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Abstract
This dissertation has two parts. The first part is concerned with using Euclidean embed-

dings and random hyperplane tessellations to construct binary block codes. The construction
proceeds in two stages. First, an auxiliary ternary code is chosen which consists of vectors
in the union of coordinate subspaces. The subspaces are selected so that any two vectors
of different support have a sufficiently large distance. In addition, any two ternary vectors
from the auxiliary codebook with common support are at a guaranteed minimum distance.
In the second stage, the auxiliary ternary code is converted to a binary code by an additional
random hyperplane tessellation.

The second part of this dissertation is dedicated to Binary Parseval frames, which share
many structural properties with real and complex ones. On the other hand, there are subtle
differences, for example that the Gramian of a binary Parseval frame is characterized as
a symmetric idempotent whose range contains at least one odd vector. Here, we study
binary Parseval frames obtained from the orbit of a vector under a group representation,
in short, binary Parseval group frames. In this case, the Gramian of the frame is in the
algebra generated by the right regular representation. We identify equivalence classes of
such Parseval frames with binary functions on the group that satisfy a convolution identity.
This allows us to find structural constraints for such frames. We use these constraints to
catalogue equivalence classes of binary Parseval frames obtained from group representations.
As an application, we study the performance of binary Parseval frames generated with abelian
groups for purposes of error correction. We show that if p is an odd prime, then the group Zqp
is always preferable to Zpq when searching for best performing codes associated with binary
Parseval group frames.
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Chapter 1

Introduction

The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning... [71]

—Claude E. Shannon, A Mathematical Theory of Communication

Introducing some of the notions in this dissertation involves an effort to overcome am-
biguities that can arise from the use of commonly understood words like “communication”,
“message” and “transmit” as formally defined concepts. Implicit in Shannon’s statement is
that a message is to be communicated. Hereafter, a message is a discrete message: a finite
sequence drawn from a discrete set of symbols. To transmit is to commit the action which
physically permits the reproduction of a selected message; the existence of this dissertation,
for example, is evidence of transmission. Upon transmission, a message becomes a signal
carried by some medium, denoted as the channel .

This physical nature constrains communication by virtue of the existence of noise in
a channel, which degrades the channel’s capacity . In this context, the function of a code
is to provide a vehicle designed to ensure that a discrete message can be reproduced after
transmission through a noisy channel. Given an error-tolerance parameter and a channel
capacity, Shannon’s famed noisy-channel coding theorem1 provides for the existence of such
a code. Producing such a code is another matter, as well as a motivating factor for the study
of block codes [30].

Specific to this dissertation, a binary code may be taken to be a collection of vectors
{a, b}n ⊆ V , for some vector space V (see Definition 2.1.1). A constant weight binary code is a
binary code {0, 1}n ⊆ V having the property that each vector has the same `1 norm. A binary
block code is an injective map from a message set {a, b}n in a vector space V to a presumably

1Formally, it is Theorem 11 in [71], under the section heading “The Fundamental Theorem for a Discrete
Channel with Noise”.
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larger set of binary vectors {c, d}m ⊂ W . How these fit Shannon’s communications model is
made explicit in the next chapter.

The main results in this dissertation advance the theory of binary codes, doing so from
analytic, algebraic, and frame-theoretic perspectives. In each of the main results, constant
weight binary codes or cyclic codes play a central role; there is much literature on such codes
[23, 26, 27, 29, 35, 36, 47, 48, 60, 65, 72].

The remainder of this dissertation is organized as follows:

Inspired by and standing on the shoulders of research in compressed sensing and one-bit
compressed sensing, the first chapters address methods of producing random binary codes.

Chapter 2 focuses on providing the terminology, concepts and notation that will be used
throughout. This begins with an introduction to binary codes, taking them first to be struc-
tureless sequences of symbols. The discussion of associated measures of quality is motivated
by narrative evolving from classic Shannon communications model. Binary codes are almost
immediately considered as embedded in a vector space, and elements are treated as vectors
from then on. The discussion on robustness leads to the declaration that errors herein are
taken to be bit flips (Remark 2.1.8. Section 2.2 introduces the primary tool for producing
random codes in this dissertation, the (standard) random hyperplane tessellation, which is
the composition of the componentwise sign map with a Gaussian random matrix (see Def-
inition 2.2.1). This is a commonly used tool of the one-bit compressed sensing community.
In preparation for Chapter 3, random hyperplane tessellations (Φ) are studied. Properties of
the distribution of points under Φ are addressed, in particular the expected Hamming sepa-
ration of points as normalized geodesic distance in the domain. Block codes are introduced
via a restricted communications model in Section 2.3. Chapter 1 closes with two examples of
random binary codes and a discussion of the intuition as to why Φ({±1}n) provides a trivial
code rate, asymptotically.

Chapter 3 is dedicated to describing and demonstrating the first main result in this dis-
sertation: a channel coding of {±1}n into {±1, 0}M which, under random hyperplane tessel-
lation, achieves our asymptotic robustness and information rate goals. This adaptation of
techniques developed by Plan and Vershynin for sparse recovery (e.g., [61]) to the design of
binary block codes admits the use of linear programming for error correction purposes. The
main innovation in the embedding is the use of a random constant weight binary code as the
support vectors for an intermediate embedding.

The chapter’s main result, Theorem 3.1.1, provides parameters for and claims the validity
of a proposed random embedding Ψ, which is to map the Hamming cube Qn := {±1} into
QM by a two-stage process. The chapter begins with a description of the embedding Ψ,
followed by the statement of the theorem, with the bulk of the chapter devoted to proving
the result. The proof is laid out much along the lines of the construction of Ψ.

Stage 1 of the embedding occurs in three parts, each of which introduces a 1−eO(n) factor
to the overall probability of success; the result of the stage is a ternary code in which 2l copies
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of Φ(Qn−l) are embedded by inclusion into RM , where Φ is a random hyperplane tessellation.
Section 3.2 is devoted to the subordinate proofs, culminating with an explicit description
of the section’s construction in Section 3.2.4. Stage 2 is validated in Section 3.3, followed
immediately by the proof of Theorem 3.1.1.

The work in Chapter 3 appeared in a very similar form as sections of “Binary block codes
from Euclidean embeddings and random hyperplane tessellations”, published in Proceedings
of SPIE 10394, Wavelets and Sparsity XVII [6] and co-authored with Bernhard G. Bodmann.

In Chapter 4, we explore another important tool in code theory, (finite) group frames;
this is a continuation of the efforts in [2], [4] and [5] in developing the theory of binary
frames. Group frames are spanning families of vectors produced by the orbit of a single
vector under the action of a group representation; the vectors of a Parseval group frame
induce a linear code with a built-in decoder and, often, desirable robustness owed to a trait
called equiangularity. There is already a substantial amount of literature on real and complex
group frames [21, 40, 74, 75, 76, 77]; the focus of the present work is on binary Parseval group
frames. Here, “binary” refers to the underlying field for the ambient vector space, the Galois
field of two elements. The Gramians of Parseval frames satisfy conditions that make them
suitable class representatives for each of the frame equivalence relations we use, and so we
place special emphasis on the structure of the Gramians associated with binary Parseval
group frames.

Chapter 4 provides relevant definitions of binary group frames and illustrating examples
throughout. In the theory of real and complex frames, every group representation that
generates a Parseval group frame is unitary; Section 4.2 concludes with the corresponding
binary result and provides an explicit formulation of such representations in terms of the
frame vectors and the group algebra. This development of binary Parseval group frame
theory continues to parallel that of group frames over R and C, and leads to the next main
result in this dissertation: a characterization of binary Parseval group frames with respect
to their Gramians, which coincide with the the candidates for such Gramians in the group
algebra. That is, the Gram of a binary Parseval group frame is a (binary) linear combination
of elements of the group’s right regular representation, and every matrix in the group algebra
that satisfies the conditions for a binary Parseval frame is the Gram matrix of a binary
Parseval group frame induced by the original group.

We extend this result by further characterizing such Gramians in terms of binary functions
over the group, so that binary Parseval group frames (and hence, their induced codes) may
be enumerated by examining binary coefficient sequences over the group algebra. In the
case that the underlying group is abelian and of odd order, we prove a simple algorithm for
enumerating the associated group frames constructively.

The results on the structure of binary Parseval frames have significance for the design
of error-correcting codes [3, 55]. Real and complex frames as codes have been given much
attention [7, 34, 42, 49, 56, 57, 66, 67]. In an earlier paper ([4]), Bodmann et al. developed
results in binary code design from a graph-theoretical perspective; Our work here applies
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methods from frame theory to continue that effort. We introduce the notion of automorphic
switching equivalence among binary group frames, a refinement of switching equivalence which
preserves partitions on (induced) binary codes. This leads to a recognition that in the search
for codes via group action, the choice of group can have significant impact on the coding
performance of the resulting frame: Under this partitioning, we demonstrate that the classes
of binary Parseval group frames induced by Zpq are subsumed by the classes induced by Zqp.
Thus, when searching for best performers, the group Zqp is a better choice.

We investigate group representations of Zqp and Zpq for small values of p and q and explicitly
determine the best performance for p = q = 3 and p = 5, q = 3.

The work in Chapter 4 appeared in a very similar form as “Binary Parseval frames from
group orbits” in Linear Algebra and its Applications, published November 2018 [59] with co-
authors Bernhard G. Bodmann, Zachery J. Baker, Micah G. Bullock and Jacob E. McLaney.

1.1 A last initial note.

Out of respect for the reader and gratitude for their time, an effort has been made to enhance
readability of this manuscript and the accessibility of its contents. The global layout and
internal formatting are designed to permit the seeker of particular information to easily track
down any definitions or details required to understand a given passage or result.

Regarding definitions, the reader may note a balance between formal definitions and those
incorporated within the flow of the narrative. Of course, there are many instances of the use
of a formal definition environment throughout this manuscript; the visual segmentation from
the main text and the precise explication of a formal definition provide rigor and clarity
while emphasizing the significance of the entry. On the other hand, there are times when
slightly relaxed approach accomplishes the desired communication in a more compact, yet
natural form. Awareness of the following list of intended outcomes may facilitate the reader’s
extraction of information from these pages:

• While there is occasional use of italics for for simple emphasis, such emphasis is generally
indicative of the first use of a key word or phrase.

• Key words and phrases which appear outside their defining subsection appear in the
index.

• Key words and phrases may be defined formally, in-line, or contextually; this distinction
is reflected in the typeface of page numbers in the index, as illustrated in Table 1.1.
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Table 1.1: Descriptive sample entries from the index.

