisfies f(A) = A. We will address the following question.

(Q1) For a prevalent C1 observable ϕ : H → RN , if f induces a quasi-differentiable

map f∗ on ϕ(A), does ϕ embed A into RN?

As we now explain, care must be taken when choosing a notion of embedding.

3.3.2.1 Notions of embedding

Our first notion of embedding is motivated by classical differential topology.

Definition 3.3.4. A C1 map ϕ : H → RN is said to be an immersion on a set E ⊂ H

if Dϕx : TxE → Tϕ(x)ϕ(E) is injective for every x ∈ E. An injective immersion ϕ is

said to be an embedding of E if ϕ|E maps E homeomorphically onto ϕ(E).

Suppose that C1 ϕ : H → RN embeds a set E ⊂ H into RN and let p ∈ E be

an accumulation point of E. If H is finite-dimensional, then the fact that Dϕp :

TpE → Tϕ(p)ϕ(E) is injective implies that it is surjective as well. This follows from

the fact that the unit sphere in any finite-dimensional Hilbert space is compact.

However, injectivity of Dϕp on TpE does not imply surjectivity of Dϕp on TpE if H

is infinite-dimensional because the unit sphere in such an H is no longer compact.

The following example illustrates the phenomenon.

Let X be an infinite-dimensional separable real Hilbert space with orthonormal

basis {e i : i ∈ N} and let p ∈ X. Define Q = {p+ e i/i : i ∈ N} ∪ {p}. The direction

set ∆pQ is empty and therefore TpQ = {0} despite the fact that p is an accumulation
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point of Q. Now suppose that C1 ϕ : X → RN embeds Q into RN . Since ϕ(p) is an

accumulation point of ϕ(Q), the compactness of the unit sphere SN−1 in RN implies

that ∆ϕ(p)ϕ(Q) is nonempty and therefore dim(Tϕ(p)ϕ(Q)) > 0.

Motivated by this example, we formulate a second, stronger notion of embedding.

Definition 3.3.5. A C1 map ϕ : H → RN is said to be a strong embedding of a

set E ⊂ H if ϕ is an embedding of E and if Dϕx : TxE → Tϕ(x)ϕ(E) is bijective for

every x ∈ E.

Note that if H is finite-dimensional, then an embedding of E is a strong embed-

ding of E.

3.3.2.2 Embedding theorems: general case

We formulate conditions under which (Q1) has an affirmative answer in the sense of

Definition 3.3.4.

Lemma 3.3.6. Let H be a separable real Hilbert space and let f : H → H be a C1

map. Suppose A ⊂ H is such that f(A) = A and Dfx is injective on TxA for every

x ∈ A \ Per1(f |A). Let N ∈ N. For every ball B = B(y, r) in H, the set WB of

observables ϕ ∈ C1(H,RN) satisfying

(a) there exists (x, v) ∈ TA such that v 6= 0, x /∈ B(y, 2r), f(x) ∈ B(y, r), and

Dϕxv = 0;

(b) for every such element of TA we have (Dϕf(x) ◦Dfx)v = 0;

is a shy subset of C1(H,RN).
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Proof of Lemma 3.3.6. Assume H is infinite-dimensional. It suffices to consider the

case N = 1. We will construct a measure µ that is transverse to WB. Choose a C∞

bump function β : R→ R such that

0 6 β 6 1, β ≡ 1 on {|s| < 25/16} , supp(β) = {|s| 6 9/4} .

Define βB : H → R by

βB(x) = β

(
‖x− y‖2

r2

)
.

The function βB has the following properties:

0 6 βB 6 1, βB|B(y, 5r/4) ≡ 1, supp(βB) = B(y, 3r/2).

Now let {e∗m : m ∈ N} be an orthonormal basis for H∗. Define

Q =

{
βB

∞∑
m=1

m−1γme∗m : |γm| 6 1 for all m

}
.

Notice that Q is compact. Let µ be the probability measure on Q that results

from choosing the γm independently and uniformly on [−1, 1]. We claim that µ is

transverse to WB.