First appearance in text Index entry

“This type of error is known as a bit flip.” bit flip, 12

“Definition 2.2.2 (Hamming ball). . . . ” Hamming ball (BH), 10

“The signal may be subject to noise while
in the channel, and thus be modified.”

noise, 12

“The code rate is sometimes called the
information rate.”

information rate, 8,

see also code rate (syn.)

Formal definitions are given bold page numbers, while “in-line” definitions have normal page
numbers. Italic page numbers indicate expressions defined contextually, and declarations of
synonymity are treated as in-line definitions with a reference to the originally defined word.
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Chapter 2

Preliminaries

2.1 Binary codes: a primer

Binary codes, central to every aspect of this dissertation, are collections of finite binary
sequences, called code words ; a binary sequence of length m, in turn, is simply an ordered
m-tuple of two symbols. The symbols need not inherently offer any information beyond their
distinguishability. More explicitly,

Definition 2.1.1. Given m ∈ N and distinct symbols a and b, the set of {a, b}-binary
sequences of length m is the collection of functions x : {1, 2, . . . ,m} → {a, b}. An {a, b}-
binary m-code is a collection of {a, b}-binary sequences of length m.

Equivalently, we will consider the {a, b}-binary sequences of length m to be the elements
of {a, b}m, which we may refer to as the code space. In light of this equivalence, we may
refer to the terms of a binary sequence as its entries , and we may alternately call them
bits [71]1. Additionally, let us consider the prefixes {a, b}- and m- as prescriptive modifiers in
the expressions “{a, b}-binary sequence” and “{a, b}-binary m-code”, so that phrases such as
“binary m-code” are read as natural generalizations.

2.1.1 Quantifying code qualities

In classic metonymous fashion, we also use “bit” as a unit of measurement: the 2m binary
sequences in the set {a, b}m provide m bits of information, to be defined momentarily. Ad-
ditionally, we use a unitless ratio of bits-of-information to bits-of-information to define the
quality of a binary code known as its rate.

1“Bit” is a portmanteau of “binary digit”, attributed to John W. Tukey in [71].

6



Definition 2.1.2 (bit of information, rate of a code). Given a set C of order |C| = N and
setting k = log2(N), we say that C represents k bits of information. If C is a binary m-code,
the code rate of C is defined as log2(N)/m.

The code rate is sometimes called the information rate (see, e.g., [44]). Since there are 2m

candidates for code words, the code rate is the ratio of encoded bits of information to available
bits of information in a binary m-code. The conversation regarding the quantification of code
qualities is not complete without addressing the notion of distance between code words, which
is satisfied by a natural metric on a code space. The Hamming distance2 between two finite
sequences of the same length is the number of entries in which they disagree.

Definition 2.1.3 (Hamming distance, dH, BH). The Hamming distance between two arbi-
trary sequences x = (xi)

m
i=1 and y = (yi)

m
i=1 is defined to be

dH(x, y) :=
∣∣{i : xi 6= yi}

∣∣ .
Definition 2.1.4 (Hamming ball, BH). For x ∈ {a, b}m and k ∈ N, the Hamming ball of
radius k centered on x is the set

BH(x, k) := {y ∈ {a, b}m | dH(x, y) ≤ k}.

To see that dH satisfies the triangle inequality, note that the Hamming distance between
two sequences can be interpreted as the number of entries in one sequence that must be
changed in order to obtain the other sequence. Then, for sequences x, y and z we can
interpret dH(x, y) + dH(y, z) as the number of entry-changes to turn x into y plus the number
of entry-changes to turn y into z—a sum which cannot be less than dH(x, z), which counts
the needed changes to get from x to z.

Now, given a binary m-code, the set of Hamming distances between distinct pairs is a
subset of {1, 2, . . . ,m}. As a finite ordered set, it contains its minimum value, which we refer
to as the code’s minimum Hamming distance. More generally,

Definition 2.1.5 (minimum d#-distance, mindist#(X)). Given a metric d# defined on a set
X , the minimum d#-distance of a finite set X ⊆ X is given by

mindist#(X) := min
x,y∈X
x 6=y

{
d#(x,y)

}
.

Remark 2.1.6. For a binary code C, the literature applies a variety of names to mindistH(C),
including minimum code distance, minimum distance (see, e.g., [44],[53]), and simply distance
(see, e.g.,[44],[73]).

2Named for Richard W. Hamming, whose first published use of it as D(x, y) appears to be [38].
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2.1.2 Binary sequences as binary vectors

We can effectively embed a binary sequence space into a vector space by our choice of symbols,
thus imposing structure on the sequences. For example, the {0, 1}-binary sequences of length
m may be seen as vectors in Rm by the natural embedding. A first consequence of such an
embedding is the induced ability to meaningfully compare sequence terms to zero.

Definition 2.1.7 (Hamming weight,‖·‖0, k-sparse, support of a vector). Given a vector space
V and vector x ∈ V , the support of x is given by supp(x) := {i : xi 6= 0}. The Hamming
weight3 of x is the number of nonzero entries in x, and is denoted

‖x‖0 :=
∣∣{i : xi 6= 0}

∣∣ =
∣∣supp(x)

∣∣ .
A vector x is is called k-sparse if ‖x‖0 ≤ k.

Note that the Hamming distance on any vector space V can be expressed in terms of the
support size of a difference vector—that is, dH(x,y) =‖x− y‖0 for x,y ∈ V .

Throughout this manuscript, we will consider binary sequences as binary vectors (set in
bold typeface, e.g., x ∈ Rm), usually assuming the natural embeddings without remark. To
that end, the following list describes particular embeddings of binary code spaces into vector
spaces that will play a major role in the chapters to come:

Embedding 1: Qn := {−1, 1}n in Rn, the Hamming cube. We may view elements of
the set of {−1,+1}-binary sequences of length n as vectors in Rn whose entries are
either 1 or −1.

This choice of symbols is natural in the 1-bit compressed sensing setting, where bi-
nary sequences are commonly induced by a quantization that records only whether a
measurement is positive or negative. “Random hyperplane tessellations”, introduced in
Section 2.2 and used extensively throughout this manuscript, model this regime. The
points in Qn := {−1, 1}n ⊂ Rn coincide with the vertices of an n-dimensional hypercube
centered at the origin.

Embedding 2: Σn := {0, 1}n in Rn, the Boolean cube. Identifying the symbols 0 and 1
with their real counterparts produces the vertices of another cube in Rn. When support
size matters, we may use the notation Σn

s ⊂ Σn to indicate the subset of exactly s-sparse
vectors. One computational nicety of this embedding is that the inner product of two
vectors in Σn provides the number of entries in which both vectors are nonzero. Note
that we can shift and scale Σn onto Qn via the invertible map x→ 2x− 1.

3The norm-like notation for the counting of non-zero coefficients is widely used, and very frequently
accompanied by the gentle reminder/caveat that ‖·‖0 is not a norm. This is most likely—at least in part—
because it isn’t.
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Embedding 3: Zn2 ≡ GF(2)n = {0, 1}n. Alternatively, when we consider 0 and 1 as the el-
ements of Z2 ≡ GF(2), the finite field of two elements, the set {0, 1}n itself is a vector
space. In Chapter 4 we shall see the induced structure underlying the search for binary
block codes from group orbits.

2.1.3 Binary codes in the context of communications

In his 1948 treatise A Mathematical Theory of Communication, Claude Shannon introduces
the notion of a “communication system” with the description “Schematic diagram of a general
communication system” captioning the diagram reproduced here as Fig. 2.1. In this classic

Information 

source 

Destination 

Transmitter 

Receiver 

Noise 

source 
Channel 

message 

message 

Received signal 

signal 

Figure 2.1: The Shannon communications model [71].

communications model, an information source produces a message that is necessarily selected
from a collection of possible messages.4 A transmitter converts the message into a signal to
allow transmission via some medium—called the channel—to a receiver . The receiver, in
turn, converts the received signal back into the original message for consumption by the
destination. In a simple example, we may imagine a message in the form of a string of
alphanumeric characters being converted by a computer into a sequence of 1’s and 0’s for

4For clarity, it may be important to note that the model does not account for a sense of meaning in a
message—what matters is how well we can expect the destination to receive the intended message. By way
of example, a person sending a text message to a friend may produce a string of characters on a device with
the idea that the string will be perfectly replicated on the screen of another device. Whether the string of
characters is what the texter meant to say does not factor into the model, nor does whether or not the friend
interprets the message as intended.
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digital transmission over a binary channel to another machine, which then decodes the binary
sequence to produce the original string of characters on a screen for viewing.

Now, a channel may be subject to noise, which by definition has the potential to cause the
received signal to be different than the (sent) signal. If we modify the preceding example to
include a noisy binary channel, it is natural to wonder how the noise will affect the decoder’s
ability to produce the intended alphanumeric message from a perturbed binary signal. To
be able to address this, it is necessary to know something about the distribution of errors
among and within transmissions. Given a noisy binary channel, we shall assume an upper
bound on the fraction of corrupted entries.

2.1.4 Robustness of a code against errors in transmission

In much the way that a few typos may not prevent perfect understanding of a typed message,
a code may have the property that, for each of its code words, any small collection of errors
is not enough to make it “unreadable.” Given a binary code and a noise constraint in the
form of an upper bound on the fraction of corrupted entries, we would like to know if every
transmitted code word is guaranteed to result in a received signal that is uniquely associated
with the intended code word. In this paradigm, noise is considered adversarial , as opposed to
random; we are not asking for the odds that a certain fraction of errors results in a decoding
error , we are asking if a certain fraction of errors can result in decoding error. We phrase
our question more succinctly: is a given binary m-code robust against ρ ·m errors induced
by a particular channel?

To address the challenge, first note that having an error in an entry means, necessarily,
one of two things: neither binary symbol appears in the entry (an erasure error), or the
incorrect symbol appears in the entry (a symbol error). These may be called “erasures” and
“errors” (see, e.g., [79]), but this may introduce ambiguity here. We shall instead use the
terms erasure and bit flip, reserving error as the more general term to describe either.

Furthermore, we shall operate under the assumption that a given channel induces only
one type of error and assume no special structure in the distribution of errors. Let us now
examine how these conditions affect recoverability.

2.1.4.1 Errors and recoverability: a toy example

Take C to be a binary m-code containing exactly two elements, x and y, with k := dH(x,y).
We consider transmission over a noisy channel.