Let ψ ∈ C1(H,R). Suppose that there exists (x, v) ∈ TA such that v 6= 0,

x /∈ B(y, 2r), f(x) ∈ B(y, r), and Dψxv = 0. (If no such element of TA exists, then

{η ∈ Q : ψ + η ∈ WB} = ∅.) Let z = Dfxv. We represent z as a sequence (zi)
∞
i=1

where zi = 〈z, e i〉. Let ` ∈ N be such that z` 6= 0. For (γm) ∈ [−1, 1]N, we have

D

(
ψ + βB

∞∑
m=1

m−1γme∗m

)
f(x)

z = Dψf(x)z +
∑
m6=`

m−1γm〈em, z〉+ `−1γ`〈e`, z〉

= Dψf(x)z +
∑
m6=`

m−1γm〈em, z〉+ `−1γ`z`. (3.2)
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Consequently, if we fix γm for all m 6= `, then the right side of (3.2) is equal to

0 for at most one value of γ`. The Fubini/Tonelli theorem therefore implies that

µ({η ∈ Q : ψ + η ∈ WB}) = 0. We conclude that µ is transverse to WB.

Lemma 3.3.7. Let H be a separable real Hilbert space and let f : H → H be a C1

map. Suppose A ⊂ H is such that f(A) = A and suppose x ∈ Per1(f |A). Let N ∈ N.

If

(Op1) the operator Dfx|TxA is not a scalar multiple of the identity;

(Op2) the real point spectrum σp of (Dfx|TxA)∗ is countable;

then the set Zx of observables ϕ ∈ C1(H,RN) satisfying

(Ker1) ker(Dϕx) ∩ TxA 6= {0};

(Ker2) Dfx
(

ker(Dϕx) ∩ TxA
)
⊂ ker(Dϕx);

is a shy subset of C1(H,RN).

Proof of Lemma 3.3.7. Assume H is infinite-dimensional. It suffices to consider the

case N = 1. If dim(TxA) = 1, then (Ker1) is satisfied by only a shy subset of

C1(H,R). Condition (Ker1) is always satisfied if dim(TxA) > 1; in this case we show

that (Ker2) is a shy condition.

Let L = Dfx|TxA and assume that L is not a scalar multiple of the identity.

Suppose that 0 6= w∗ ∈ (TxA)∗ satisfies L(ker(w∗)) ⊂ ker(w∗). For all v ∈ ker(w∗),

we have 〈w, v〉 = 0 and 〈w,Lv〉 = 〈L∗w, v〉 = 0. The vector w is therefore an

eigenvector of L∗.
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We show that Zx is shy by using Lebesgue measure on a 1-dimensional subspace

of C1(H,R). For γ ∈ σp, let Eγ be the eigenspace associated with γ. Since L is not

a scalar multiple of the identity, neither is L∗. Let

y ∈ TxA \
⋃
γ∈σp

Eγ.

We view y∗ ∈ (TxA)∗ as an element of H∗ by composing y∗ with the orthogonal

projection π from H onto TxA: define y∗(v) = 〈y, π(v)〉 for all v ∈ H. Let Y be the

1-dimensional subspace of C1(H,R) spanned by y∗. Let ϕ ∈ C1(H,R). We claim

that

λY ({c ∈ R : ϕ+ cy∗ ∈ Zx}) = 0. (3.3)

Let γ ∈ σp. Suppose that c1, c2 ∈ R are such that ϕ + c1y
∗ ∈ Zx and ϕ + c2y

∗ ∈

Zx. Suppose further that the vectors in TxA associated with Dϕx ◦ π + c1y
∗ and

Dϕx ◦ π + c2y
∗ via the Riesz representation theorem are both elements of Eγ. This

implies that (c1−c2)y ∈ Eγ. Since y ∈ TxA\Eγ, we conclude that c1 = c2. The set σp

is countable and therefore {c ∈ R : ϕ+cy∗ ∈ Zx} is countable. This establishes (3.3).

The following proposition provides a preliminary answer to (Q1).