In an erasure channel: First, suppose we expect a number of erasures between 0 and k−1.
We know, then, that least one of the distinguishing entries between x and y will survive
transmission, and this is sufficient to indicate which vector was sent. On the other hand,

10



if there is a chance that k or more erasures can occur, then there is a chance that the k
entries that distinguish x from y get erased. It follows that in such a case, C does not
guarantee accurate recovery over this channel.

In a bit flip channel: Next, suppose that the channel admits no erasures, but instead offers
an upper bound j on the possible quantity of bit flips. In this case, transmitting x or y
over the channel yields a vector in our code space that is in the Hamming ball of radius
j centered the signal. It follows that we can guarantee recovery if and only if BH(x, j)
and BH(y, j) do not intersect—that is, if and only if j < k/2. Note that this implies
that no binary m-code is robust against

⌈
n/2
⌉

bit flips.

We see, then, that whether a noisy channel induces erasures or bit flips, the question of
guaranteed accurate recovery for a given binary m-code reduces to a question of the code’s
minimum Hamming distance.

Remark 2.1.8 (Justification for considering only bit-flipping channels). It is evident that
in comparing the robustness of two binary m-codes, we need not consider the type of error
induced by a channel: If they have the same minimum Hamming distance, they are equally
robust in either type of channel; if one has has a smaller minimum Hamming distance than
the other, it cannot be more robust than the other. In light of this, we need only consider the
minimum Hamming distance of a code when considering its robustness. Without qualitative
loss, then, we shall restrict our attention to noisy channels that induce bit flips.

Remark 2.1.9 (Normalized robustness). Additionally, the knowledge that a code is robust
against, say, 100 bit flips, may not be particularly informative—how does that number com-
pare to the length of a code word? It makes sense, then, that we consider a normalized
robustness when comparing binary codes, instead noting the fraction of bit-flipped entries a
code can withstand. Let 0 < ρ < 1. Noting that a binary m-code C is robust against bρmc
bit flips if and only if bρmc < mindistH(C)/2, dividing each side of the inequality by m leads
to the following definition:

Definition 2.1.10. Given noise parameter ρ ∈ (0, 1/2) and binary m-code C, the statement
that C is robust against noise ratio ρ means that

1

2m
mindistH(C) ≡ 1

2
mindisth(C) >

bρmc
m

.

Note that the definition is satisfied if mindisth(C)/2 > ρ, since ρ ≥ bρmc /m.

2.1.5 Code rate versus robustness

Before closing out this introduction to binary codes, it is worth noting that code rate and
robustness are, more or less, competing desirable attributes. To see this, consider binary m-
codes C1 and C2 such that C1 ⊂ C2. C2 has more code words than C1 and lives in the same
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space, so it has a higher code rate. On the other hand, the containment also implies that
mindistH(C2) ≤ mindistH(C1), which means C1 is at least as robust as C2, if not moreso.

2.2 Random hyperplane tessellations

The embedding described in Section 2.1.2 that identifies a binary sequence as an element
of a vector space presupposes the existence of a binary sequence. We now address a source
of such sequences that shall be instrumental in the construction of codes in Chapter 3:
maps knowns as hyperplane tessellations (see, e.g., [63, 62]) obtained from random linear
functionals. Casually speaking, a hyperplane tessellation is a partitioning of a vector space
into convex sets whose collective boundaries take the form of a collection of hyperplanes.

Definition 2.2.1 (hyperplane tessellation, sign). A standard random hyperplane tessellation
is a map Φ : Rn → Qm := {−1, 1}m defined by x 7→ sign(Ax), where A ∈ Rm×n is a fixed
random matrix with independent standard normal entries and q = sign(Ax) ∈ Qm is defined
entrywise by qi = 1 if (Ax)i ≥ 0 and −1 otherwise.

The assignment sign : 0 7→ 1 (instead of 0 7→ 0) is a convention adopted here to ensure
that the images of our finite subsets of Rn are indeed binary. This is largely a formality, since
for a given x ∈ Rn, it is with probability zero that (Φ(x))i = 0 for some i.

As linear functionals, the row vectors of the matrix A in this definition induce hyperplanes
which divide Rn into half spaces; specifically, letting a>i denote the i-th row vector of A, the
linear functional 〈ai, ·〉 is zero on the hyperplane normal to ai, positive on one side of that
plane and negative on the other. The natural notion of this hyperplane separating a pair of a
pair of vectors x,y ∈ Rn is encoded in sign of the product 〈ai,x〉 · 〈ai,y〉. We shall say that
ai separates a pair of vectors x,y ∈ Rn if sign

(
〈ai,x〉

)
· sign

(
〈ai,y〉

)
< 0, which corresponds

to
(
Φ(x)

)
i
6=
(
Φ(y)

)
i
. It follows that the number of A-induced hyperplanes that separate x

and y coincides with dH

(
Φ(x),Φ(y)

)
.

It should be clear, then, that given a point x ∈ Rn and a standard random hyperplane
tessellation Φ acting on Rn, Φ(x) = Φ(cx) for all c > 0. By the same token, whether an
A-induced hyperplane separates a pair x and y is independent of the magnitudes of x, y, and
the hyperplane-inducing vector ai. It follows that recovery of a vector x from Φ(x) means
recovering the direction of x without regard for magnitude.5 As a consequence, we may
describe signals as elements of Qn or as elements of 1√

n
Qn ⊂ Sn−1, as convenience dictates.

5In fact, magnitude can be reasonably extracted from one-bit measurements. Reference [50] demonstrates
two distinct reconstruction methods, each relying on replacing A with an augmented matrix [A|b] (with
b = 1m or random b ∼ N

(
0, τ2Im

)
) and declaring xn+1 = 1 for each received x.
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2.2.1 Random hyperplane tessellations, sparsity and
compressed sensing

An important feature of random hyperplane tessellations is that they can have practical
inverses, even though the maps are clearly not injective—the “secret” lies in the restriction
of the preimage of Φ. One natural way to define a restricted set of signals is by requiring
sparsity ; a vector is s-sparse if no more than s of its entries are nonzero. To address how such
a restriction is natural, let us consider the matrix A with normalized columns (in expectation).

2.2.1.1 Properties of the random matrix A′ := 1√
m
A

Let A′ be an m × n random matrix with independent Gaussian entries, each with mean 0
and variance 1

m
, so that A′ is just a scaled copy of the matrix underlying Φ. In a landmark

paper ([15]), Candès and Tao showed that with high probability, the columns of A′ form a
“restrictedly almost orthonormal system”—that is, a collection of vectors such that any small
subcollection is an almost orthonormal system. To quantify “almost”:

Definition 2.2.2 (Restricted isometry constants δs). Given m × n matrix A and natural
number s ≤ n, the restricted isometry constant δs := δs(A) is the least positive value satifying

(1− δs)‖x‖2
2 ≤
∥∥A′x∥∥2

2
≤ (1 + δs)‖x‖2

2 (2.1)

for all s-sparse x ∈ Rn. In describing the matrix, we say that A satisfies the restricted
isometry property (rip) of order s with restricted isometry constant δs [28].

With high probability, a random m × n matrix A with independent Gaussian entries
aij ∼ N

(
0, 1

m

)
satisfies the restricted isometry principle for meaningful constants. Now, a

short, fat matrix A—even without the sign operation following it—is not invertible. But as a
consequence of the restricted isometry property, each s-sparse x ∈ Rn has the property that
it is sparsest vector in {x′ : Ax′ = Ax} [15, 10], as well as, often enough, the smallest in
`1 measure [16, 10, 12, 14, 25, 69]. In this sense, the random matrix A induces a restricted
preimage, the collection of “sparse enough” vectors. Here, the question of “sufficient sparsity”
is perhaps more naturally framed as in terms of the number of measurements needed to ensure
accurate recovery of any s-sparse signal in Rn; Rudelson and Vershynin [69] demonstrated
that with overwhelming probability, given s, n, and m = O(s ln(n

s
)), a random m×n matrix

A allows for perfect reconstruction of any s-sparse signal x in Rn from Ax by the linear
program sometimes refered to as Basis Pursuit [20],

x = arg min‖Ax̂‖1 subject to Ax̂ = Ax.

The scale hidden in the big-O notation is surprisingly non-immense: m > 12s ln( n
2s

) is suf-
ficient engage an exponentially decaying rate of failure, with the probability that A uni-
formly satisfies the perfect reconstruction property bounded below by 1 − 7

2
exp(− 1

18
[
√
m −√

12s ln( n
2s

)]2) [69].
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The field of compressed sensing6 is directly interested in this quality of recovering, exactly
or approximately, signals in such underdetermined settings (e.g., [8],[13],[24], [28]). One bit
compressed sensing involves the recovery of sparse (or “essentially sparse”, e.g., [62]) vectors
from binary measurements, as in the case of standard random hyperplane tessellations. Here,
the apparent undersampling includes the heavy quantization, but we may achieve similar
results with m ∼ s ln2(n/s) in the noiseless case ([62]), m ∼ s ln(2n/s) if subject to bit flips
([61])

Efforts in (one bit) compressed sensing (e.g., [11],[68],[78]), often rely on `1 minimization
to recover sparse messages from their tessellated images, and these techniques are considered
quite feasible. References [61] and [64] demonstrate similar feasible recovery with a generalized
random hyperplane tessellation model, in which a nonlinear function f acts on the embedded
coefficients before taking the sign, as in (Φ̃(x))i = sign

(
f(〈ai,x〉)

)
.

A note: in the scenarios described above, the list of possible messages is restricted accord-
ing to sparsity. Although the set Qn is composed of non-sparse vectors,7 there is a sense of
“geometric sparsity” to the set which inspired the research for much of the following chapters;
as noted in References [9] and [19], the property of sparsity may take a different form.

2.2.2 Predicting tessellation-induced separation of vectors

We have noted that the Hamming distance is a natural metric on binary sequences and
vectors. In the context of random hyperplane tessellations, it is additionally useful to consider
a metric which in some way measures the angular separation between vectors.

Definition 2.2.3 (normalized geodesic distance, dg). Given x,y ∈ Rn, the normalized
geodesic distance between x and y is given by

dg(x,y) :=
1

π
cos−1

(
〈x,y〉
‖x‖2‖y‖2

)
.

Remark 2.2.4. In a sense, dg is doubly normalized. Re-expressing the argument 〈x,y〉 /
‖x‖2‖y‖2 as

〈
x/‖x‖2 ,y/‖y‖2

〉
illuminates vector normalization as the projection of x and

y onto the Euclidean unit sphere; that sphere is the manifold implied by the adjective
“geodesic”. On that sphere, geodesic distance between points x̃ and ỹ coincides with the
measure of angle between the vectors—that is, cos−1

(
〈x̃, ỹ〉

)
∈ [0, π]. The normalizing factor

1/π thus converts the angular measure into a ratio in the unit interval.