Proposition 3.3.8. Let H be a separable real Hilbert space and let f : H → H be a

C1 map. Suppose that A ⊂ H is a compact set such that f(A) = A. Assume

(H1) Per1(f |A) ∪ Per2(f |A) is countable;

(H2) f |A is injective;
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(H3) Dfx is injective on TxA for every x ∈ A \ Per1(f |A);

(H4) for every x ∈ Per1(f |A), the operator Dfx|TxA is not a scalar multiple of the

identity;

(H5) for every x ∈ Per1(f |A), the real point spectrum of (Dfx|TxA)∗ is countable.

Let N ∈ N. For prevalent ϕ ∈ C1(H,RN), if f induces a quasi-differentiable map f∗

on ϕ(A), then ϕ embeds A into RN in the sense of Definition 3.3.4.

Proof of Proposition 3.3.8. Let N ∈ N. Applying Proposition 3.5 of [45], there exists

a prevalent set Γ1 ⊂ C1(H,RN) such that for ϕ ∈ Γ1, if f induces a map f∗ on ϕ(A)

satisfying f∗ ◦ ϕ = ϕ ◦ f on A, then ϕ maps A homeomorphically onto its image.

Let {Bi : i ∈ N} be a collection of open balls in H that forms a basis for the

topology on H. Define the following sets:

Γ2 =
∞⋂
i=1

C1(H,RN) \WBi
, Γ3 =

⋂
x∈Per1(f |A)

C1(H,RN) \ Zx.

The set Γ2 is prevalent by Lemma 3.3.6 and property (LP4). The set Γ3 is prevalent

by Lemma 3.3.7 and (LP4). Property (LP4) applies here because (H1) gives that

Per1(f |A) is countable.

Let Γ = Γ1 ∩ Γ2 ∩ Γ3. For ϕ ∈ Γ, if f induces a quasi-differentiable map f∗ on

ϕ(A) satisfying f∗ ◦ ϕ = ϕ ◦ f on A, then ϕ embeds A into RN .

We obtain an improved version of Proposition 3.3.8 by transferring (H1)–(H3)

onto the induced dynamics.
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Theorem 3.3.9. Let H be a separable real Hilbert space and let f : H → H be

a C1 map. Suppose that A ⊂ H is a compact set such that f(A) = A. As-

sume (H4) and (H5). Let N ∈ N. For prevalent ϕ ∈ C1(H,RN), if f induces a

quasi-differentiable map f∗ on ϕ(A) satisfying

(H1)* Per1(f∗) ∪ Per2(f∗) is countable;

(H2)* f∗ is injective;

(H3)* (Df∗)z is injective on Tzϕ(A) for every z ∈ ϕ(A) \ Per1(f∗);

then ϕ embeds A into RN in the sense of Definition 3.3.4.

Proof of Theorem 3.3.9. If (H1)–(H3) hold, then Theorem 3.3.9 follows from Propo-

sition 3.3.8. If (H1) does not hold, then Per1(f |A) ∪ Per2(f |A) is uncountable. For

prevalent ϕ ∈ C1(H,RN), ϕ(Per1(f |A) ∪ Per2(f |A)) is uncountable (see Proposi-

tion 2.6 of [45]); for any such ϕ, f cannot induce a map on ϕ(A) satisfying (H1)*.

If (H2) (respectively (H3)) fails to hold, then a quasi-differentiable induced map

satisfying (H2)* (respectively (H3)*) cannot exist for prevalent ϕ ∈ C1(H,RN).

3.3.2.3 Embedding theorems: strong case

We now formulate conditions under which (Q1) has an affirmative answer in the

sense of Definition 3.3.5. The key idea here is to place a mild hypothesis on the

tangent dimension of the image ϕ(A).

Theorem 3.3.10. Let H be a separable real Hilbert space and let f : H → H be a

C1 map. Suppose that A ⊂ H is a compact set such that f(A) = A. Assume (H5).
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Let N ∈ N. For prevalent ϕ ∈ C1(H,RN), if

dimT(ϕ(A)) < N, (DimT)

and if f induces a quasi-differentiable map f∗ on ϕ(A) satisfying (H1)*–(H3)* as

well as

(H4)* for every z ∈ Per1(f∗), the operator Df∗|Tzϕ(A) is not a scalar multiple of

the identity,

then ϕ strongly embeds A into RN .

Proof of Theorem 3.3.10. First assume that for every q ∈ A and for every pair of

sequences (xi)
∞
i=1 and (yi)

∞
i=1 in A with xi → q, yi → q, and xi 6= yi for all i, the

sequence of normalized differences ((yi−xi)/‖yi−xi‖) in the unit sphere S of H has a

converging subsequence. Under this assumption, if ϕ ∈ C1(H,RN) is an embedding

of A, then ϕ is a strong embedding of A.

If (H4) holds as well, then the proof of Theorem 3.3.9 works for Theorem 3.3.10

as well. If (H4) does not hold, there exists p ∈ Per1(f |A) such that Dfp|TpA is a

scalar multiple of the identity. We consider two cases. First, if dim(TpA) > N , then

for prevalent ϕ ∈ C1(H,RN), we have that dim(Tϕ(p)ϕ(A)) = N and Dϕp maps TpA

surjectively onto Tϕ(p)ϕ(A). Any such ϕ cannot induce a quasi-differentiable map on

ϕ(A) satisfying (H4)*. Second, if dim(TpA) < N , then for prevalent ϕ ∈ C1(H,RN),

Dϕp maps TpA injectively (and therefore bijectively by our sequential precompact-

ness assumption) onto Tϕ(p)ϕ(A). If any such ϕ induces a quasi-differentiable map

f∗ on ϕ(A), we would have (Df∗)ϕ(p) = (Dϕ ◦ Df ◦ Dϕ−1)ϕ(p) on Tϕ(p)ϕ(A). This
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precludes the possibility of (H4)*.

For the second part of the proof, assume that there exist q̂ ∈ A and sequences

(xi)
∞
i=1 and (yi)

∞
i=1 in A such that xi → q̂, yi → q̂, xi 6= yi for all i, and the sequence

of normalized differences (vi = (yi − xi)/‖yi − xi‖) has no converging subsequences.

This implies that

ρ := lim
M→∞

inf
i,j>M
i 6=j

∠(vi, vj) > 0.

By passing to a subsequence, we may assume that ∠(vi, vi′) > ρ/2 for all i 6= i′.

We use the sequence (vi) to construct a probe. Let V = span{vi : i ∈ N} and let

πV : H → V denote orthogonal projection onto V . Let L0 : V → V be a bounded

linear map such that 〈L0vi, L0vi′〉 = 0 for all i 6= i′. Define L = L0 ◦ πV . Let

{en : 1 6 n 6 N} be an orthonormal basis for RN . Define the bounded linear map

ψ : H → RN by

ψ =
N∑
n=1

(
∞∑
m=0

(L(ymN+n − xmN+n))∗ ◦ L

)
en, (3.4)

where we may assume (by passing to a subsequence if necessary) that ‖L(yi − xi)‖

decreases monotonically to zero as i→∞ and that this happens quickly enough to

guarantee that the sums in (3.4) converge.

Let ϕ ∈ C1(H,RN). We claim that the set

Zϕ =
{
c ∈ R : dim(T(ϕ+cψ)(q̂)(ϕ+ cψ)(A)) < N

}
is countable. To see this, let c0 ∈ R be such that there exist N distinct vectors
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w1, . . . , wN in the direction set ∆(ϕ+c0ψ)(q̂)(ϕ + c0ψ)(A) ⊂ SN−1 and N strictly in-

creasing sequences (m
(n)
j )∞j=1 in Z+ satisfying

lim
j→∞

(ϕ+ c0ψ)(y
m

(n)
j N+n

)− (ϕ+ c0ψ)(x
m

(n)
j N+n

)∥∥∥(ϕ+ c0ψ)(y
m

(n)
j N+n

)− (ϕ+ c0ψ)(x
m

(n)
j N+n

)
∥∥∥ = wn

for every 1 6 n 6 N . Note that any sufficiently large c0 will have this property.