Remark 2.2.5 (Normalized vs. non-normalized metrics). Given x,y ∈ Rn, we have dH(x,y)
∈ {0, 1, . . . , n} and dg(x,y) ∈ [0, 1]. How we apply these metrics informs this choice of

6Also called compressive sensing ([46]) and compressive sampling ([13],[17])
7In fact, the set is as far from the entrywise sparse sets as possible, forming the vertices of the dual of the

`1 ball.
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normalizing one and not the other: the Hamming distance counts a finite set, whereas the
normalized geodesic distance gives the angular separation of two vectors as a ratio. As a
consequence of this choice, we shall see a normalizing factor in any expression containing
both distances. If it were to become useful to use normalized Hamming distance, say, during
a discussion of code rates or error rates, the notation dh would be consistent with convention
already established: indeed, the use of the lower case g for the smaller-valued distance and
upper case H for the larger one is a choice intended to facilitate retention through mnemonics.

2.2.2.1 Hyperplane separation as a function of angular separation

By the definition of the random matrix A ∈ Rm×n, the row vectors a>i are independent
(standard) Gaussian vectors , which is to say, they are independent vector valued random
variables and ai ∼ N(0, In) for each i ∈ {1, 2, . . . , n}.

Given a pair points x,y ∈ Rn\0n, let x̃ := x/‖x‖2 and ỹ := y/‖y‖2. We have al-
ready noted that the separation of x and y by a particular ai is independent of the vector
magnitudes—sign

(
〈ai,x〉

)
· sign

(
〈ai,y〉

)
< 0 if and only if

〈
ai/‖ai‖2 , x̃

〉
·
〈
ai/‖ai‖2 , ỹ

〉
< 0.

Now, let E ⊂ Sn−1 be the subarc of the great circle containing x̃ and ỹ whose end points are
±x̃, and denote the subarc of E having endpoints x̃ and ỹ as E0. With probability 1, the
hyperplane induced by the ai intersects E exactly once.

Since the the multivariate random variable g ∼ N(0, In) is rotationally invariant, we have
that the normalized vectors ai/‖ai‖2 are uniformly distributed on the Euclidean sphere, Sn−1.
It follows that if E1 and E2 are subarcs of E having the same arc length,

P
{

a>i z for some z ∈ E1

}
= P

{
a>i z for some z ∈ E2

}
,

since {q ∈ Sn−1 : q>z for some z ∈ E1} ∼= {q ∈ Sn−1 : q>z for some z ∈ E2}. From this, it
follows that the probability that ai separates x and y is the ratio of the arc length of E0 to
the arc length of E, or cos−1

(
〈x̃, ỹ〉

)
/π—which is exactly dg(x,y).

By independence, the expected number of separating hyperplanes is also dg(x,y). More
explicitly, given x,y ∈ Rn, and standard random hyperplane tessellation Φ : Rn → Rm,
the expected fraction of entries in which the encoded vectors Φ(x) and Φ(y) differ is the
normalized geodesic distance between the original vectors:

E
[

1

m
dH

(
Φ(x),Φ(y)

)]
= dg(x,y) ≡ 1

π
cos−1

(
〈x,y〉
‖x‖2‖y‖2

)
. (2.2)

We may reframe this simple connection between the normalized geodesic distance in the
domain and Hamming distance in the image of a random hyperplane tessellation in terms of
the component probabilities, for example, as in [33, Lemma 3.2]:

P
{

sign
(
〈ai,x〉

)
6= sign

(
〈ai,y〉

)}
=

1

π
cos−1

(
〈x,y〉

)
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for i ∈ {1, 2, . . . , n} and x,y ∈ Sn−1.

Since the probabilities P
{

(Φx)i 6= (Φy)i
}

are independent and each equal to dg(x,y), the
following corollary is immediate:

Corollary 2.2.6. Given a standard random hyperplane tessellation Φ : Rn → Rm and
vectors x,y ∈ Rn, the random variable dH

(
Φ(x),Φ(y)

)
follows the binomial distribution

B
(
m, dg(x,y)

)
.

Of course, this fact is fundamental in formulating concentration bounds regarding hyper-
plane separation, such as found in [63],[62], and here in Chapter 3. To be explicit, given
random variable X ∼ B(m, p), Hoeffding’s inequality8 provides the concentration bound
P
{
|X −mp| ≤ εm

}
≥ 1 − 2e−2ε2m. It becomes clear, then, how well random hyperplane

tessellations preserve normalized geodesic distance:

Corollary 2.2.7. Given Φ, x, and y as in Corollary 2.2.6 and ε > 0,

P

{∣∣∣∣ 1

m
dH

(
Φ(x),Φ(y)

)
− dg(x,y)

∣∣∣∣ ≤ ε

}
≥ 1− 2e−2ε2m (2.3)

This subsection closes with a couple more observations regarding distances and hyperplane
tessellations. Before moving on to examples of random binary codes, let us note an equivalence
that arises when we apply a standard random hyperplane tessellation to a pair of vectors in
Qn; it turns out that we can express the expected Hamming distance between images under
Φ in terms of the Hamming distance between the original vectors:

Lemma 2.2.8. Given a standard random hyperplane tessellation Φ : Rn → Rm and vectors
x,y ∈ Qn,

E
[
dH

(
Φ(x),Φ(y)

)]
=
m

π
cos−1

(
1− 2

n
dH(x,y)

)
.

Proof. For x, y ∈ Qn, we relate the inner product with the Hamming distance:

〈x,y〉 =

# of matching entries︷ ︸︸ ︷
(n− dH(x,y)) −

# of mismatches︷ ︸︸ ︷
dH(x,y)

= n− 2dH(x,y) .

Noting that ‖x‖2 =
√
n for all x ∈ Qn, equation (2.2) becomes

E
[

1

m
dH

(
Φ(x),Φ(y)

)]
=

1

π
cos−1

(
n− 2dH(x,y)

n

)
,

which yields the claimed equality upon multiplication by m, by the linearity of the expected
value.

8Wassily Hoeffding’s (first) inequality ([41]) is more general than presented here, giving the upper tail

bound P
{∑m

i=1 xi − E
[∑m

i=1 xi
]
≥ εm

}
≤ e−2ε2m for sums of independent random variables xi ∈ [0, 1].
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Remark 2.2.9. The underlying implied equality

dg(x,y) =
1

π
cos−1

(
n− 2dH(x,y)

n

)
for x,y ∈ Qn (2.4)

is one of a bounty of equivalences introduced by restrictions to different sets; Appendix A.1
provides tables and proofs of many such equivalences. These tables of “exchange rates”
evolved rather organically in my notes, for example, when considering the minimum normal-
ized geodesic distance of Qn; since that distance is achieved by any pair x,y ∈ Qn such that
dH(x,y) = 1, Eq. (2.4) above gives a quick result:

mindistg(Qn) =
1

π
cos−1

(
n− 2dH(x,y)

n

)
=

1

π
cos−1

(
1− 2

n

)
. (2.5)

Remark 2.2.10 (Asymptotic results and families of codes). In the context of the research pre-
sented in the coming chapters, random hyperplane tessellations exist in asymptotic regimes;
that is to say, wherever the tool is used, the probability distributions relating to the images
under random hyperplane tessellations are considered as the dimensions of both the domain
and range grow without bound. In particular, the families of such maps considered take the
form Φ : Rn → Rdβne for some fixed positive constant β.

Where the language of binary codes is relevant in these regimes, we are therefore consid-
ering families of codes . We will be interested in the information rates of these families, which
is just the appropriately defined limit of the rates of the composing codes.

2.3 Block codes

Whereas a random hyperplane tessellation can be seen as the mapping of an arbitrary given
set in Rn into a binary code space Qm ∈ Rm, a binary block code maps a whole code space
{a, b}n into a (larger) code space {a′, b′}m. The dimension of the code space, m, is called
the block length. The narrative illustration below (Section 2.3.1) follows the approach R. G.
Gallager takes in his 1968 monograph ([30]) where the motivation begins with some specifying
details among the components of Shannon communications model.

2.3.1 Motivation in a restricted communications model

As with the general model, we begin with output from an information source. This output—
whatever its nature—is passed to a source encoder for conversion into a binary string. A
channel encoder receives what appears to be a continuous stream of bits from the source
encoder and processes it n bits at a time, thus treating the stream as a succession of binary
messages of length n. The channel encoder in this model is a block encoder , which is to
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Figure 2.2: Restricted communications model from [30].

say it performs a block code assignment for each message; the resulting code words are its
output. A (presumably) noisy channel carries the code word to a channel decoder , whose role
it is to give the source decoder the same stream of bits that the channel encoder received;
we call it a block decoding error any time the channel decoder fails to convert a received
block into its originating n-bit message. The source decoder, naturally, acts as an inverse to
the source encoder, and is responsible for converting the channel decoder’s output into the
original source output for the destination.

Remark 2.3.1 (From symbol-sequence mapping to i 7→ xi). In this model, the nature of
the messages is such that the block code necessarily assigns code words to each of the 2n, as
there is no a priori knowledge of the structure of the input strings. It is worth noting that a
convenient indexing of n-bit messages—and, by extension, an indexing of code words—arises
from having a domain of {a, b}n: reassigning the symbols to be the integers 0 and 1, the
lexicographical ordering of the vectors may be read as the binary expansions of the naturally
ordered integers 0 through 2n− 1. We may thus define a block code in terms of the image of
these indices.

2.3.2 Illustrative examples: The glory and shortcomings of two
random block codes

These examples provide context for addressing some of the quantifiable attributes of families
of (block) codes. In addition to addressing asymptotic behaviors like information rates, error
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rates and robustness, we will get a glimpse at how a block code’s construction can affect the its
inverse function (the source decoding). The two block codes incidentally provide examples of
block code evaluation from the perspectives of a probabalistic noise model and an adversarial
noise model, which are addressed in Remark 2.3.2.

2.3.2.1 Block codes from coin flipping

In 1973, R. G. Gallager demonstrated that [t]he random coding bound is tight for the average
code9[31]. There is more to unpack in that statement than fits the scope of this manuscript,10

but the relevance to this example is that asymptotically, the expected error rate of a random
binary code with information rate R vanishes exponentially with respect to the block size.
To make this precise, let us clarify what is meant by a “random code” in this context.

Given p ∈ (0, 1), let ε be a Bernoulli random variable which takes the value 1 with
probability p and 0 with probability 1 − p. Next, given natural numbers n < m, let C be a
random m× 2n matrix whose entries are given by independent copies of ε. Each realization
of C provides a binary m-code of order 2n whose code words are the columns {ci}2n

i=1 of the
matrix, so we may consider C to be a binary code valued random variable. Furthermore, each
realization induces a block code by the assignment i 7→ ci+1, as described in Remark 2.3.1.
In the language of [30], this interpretation of C makes it an ensemble of (m,R) block codes,
where R := n

m
is the code rate.11

The bound-meeting ensembles of binary block codes in Gallager’s aforementioned result
have an underlying Bernoulli probability p = 1

2
(see [30]), and the noisy channel is assumed

to induce bit flips in entries independently with probability ε > 0. Under these conditions,
let i be a message in 0, 1n; then the expected value of the probability that a random block
coding of i results in a decoding error is given by

P err,i =
gε√
m

exp[−bε,R ·m],

where gε and bε,R are positive constants depending only on ε and R. As noted earlier, the
probability P err,i decays exponentially in the block length for a fixed rate.

As attractive as this family of codes may be, considering how well it appears to survive
the channel, it bears a shortcoming. The matter of recovering the original stream is not
addressed in the assignment of random code words to messages—we have guarantees on the
recovery of the encoded signal, but decoding is left to a lookup table. The codes in the next
example will have the capacity for efficient channel decoding, but we will see shortly that the
rate suffers.

9The emphasized text is, in fact, the title of the paper.
10To begin with, the result does not restrict itself to binary block codes.
11In [30] and [31], this rate is given by ln(2n)/m, read “nats per bit”. Our convention for rate as “bits per

bit” does not qualitatively change the the result.
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Remark 2.3.2 (Probabilistic vs. adversarial viewpoints). We may describe our perspective
in this example as one concerned about the likelihood of a decoding error, in the sense that
however close our random code words may be, and however noise-corrupted our signals could
become, the probabilistic qualities of the regime are such that—in expectation—we should
have very few errors when we pick a random code. In contrast, the next example studies a
particular random block code with a question of how well we might expect to pick a code that
is “sufficiently robust” for a given channel—what is the probability that a code guarantees
zero decoding errors? To make sense of this, we shall assume an upper bound on the fraction
of bit flips a channel may induce in any bit sequence, rather than considering entry corruptions
as independent random variables. Here, we consider the noise to be adversarial in nature,
as though an actual adversary had access to the channel and would hand pick which bits to
flip in order to cause the greatest disruption to our communications (within the “noise ratio”
bound). As adversarial bit flips will induce a decoding error by pushing a signal closer to
some “wrong” code word, robustness in this regime is measured by the minimum Hamming
distance of a code—or, perhaps more intuitively, its minimum normalized Hamming distance.

2.3.2.2 Random hyperplane tessellations as bad block codes

As previously mentioned, random hyperplane tessellations provide another method of pro-
ducing a random binary code—this is just a consequence of the definition. In fact, considering
Qn as a code space, a standard random hyperplane tessellation Φ : Rn → Rm is automatically
a block code. The conversation in Section 2.2.1 noted that Φ offers feasible recovery of its
image, so the current example starts on that positive note. As it turns out, though, the
robustness of the family of codes we are about to investigate decreases to zero asymptotically
under the constraint of a fixed information rate.

To facilitate direct comparison with results in the previous example, let us fix an (asymp-
totic) code rate R > 0, inducing a family of block codes

Φm : RdmRe → Rm

indexed by m ∈ N. For a fixed m, set n = dmRe so that
∣∣Φm(Qn)

∣∣ = 2n, note that
R ≤ n

m
≤ R + 1

m
. We assume a noisy channel with an upper bound on the fraction of bit

flips it imparts on any string it carries; let ρ ∈ (0, 1
2
) give this bound.

Recalling the discussion on what it means for a code to be robust against the noise ratio
ρ (Remark 2.1.9 and Definition 2.1.10), a code C is considered successful in this regime if
1
2
mindisth(C) > bρmc

m
, or, equivalently, if mindistH(C) > 2 bρmc. An evaluation of the quality

of the family of codes induced by a rate R, then, may be determined by the probability that
the standard random hyperplane tessellation Φm embeds Qn into Rm with sufficient minimum
Hamming distance.

Suppressing the subscript on Φm for the time being, denote Φ(Qn) =: C and let us consider
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the distribution of the random variable δC := mindisth(C). Applying Markov’s inequality12

to bound the probability of robustness yields

P
{

1

2
δC >

bρmc
m

}
≡ P

{
mδC > 2 bρmc

}
≤ m

2 bρmc
E[δC ] , (2.6)

leaving us to bound the expected value of the minimum dh-distance of the tessellated Qn.

Since E
[
dH

(
Φ(x),Φ(y)

)]
= mdg(x,y) for x,y ∈ Qn, it follows that

E[δC ] ≡ E

 min
x,y∈Qn
x 6=y

dh

(
Φ(x),Φ(y)

) ≤ min
x,y∈Qn
x 6=y

dg(x,y) ≡ mindistg(Qn),

which, as noted in Eq. (2.5), is equal to 1
π

cos−1
(
1− 2

n

)
. Since this value decreases to zero in

n (and m), we have our result: Given code rate R > 0, the family of block codes given by
the standard random hyperplane tessellations

Φm : RdmRe → Rm

has a vanishing robustness in this setting.

Remark 2.3.3 (A note on intuition: why this should have gone this way). Since random
hyperplane tessellations tend to conserve normalized geodesic distance as normalized Ham-
ming distance,13 the issue here is immediate: dh-distance between Hamming neighbors in Qn

goes to zero as n goes to infinity.

Note, too, that before quantization, the map Φ is linear, and the nature of the underlying
matrix A is such that any pair of its columns are orthogonal in expectation—their inner
product is the sum of products of zero-mean independent random variables. Since A is a
tall, thin matrix, it may also call to mind the submatrices of near isometry belonging to an
rip-matrix.

As Roman Vershynin states in [28], prior to demonstrating that the concentration of tall
random matrices’ singular values justifies the claim, “Tall matrices should act as approximate
isometries.”14

The rounding of A’s image by Φ changes the the nature of the (scaled) near isometry
from `2 distance preserving to the ebedding of dg distances as dh distance. The outcome, in
either case, is that our signal set ends up as an approximate copy of the original cube, not
taking advantage of all the extra space; in the next chapter, we develop methods which are
intended to give our code access to that space.

12Markov’s inequality states that, for nonnegative random variable X and positive constant a, P{a ≤ X} ≤
E[X] /a.

13(Recalling Section 2.2.2.1 and Corollary 2.2.7)
14Emphasis mine. Also, in context, Vershynin’s statement is for the sake of heuristic—he also points out

that such matrices are approximate isometries.
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Chapter 3

A good code from random near-linear
embeddings†

In light of the illustration in Section 2.3.2.2, we show the existence and explicit construc-
tion of a channel code of the Hamming cube Qn that meets prescribed minimum distance
requirements. The embedding takes advantage of the near isometry that a random hyper-
plane tessellation Φ provides between the normalized geodesic distance dg and the normalized
Hamming distance 1

m
dH to effectively sparsify our signal.

3.1 Main result: A good code from random near-linear

embeddings

Our embedding proceeds in two stages. In the first stage, an auxiliary ternary code of length
M is constructed. In the second stage, the ternary code is converted into a binary code of
length m by hyperplane tessellations.

3.1.1 The embedding Ψ

Stage 1. As a first step, we choose random subspaces of {−1, 0, 1}M with support size s. To
this end, we obtain each support set T ⊂ JMK by performing Bernoulli experiments with a
success probability that is chosen to guarantee at least s successes among M experiments.

†The mathematical content of this chapter appears as Section 3 of [6] (see Ch. 1 for details):
Bernhard G. Bodmann and Robert P. Mendez, “Binary block codes from Euclidean embeddings and random
hyperplane tessellations,” Proc. SPIE 10394, Wavelets and Sparsity XVII, 103940M (24 August 2017). DOI:
http://doi.org/10.1117/12.2273917
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The support set T is determined as a subset of the indices of the successes, and we repeat
this procedure independently for L support sets.

For any index set J , let ΣJ denote the space of vectors in RM supported on J . As a
second step in this stage, for each support set T , we map an alphabet QNρ to a subset XT
in ΣT ; this is done in such a way that for each distinct pair x, y ∈ X :=

⋃
T XT , we have

dg(x, y) ≥ 3ρ.

Stage 2. We perform a random hyperplane tessellation of the set X constructed in Stage
1 and obtain a Hamming distance bound on the embedded set given by dH(x, y) ≥ 2 bρmc+1
for x, y ∈ Φ(X ), x 6= y.

We shall use Ψ to denote the two-stage embedding described here.

Theorem 3.1.1. Given ρ ∈ (0, 1/9), α > 4 and β > 44, set Nρ := b 1
sin2(π sin2( 3π

2
ρ))
c and let

n > 2Nρ. Let Ψ : {±1}n → {±1}m be an embedding based on random hyperplane tessellations
as described in Section 3.1.1, setting s :=

⌈
α(n−Nρ)

⌉
, M := dβse, and L := 2n−Nρ.

Then the probability that

min
x,y∈Qn
x 6=y

dH

(
Ψ(x),Ψ(y)

)
≥ 2 bρmc+ 1

is bounded below by[
1− 2e(log 2−α

5 )l
]
·
[
1− e(log 4−α

2
log β

22)l
]
·
[
1− eNρ log 4−αl

5
sin2 3πρ

2

]
·
[
1− en log 4− 3ρm

20

]
,

where l := n−Nρ.

The proof of this theorem relies on the fact that the auxiliary ternary code described in
the first stage of the embedding achieves a normalized geodesic separation of at least 3ρ with
high probability; this fact is the content of Proposition 3.2.1, which Section 3.2 is devoted
to proving. We may then make use of Lemma 3.3.1, which states that, with overwhelming
probability, a random hyperplane tessellation of a set having 3ρ dg-separation provides an
embedding into Rm with a Hamming separation of at least 2 bρmc+ 1.

We precede the forthcoming propositions with a concentration bound for binomial random
variables given by Corollary A.1.14 from Ref. [1], presented here as a lemma:

Lemma 3.1.2 (Corollary A.1.14 from Ref. [1]). Given a binomial random variable X with
mean µ, one has that P

{
|X − µ| > εµ

}
< 2 exp(−cεµ) for each ε > 0, where cε := (1 +

ε) log(1 + ε)− ε.