Using c0 as a starting point, define maps s 7→ wn(s) by

wn(s) = lim
j→∞

(ϕ+ sψ)(y
m

(n)
j N+n

)− (ϕ+ sψ)(x
m

(n)
j N+n

)∥∥∥(ϕ+ sψ)(y
m

(n)
j N+n

)− (ϕ+ sψ)(x
m

(n)
j N+n

)
∥∥∥ .

Each map s 7→ wn(s) is defined on all of R except for perhaps one exceptional value

of s.

Let 1 6 n1 < n2 6 N . Our choice of ψ implies that s 7→ ∠(en1 , wn1(s)) is de-

creasing (and strictly decreasing on the preimage of (0, π)), while s 7→ ∠(en1 , wn2(s))

is increasing. Similarly, s 7→ ∠(en2 , wn2(s)) is decreasing (and strictly decreasing

on the preimage of (0, π)), while s 7→ ∠(en2 , wn1(s)) is increasing. It follows that

wn1(s) = wn2(s) for at most one value of s. The vectors w1(s), . . . , wN(s) are there-

fore all distinct except for at most N(N − 1)/2 values of s. We have shown that Zϕ

is finite.

The set {ϕ ∈ C1(H,RN) : dimT(ϕ(A)) = N} is prevalent. Every map in this set

fails to satisfy (DimT).

3.3.2.4 Implications for Lyapunov exponents

We answer the question that motivates this work - Question 1 - using Theorem 3.3.10.
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Corollary 3.3.11. Let H be a separable real Hilbert space and let f : H → H be a C1

map. Suppose that A ⊂ H is a compact set such that f(A) = A. Assume (H5). Let

N ∈ N. For prevalent ϕ ∈ C1(H,RN), if dimT(ϕ(A)) < N and if f induces a quasi-

differentiable map f∗ on ϕ(A) satisfying (H1)*–(H4)*, then Lyapunov exponents of

f∗ correspond to Lyapunov exponents of f as follows. If z ∈ ϕ(A) and ω(z, w) is a

Lyapunov exponent of f∗ with w ∈ Tzϕ(A), then ω(ϕ−1z, (Dϕ−1)zw) is a Lyapunov

exponent of f |A and ω(ϕ−1z, (Dϕ−1)zw) = ω(z, w).

Remark 3.3.12. A Lyapunov exponent ω(z, w) of f∗ with w ∈ TzRN \ Tzϕ(A) may

be spurious - it may be an artifact of ϕ that does not correspond to a Lyapunov

exponent of f .

3.4 Discussion

Invariant sets associated with evolution PDEs often live in finite-dimensional sub-

manifolds of the ambient function space, such as inertial manifolds or center mani-

folds. For example, the genuinely nonuniformly hyperbolic attracting sets produced

when certain parabolic PDEs are forced periodically live in two-dimensional center

manifolds [46]. It is interesting to consider if observational data can be used to

determine whether or not a given invariant set of interest is contained in a finite-

dimensional submanifold of the ambient Hilbert space. More precisely:

Definition 3.4.1. Let H be a real Hilbert space. A subset E ⊂ H is said to be

locally embeddable if for every x ∈ E, there exists a neighborhood U of x in

H and a finite-dimensional C1 submanifold M of H (without boundary) such that
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U ∩ E ⊂M . If a finite-dimensional C1 submanifold M contains every element of E

that lies within some neighborhood of x and if the dimension of M is minimal with

respect to this property, then we call M a local enveloping manifold for E at x

(see [54, Section 3] for more about local enveloping manifolds when H = RD).

Question 2. Let H be a real Hilbert space. Let f : H → H be a C1 map and

suppose that A ⊂ H is a compact set satisfying f(A) = A. Let N ∈ N. For

prevalent ϕ ∈ C1(H,RN), if f induces a quasi-differentiable map f∗ on ϕ(A), does it

follow that A is locally embeddable?

This question may well have an affirmative answer given the nature of existing

theorems on the regularity of embeddings of subsets of infinite-dimensional spaces

into Euclidean spaces. Theorem 3.1.2, for example, guarantees only Hölder continuity

of ϕ−1 on ϕ(A), and therefore guarantees only Hölder continuity for an induced map

f∗ = ϕ ◦ f ◦ ϕ−1 induced by a C1 map f : H → H.
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