3.2 Auxiliary code separation: Stage 1

In this section, we produce an auxiliary code that meets a desired separation requirement.
To the point, the proof of the following proposition demonstrates that the auxiliary ternary
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code described in Section 3.1.1 has a normalized geodesic separation of at least 3ρ.

Proposition 3.2.1. Given ρ ∈ (0, 1/9), α > 4 and β > 44, let Nρ :=

⌊
1

sin2(π sin2( 3π
2
ρ))

⌋
and

let n > 2Nρ and l := n−Nρ.

Let Ψ : {±1}n → {±1}m be an embedding based on random hyperplane tessellations as
described in Section 3.1.1, setting s := dαle, M := dβse, and L := 2n−Nρ = 2l. Then
the associated auxiliary ternary code X described as an embedding of {±1}n into {±1, 0}M
achieves

min
x,y∈X
x 6=y

dg(x, y) ≥ 3ρ

with probability not less than[
1− 2e(log 2−α

5
)l
]
·
[
1− elog 4−α

2
log β

22
)l
]
·
[
1− eNρ log 4−αl

5
sin2 3πρ

2

]
The lower bound in the statement of the proposition is the product of lower bounds of

the probabilities of three events; we now provide those bounds in a sequence of propositions.
For clarity and to facilitate forthcoming substitutions, the statements of these supporting
propositions are written so that the variables are consistent with the supported proposition
and with one another.

3.2.1 Controlling support size

We first show that our method of randomly selecting support sets provides, with high prob-
ability, a collection of sets each containing sufficiently many elements. Given that this event
occurs, then for each set of M Bernoulli experiments yielding an index set T ′, a support set
T of size s is chosen uniformly at random from T ′. The vectors X ′j described below are thus
nominally truncated to the vectors Xj ∈ X ∩ {0, 1}M .

Proposition 3.2.2. [Randomly selected supports of sufficient size] Given l ∈ N, α > 4, and
β > 44, define s := dαle and M := dβse. For each j ∈ J2lK, let X ′j ∈ {0, 1}M ⊂ RM have its
entries determined by an independent Bernoulli process with underlying probability 2s

M
≈ 2

β
.

Then

P
{

min
j

∥∥∥X ′j∥∥∥
1
≥ s

}
≥ 1− 2 exp

(
(log 2− α/5)l

)
.
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Proof. Fixing j ∈ J2lK and noting that E
∥∥∥X ′j∥∥∥

1
= 2s,

P
{∥∥∥X ′j∥∥∥

1
< s

}
≤ P

{∣∣∣∣∥∥∥X ′j∥∥∥
1
− 2s

∣∣∣∣ > 2s− s

}
lem.
3.1.2
≤ 2 exp(−c 1

2
· 2s)

≤ 2 exp

(
−s

5

)
≤ 2 exp

(
−α

5
l

)
.

Taking the union bound with 2l vectors introduces the summand l log 2 into the exponen-
tial:

P
{

min
j

∥∥∥X ′j∥∥∥
1
< s

} union
bound
≤ 2l · 2 exp

(
−α

5
l

)
= 2 exp

(
l log 2− α

5
l

)
.

The proposition is proven by taking the complementary probability.

3.2.2 Event 2: The minimum dg-separation of the set of vectors
determined by the sets without truncation is at least 1

3

Next, we show that the set of “Bernoulli vectors” X ′j described above have adequate separa-
tion. The following lemma demonstrates that this separation implies, for sufficiently small ρ,
that the vectors with support sets culled from the Bernoulli success sets will inherit adequate
separation. We denote the support of a vector x as supp(x).

Lemma 3.2.3. Given natural numbers s < M and vectors x′, y′ ∈ {0, 1}M ⊂ RM each
having at least s nonzero entries and such that 〈x′, y′〉 ≤ s/2, let x, y ∈ {0, 1}M such that
supp(x) ⊂ supp(x′) and supp(y) ⊂ supp(y′). If each of x and y have at least s non-zero
entries, then

dg(x, y) ≥ 1

3
.

It is an obvious consequence that dg(x, y) ≥ 3ρ for ρ ∈ [0, 1/9].

Proof. Assume the hypothesis, and note that 〈x, y〉 ≤ 〈x′, y′〉 ≤ s
2
. We have

dg(x, y) :=
1

π
cos−1

(
〈x, y〉
‖x‖2‖y‖2

)
≥ 1

π
cos−1

(
〈x, y〉
s

)
≥ 1

π
cos−1

(
s

2s

)
=

1

3
;
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Proposition 3.2.4. Under the same conditions of the preceding proposition (Prop 3.2.2),

assume that minj

∥∥∥X ′j∥∥∥
1
≥ s. Then

P
{

mindistg({X ′j}2l

j=1) >
1

3

}
≥ 1− exp

(
−
(
α

2
log

β

22
− log 4

)
l

)
,

and by the conditions on α and β, α
2

log β
22
− log 4 > 0.

Proof. By the conditions of the hypothesis and Lemma 3.2.3, it is sufficient to show that〈
X ′j, X

j′
〉
≤ s/2 for all distinct j, j′.

For j 6= j′ ∈ J2lK, we may consider
〈
X ′j, X

′
j′

〉
as a binomial random variable with under-

lying probability ( 2s
M

)2 and sample size M . Noting that E
[〈
X ′j, X

′
j′

〉]
= M · 4s2

M2 = 4s2

M
,

P
{〈

X ′j, X
′
j′

〉
>
s

2

}
≤ P


∣∣∣∣∣〈X ′j, X ′j′〉− 4s2

M

∣∣∣∣∣ > s

2
− 4s2

M


= P


∣∣∣∣∣〈X ′j, X ′j′〉− 4s2

M

∣∣∣∣∣ >
(
M

8s
− 1

)
4s2

M


lem.
3.1.2
≤ 2 exp

(
−
(
M

8s
log

M

8s
− M

8s

)
· 4s2

M

)

≤ 2 exp

(
−s

2

(
log

M

8s
− 1

))

≤ 2 exp

(
−αl

2
log

β

22

)
.

Applying the union bound, the probability that
〈
X ′j, X

′
j′

〉
> m

2
for some j 6= j′ ∈ J2lK is

bounded above by
(

2l
2

)
· 2 exp

(
−αl

2
log β

22

)
< exp

(
−αl

2
log β

22
+ l log 4

)
. Factoring and taking

the complementary probability completes the proof.

3.2.3 Applying the random hyperplane tessellation

As previously discussed, the error parameter ρ induces an upper bound on the dimension of a
Hamming cube that admits desirable separation traits under random hyperplane tessellation.
Here, we give an explicit bound Nρ on that dimension and show that for n ≤ Nρ, a random
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hyperplane tessellation of Qn provides an auxiliary code which itself provides a good code
under random hyperplane tessellation with overwhelming probability.

Proposition 3.2.5 (Embedded dg-separation). Let ρ ∈ [0, 1
6
) and Φ : Rn → Qs be a random

hyperplane tessellation. Then if n ≤ [sin2(π sin2(3π
2
ρ))]−1, we have

P

 min
x,y∈Qn
x 6=y

dg

(
Φ(x),Φ(y)

)
≥ 3ρ

 ≥ 1− exp

(
n log 4− 1

5
s sin2

(
3πρ/2

))
.

Additionally, s
n
> 1

2ρ2
is sufficient to ensure n log 4− 1

5
s sin2

(
3πρ/2

)
< 0.

Proof. The inequality dg

(
Φ(x),Φ(y)

)
≥ 3ρ is equivalent to

dH

(
Φ(x),Φ(y)

)
≥ s

2
(1− cos(3πρ)),

the righthand side of which equals s sin2(3πρ/2) by a half-angle identity. On the other hand,
the condition n ≤ [sin2(π sin2(3π

2
ρ))]−1 ≡ 2[1 − cos(2π sin2(3π

2
ρ))]−1 provides the following

lower bound on the dg-separation of Qn:

mindistg(Qn) :=
1

π
cos−1

(
1− 2mindistH(Qn)/n

)
=

1

π
cos−1

(
1− 2/n

)
≥ 1

π
cos−1

(
1−

[
1− cos

(
2π sin2

(
3πρ/2

))])
=2 sin2(3πρ/2) (since ρ < 1/6).

It follows that E
[
dH

(
Φ(x),Φ(y)

)]
≥ 2s sin2(3πρ/2) for distinct x, y ∈ Qn.

Next, we bound the probability that a pair of encoded vectors fails to meet the minimum
distance requirement:

P
{

dg

(
Φ(x),Φ(y)

)
< 3ρ

}
= P

{
dH

(
Φ(x),Φ(y)

)
< s sin2(3πρ/2)

}
≤ P

{∣∣∣dH

(
Φ(x),Φ(y)

)
− dg(x, y) s

∣∣∣ > dg(x, y) s− s sin2(3πρ/2)

}
≤ P

{∣∣∣dH

(
Φ(x),Φ(y)

)
− 2s sin2(3πρ/2)

∣∣∣ > s sin2(3πρ/2)

}
lem.
3.1.2
≤ 2 exp

(
−c 1

2
· 2s sin2(3πρ/2)

)
,
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where c 1
2

= 3
2

log 3
2
− 1

2
≈ 1

9.2
. Substituting 1/10 for c 1

2
and taking the union bound over

distinct pairs in Qn yields

P
{

mindistg(ΦQn) ≥ 3ρ
}
≥ 1−

(
2n
2

)
· 2 exp

(
−1

5
s sin2

(
3πρ/2

))
= 1− 1

2
2n(2n − 1) · 2 exp

(
−1

5
s sin2

(
3πρ/2

))
> 1− 22n exp

(
−1

5
s sin2

(
3πρ/2

))
= 1− exp

(
n log 4− 1

5
s sin2

(
3πρ/2

))
.

Finally, we solve the inequality 0 > n log 4 − 1
5
s sin2

(
3πρ/2

)
in terms of s

n
to obtain the

condition
s

n
>

10 log 2

sin2(3π
2
ρ)
.

The expression 10 log 2/ sin2(3π
2
ρ) is bounded above by 1

2ρ2
on an interval containing (0, 1

6
) 3 ρ,

and so s
n
> 1

2ρ2
implies the necessary condition.

We now have sufficient mathematical results to prove auxiliary code separation claim,
Proposition 3.2.1, but we shall first provide an explicit construction for the code in order to
show existence.

3.2.4 Assembling X =
⋃
T XT .

Recall that for a set T ⊂ JMK, ΣT is the collection of vectors in RM supported on T . In the
second step of obtaining our auxiliary ternary code, we declare X to be the union of vector
sets XT1 ,XT2 , . . . ,XTL , where each set XTj ⊂ ΣTj is the image of the alphabet QNρ under some
map. Additionally, we claim that {XTj}Lj=1 is produced in such a way that the set

⋃
j XTj is

separated by at least 3ρ in normalized geodesic distance.

We make the sets XTj explicit by first defining, for each T ∈ {Tj}Lj=1, the map ιT : Rs → ΣT

as the natural inclusion of Rs into RM onto the support given by T . We set XT := ιT (Φ(QNρ)),
and in the proof below, demonstrate that this assignment provides the desired separation.

Proof of Proposition 3.2.1. Recall that the variables in the supporting propositions are con-
sistent with those in the main proposition and with one another. Thus, we assume the
parameters ρ, α, β, Nρ, and n are given according to the hypothesis of Proposition 3.2.1,
that the induced parameters l := n − Nρ, s := dαle, M := dβse and L := 2l follow, and
that each time we access a supporting proposition, the variables in that proposition are taken
coincident with those having these defined names.
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We must demonstrate that the ternary auxiliary code X obtained in the first stage of
producing the embedding Ψ has a minimum dg-separation of at least 3ρ with probability not
less than p1p2p3, where

p1 = 1− 2 exp

((
log 2− α

5

)
l

)
= P{Event 1} (see Prop. 3.2.2)

p2 = 1− exp

((
log 4− α

2
log

β

22

)
l

)
= P

{
Event 2|Event 1

}
(see Prop. 3.2.4)

p3 = 1− exp

(
Nρ log 4− αl

5
sin2 3πρ

2

)
= P{Event 3} (see Prop. 3.2.5).

The construction of the set X requires that each of L = 2l support-inducing Bernoulli
processes has at least s successes; according to Proposition 3.2.2, this occurs with probability
not less than p1 under the constraints given by our parameters. Provided this occurs, the
likelihood that the induced vector set X ′ := {X ′j}Lj=1 satisfies mindistg(X ′) ≥ 1

3
≥ 3ρ is

bounded below by p2 in Proposition 3.2.4. By the definition of conditional probability, it
follows that Event 1 and Event 2 both happen is at least p1p2.

For each j ∈ JLK, define T ′j := supp(X ′j) and let Tj ⊂ T ′j be support set of size s. By
Lemma 3.2.3, the induced set X := {Xj}Lj=1 ⊂ {0, 1}M given by supp(Xj) = Tj also satisfies
the separation bound, mindistg(X) ≥ 3ρ. Thus, the described method of obtaining s-sized
support sets for the L vectors in X ⊂ {0, 1}M in such a way that no two of the implied
vectors violate our minimum separation requirement succeeds with probability not less than
p1p2.

Let T := {Tj}Lj=1.

Next, for each T ∈ T , define XT := ιT (Φ(QNρ)) as in the narrative immediately preceding
this proof. By Proposition 3.2.5, the near-linear embedding of QNρ into Qs by the random
hyperplane tessellation Φ has a 3ρ dg-separation with at least probability p3. The isometry
ιT preserves distance, so mindistg(XT ) = mindistg(Φ(QNρ)) for each T ∈ T .

By independence, the probability that T provides a 3ρ dg-separating support and Φ
provides a 3ρ dg-separated embedding is bounded below by the product p1p2p3. It remains
to show that X meets this separation requirement whenever this happens.

Assume that X is obtained from a successful construction of T and Φ, and suppose
x, y ∈ X are distinct vectors having possibly common supports Tjx and Tjy , respectively,
with jx, jy ∈ JLK. If Tjx ∩ Tjy is empty, then 〈x, y〉 = 0 and dg(x, y) = 1

π
cos−1(0) = 1

2
> 3ρ.

If Tjx = Tjy , then the dg-separation of T implies jx = jy, from which the separation granted
by Φ provides dg(x, y) ≥ 3ρ.

Suppose, then, that Tjx and Tjy intersect but do not agree, and set J := Tjx ∩ Tjy . As
the sum of |J | products xi · yi ∈ {±1}, the inner product 〈x, y〉 is bounded above by |J |;
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when this bound is met, x and y agree on the intersection of their supports. It follows
that 〈x, y〉 =

〈
Xjx , Xjy

〉
and so dg(x, y) = dg

(
XjxXjy

)
, which is bounded below by 3ρ. We

conclude that mindistg(X ) ≥ 3ρ, and the proposition is proven.

3.3 Stage 2 and the embedding Ψ

3.3.1 Auxiliary code separation implies Hamming distance
of hyperplane tessellation

Lemma 3.3.1 (Embedded dH-separation from dg-separation). Let ρ > 0 and Φ : RM → Qm

be a standard random hyperplane tessellation. If X ⊂ RM has a minimum dg-separation of
at least 3ρ, then

P

min
x,y∈X
x 6=y

dH

(
Φ(x),Φ(y)

)
≥ 2ρm+ 1

 ≥ 1− exp

(
2 log|X | − 3ρm

20

)
.

Proof. Let x, y ∈ X be distinct, and assume that mindistg(X ) ≥ 3ρ. Since normalized
geodesic distance is invariant under scaling of the arguments, we may assume without loss of
generality that x and y are unit vectors.

Since P
{

(Φx)i 6= (Φy)i
}

= dg(x, y), the random variable dH(Φx,Φy) follows the binomial
distribution B(m, dg(x, y)). We consider the probability that Φ fails to sufficiently separate
x and y:

P
{

dH(Φx,Φy) ≤ 2ρm
}
≤ P

{∣∣dH(Φx,Φy)− dg(x, y)m
∣∣ > dg(x, y)m− 2ρm

}
= P

{∣∣dH(Φx,Φy)− 3ρm
∣∣ > ρm

}
lem.
3.1.2
≤ 2 exp

(
−c 1

3
· 3ρm

)
,

with c 1
3

= 4
3

log 4
3
− 1

3
≈ 1

19.9
. We conclude that P

{
dH

(
Φ(x),Φ(y)

)
≥ 2ρm+ 1

}
≥ 1 −

2 exp(3ρm/20).

Next, we apply the union bound over
(|X |

2

)
= 1

2
|X | (|X | − 1) distinct pairs in X :

P
{

mindistH(Φ(X )) ≥ 2ρm+ 1
}
≥ 1− 1

2
|X | (|X | − 1) · 2 exp

(
−3ρm

20

)
> 1−|X |2 exp

(
−3ρm

20

)
= 1− exp

(
2 log|X | − 3ρm

20

)
,
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and the proof is complete.

With this lemma, we are now prepared to prove Theorem 3.1.1.

3.3.2 Proof of Ψ’s success rate

Proof of Theorem 3.1.1. Let X denote the auxiliary code in Stage 1 of the construction of Ψ
and Φ denote the random hyperplane tessellation invoked in Stage 2. According to Proposi-
tion 3.2.1, the parameters given in the theorem imply that X has a minimum dg-separation
of 3ρ with probability[

1− 2e(log 2−α
5 )l
]
·
[
1− e(log 4−α

2
log β

22)l
]
·
[
1− eNρ log 4−αl

5
sin2 3πρ

2

]
Provided this occurs, Lemma 3.3.1 gives

P

 min
x,y∈Qn
x 6=y

dH

(
Ψ(x),Ψ(y)

)
≥ 2ρm+ 1

 = P

min
x,y∈X
x 6=y

dH

(
Φ(x),Φ(y)

)
≥ 2ρm+ 1


≥ 1− exp

(
2 log(2n)− 3ρm

20

)
≥ 1− exp

(
n log 4− 3ρm

20

)
.

Taking the product of the bound on the probability that X has adequate separation and the
bound on the probability that the hyperplane tessellation Φ provides adequate separation
provides the claimed bound.

3.4 Conclusion

The intermediate embedding of the Hamming cube into a random constant weight binary code
permitted the random hyperplane tessellation to induce the desired separation of points.
Additional, incomplete results suggust we can improve the robustness against noise up to
∼ .16 by an alternate method of selecting the intermediate code.
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Chapter 4

Binary Parseval frames from group
orbits†

The focus of this chapter is dominantly algebraic and frame-theoretic in nature, though we
are still in pursuit of “good binary codes.” Joining this shift from the analytic perspective
are two subtler transitions that occur at this point in the manuscript:

1. In this chapter, binary only means 0’s and 1’s, and those numbers now satisfy 1 + 1 =
0—the underlying field has changed.

2. Whereas the conversation up to this point has increasingly focused on asymptotics, this
chapter’s examples and applications are decidedly finite.

We proceed with some background and comparisons before setting definitions and terminol-
ogy.

4.1 Background: Frames and binary frames

A finite frame is simply a spanning family in a vector space, with the underlying field F often
specified with a modifier. In the case of binary frames, which we take to be finite frames by
definition, that field is the Galois field with two elements, denoted here as GF(2) or Z2.
Binary frames have much in common with their real and complex counterparts, which have
been studied extensively in mathematics and engineering [18, 51, 52].

†The content of this chapter appears as [59] (see Ch.1): Robert P. Mendez, Bernhard G. Bodmann,
Zachery J. Baker, Micah G. Bullock and Jacob E. McLaney, “Binary Parseval frames from group orbits,”
Linear Algebra and its Applications, Volume 556, 1 November 2018, pps 265-300
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As a spanning set, a frame for Fn necessarily contains at least n vectors; if it exactly
meets that minimum, it is simply a basis for the vector space. As such, we typically think of
frames as including linear dependencies, and, in fact, make use of that property. Such a frame
may be used to expand any given vector into a linear combination of frame vectors, of course,
without the assertion of uniqueness. Nonetheless, for real and complex Parseval frames, there
is a standard choice of expansions having the property that the coefficients in the expansion
of a vector can be calculated efficiently, and recovering a vector from these coefficients is also
straight forward. With an appropriate definition of a binary Parseval frame, this property
holds, as well [5]. Now, in the former case, the coefficients are computed by taking inner
products of the frame vectors with the vector to be expanded; Zn2 does not admit an inner
product [5], but the less restrictive dot product in place of the inner product endows binary
Parseval frames with the same “coefficient computing” qualities as their real and complex
counterparts [39, 43].

Where distinguishing qualities among frames are to be made, equivalence classes become
useful in isolating particular qualities. In the real and complex cases, a number of equivalence
relations have been used. Frames may be similar, for example, and Parseval frames are sub-
ject to unitary equivalence [40], projective unitary equivalence [22], and switching equivalence
[7, 34]. As holds true for real and complex Parseval frames, each set of unitarily equivalent
binary Parseval frames can be identified with a corresponding Gramian [5, Proposition 4.8].
This identification of Gramians with classes of frames extends to the three frame equivalence
relations applied here (as will be shown), and so the Gramians of binary Parseval group
frames1 become a central focus of this chapter. Even with coarser partitions, the quantities
of representatives grows quickly with the frame size and dimension, as demonstrated in Sec-
tion 4.4; For exhaustive lists of various equivalence classes of binary Parseval frames (for the
lowest dimensions), see in [2] and [5].

For all the similarities between binary frame theory and that of real and complex frames,
there are, of course, differences. One striking distinction is in the characterization of their
Gram matrices;2 the Gram matrices of real or complex Parseval frames are characterized as
symmetric or Hermitian idempotent3 matrices. In the binary case, these properties are insuf-
ficient, and must be augmented with the condition of having at least one non-zero diagonal
entry [2]. This condition is equivalent to having at least one odd column vector, meaning that
a column contains an odd number of 1’s. The underlying reason is the range of the Gram
matrix of any Parseval frame consists precisely of its eigenspace corresponding to eigenvalue
one [37]—a consequence of idempotence—which in the binary case necessarily contains only
odd vectors [2]. If none of the column vectors were odd, then the span could not satisfy this
requirement.

1(given in Definition 4.2.8)
2The i, k entry of the Gram matrix of a frame {fj}j∈J is the inner product of fi and fk (or dot product,

in the binary frame case).
3Recall, a matrix (or any map) G is idempotent if G = G2. For the sake of completeness: a symmetric

real matrix G satisfies G = G>, whereas a Hermitian complex matrix G satisfies G = G∗.
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We shall continue comparing the structure of binary Parseval frames with their real or
complex counterparts throughout the chapter, specializing to frames obtained from the orbit
of a vector under a group representation.

Here, we study binary Parseval group frames, with special emphasis on the structure of
the Gramians associated with them. Our first main result is that a binary Parseval frame is
obtained from the action of a group if and only if its Gramian is in the group algebra.

For such group frames, the Gram matrix is shown to be a binary linear combination of
elements of the right regular representation, thus associated with a binary function on the
group. This function provides a concise characterization of binary Parseval group frames, al-
lowing us to find structural constraints for such frames. We use these constraints to catalogue
coarser equivalence classes of binary Parseval frames obtained from group representations.
We specialize further to abelian groups and deduce more specific design constraints.

We leave the study and applications of non-abelian groups and their associated binary
group frames for future work. In addition, one may use finite fields other than the Galois
field with two elements. Here, the motivation for code design was a natural reason to restrict
the discussion to binary numbers.

4.2 Preliminaries

Unless otherwise noted, the vectors and matrices in this paper are over the field Z2 contain-
ing the two elements 0 and 1. We write Ik to indicate the k × k identity matrix over Z2,
occasionally suppressing the subscript when the dimension would not otherwise be noted. We
shall refer to the number of nonzero entries of a vector x ∈ Zn2 as the weight of x (sometimes
written ‖x‖0), and we say that x is odd or even if it has an odd or even number of entries
equal to 1, respectively. These labels extend naturally to the columns and rows of a matrix
viewed as column and row vectors (for example, we may refer to an odd or even column of
a matrix). The expression T ∈ Mn(Z2) means that T is an n × n matrix over Z2, and, in
keeping with the notation of real or complex frames, we denote the transpose of a binary
matrix T as T ∗.

Additionally, we may suppress the range of indices on sums and sets for simplicity of
notation, as in writing

∑
j cjfj for

∑
j∈J cjfj or {fj} for {fj}j∈J when the index set J is clear

from the context.

4.2.1 Binary Frames

Although the dot product as defined below has the appearance of an inner product, it fails
to be positive definite, so it is not: Note that taking the dot product of a (non-zero) even
vector with itself gives zero.
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Definition 4.2.1 (〈·, ·〉, the dot product on Zn2 ). We define the bilinear map 〈·, ·〉 : Zn2×Zn2 →
Z2, called the dot product on Zn2 , by〈a1

...
an

 ,
b1

...
bn

〉 :=
n∑
i=1

aibi,

compactly expressed as 〈a, b〉 = b∗a for vectors a = [ai]
n
i=1, b = [bi]

n
i=1. Consistent with the

language of inner products, we say that two vectors in Zn2 are orthogonal if their dot product
is equal to zero.

We began Section 4.1 by describing frames, in general, as spanning sets; in fact, real
and complex frames are typically defined in terms of the inner product, motivated by a
generalization of the “reconstruction identity” (4.1) below. The fact that a frame in that
setting spans its ambient vector space is a characterizing feature of finite frames; The absence
of an inner product motivated the authors of [5] to define binary frames according to that
characterizing feature, and, as narrated earlier, with the selection of the dot product to replace
the inner product, many of the desirable qualities of the classic frames followed.

Definition 4.2.2 (Binary frame, binary Parseval frame). Let F = {fj}j∈J be a family of
vectors in Zn2 , indexed by a finite set J . If F spans Zn2 , we call F a (binary) frame; if F
satisfies the reconstruction identity

x =
∑
j∈J

〈
x, fj

〉
fj for all x ∈ Zn2 , (4.1)

we say that F is a binary Parseval frame.

For other choices of indefinite bilinear form on vector spaces over Z2 and associated frames,
see [43]. Here, we restrict ourselves to the canonical choice, the dot product.

Since any family of vectors satisfying (4.1) necessarily spans Zn2 , each Parseval frame
{fj}j∈J for Zn2 is in fact a frame, and the index set necessarily has the size |J | ≥ n. For
classification purposes it is useful to introduce equivalence relations among Parseval frames
as in [5].

Definition 4.2.3 (Unitary binary matrices, unitary equivalence, switching equivalence). We
say that a binary n × n matrix U is unitary if UU∗ = U∗U = In. Given vector families
F := {fj}j∈J and F ′ := {f ′j}j∈J in Zn2 , we say that F is unitarily equivalent to F ′ if there
exists a unitary U ∈ Mn(Z2) such that f ′j = Ufj for all j ∈ J ; we say that F is switching
equivalent to F ′ (written F ∼=sw F ′) if there exists a unitary U ∈Mn(Z2) and a permutation
σ on J such that f ′j = Ufσ(j) for all j ∈ J .

By definition, unitary equivalence is a refinement of switching equivalence. The nature of
unitary and permutation matrices makes verifying that these are both equivalence relations
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a straightforward exercise. Now, from this point forward, we focus on frames indexed by
elements of a group; in this context, a restricted version of switching equivalence becomes
useful—one which limits the permutations to the subset preserving the group structure. In
short, we require the permutations to be group automorphisms.

Definition 4.2.4 (Automorphic switching equivalence). Let Γ be a group; we denote the
automorphisms of Γ by Aut(Γ). Given Γ-indexed vector families F := {fg}g∈Γ and F ′ :=
{f ′g}g∈Γ, we say that F and F ′ are automorphically switching equivalent (written F ∼=aut F ′)
if there exist a unitary U ∈Mn(Z2) and an automorphism σ ∈ Aut(Γ) such that fg = Uf ′σ(g)

for all g ∈ Γ.

4.2.2 Operators associated with a frame

The following four operators are defined in the same manner as for finite frames over the
fields R and C. In each definition, F = {fj}j∈J is assumed only to be a frame for Zn2 .

Definition 4.2.5 (ΘF , the analysis operator,Θ∗F , the synthesis operator). We denote the
space of Z2-valued functions on a set J by ZJ2 . The analysis operator for F is the map
ΘF : Zn2 → ZJ2 given by (ΘFx)(j) = 〈x, fj〉. The adjoint of ΘF , also called synthesis operator,
maps h ∈ ZJ2 to Θ∗Fh =

∑
j∈J h(j)fj.

Definition 4.2.6 (SF , the frame operator). The frame operator for F is the n× n matrix

SF := Θ∗FΘF .

Remark 4.2.7. We note that the reconstruction identity (equation (4.1)) may be written
as x = Θ∗FΘFx. The reconstruction property of a Parseval frame F for Zn2 is equivalent to
SF = In.

Definition 4.2.8 (GF , the Gramian). The Gramian for F , usually called the Gram matrix
if J = {1, 2, . . . , k}, is the linear map GF : ZJ2 → ZJ2

GF := ΘFΘ∗F .

Taking δj(k) = 1 if k = j and δj(k) = 0 otherwise, {δj}j∈J is the standard basis for ZJ2 ,
and we use matrix notation to write (GF)i,j = 〈ΘFΘ∗Fδj, δi〉 = 〈fj, fi〉. It follows from the
symmetry of 〈·, ·〉 that (GF)i,j = (GF)j,i, and thus GF is symmetric (i.e., GF = G∗F). Further,
if F is a binary Parseval frame, then the Gramian is idempotent:

G2
F = (ΘFΘ∗F)(ΘFΘ∗F) = ΘF (Θ∗FΘF)︸ ︷︷ ︸

=SF=In

Θ∗F = ΘFΘ∗F = GF . (4.2)

For each of these matrices, we may suppress the subscript if doing so does not cause
ambiguity, simply writing Θ ,Θ∗, S, and G.
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4.2.3 Group frames for Zn2

Recall that, given a finite group Γ and a vector space V , a representation of Γ on V is a
group homomorphism

ρ : Γ→ GL(V ),

where GL(V ) denotes the general linear group of V . In such a case, we say that Γ acts on V
by ρ, and for any group element g we may interchangeably write ρ(g) as ρg. We shall refer to
the elements of {ρg}g∈Γ as the matrices of the representation ρ, or simply as representation
matrices. Further, if each of the matrices ρg is unitary, then we call the representation itself
unitary.

In the context of complex Hilbert spaces, given a finite group Γ, a group frame generated
by Γ is any frame {fg}g∈Γ that satisfies ρgfh = fgh for all g, h ∈ Γ, for some representation
ρ of Γ. If that representation is unitary, the frame is the orbit of a single vector [76]; it is
this idea of a group generating a frame from a single vector that provides the basis of our
definition.

Definition 4.2.9 (Binary Parseval group frame, Γ-frame). Given a natural number n and a
group Γ acting on the vector space Zn2 by a representation ρ, let F := {ρgf}g∈Γ denote the
orbit of a vector f ∈ Zn2 under ρ. If F spans Zn2 , then it is a frame which we call a binary
group frame. If F is a Parseval frame, we say that it is a binary Parseval group frame. For
a given group Γ, we abbreviate the description “group frame generated by Γ” as Γ-frame
[75]. We shall index frame vectors by their inducing group elements, so that fe := f and
fg := ρ(g)f = ρgf for g ∈ Γ.

We begin with examples of frames generated with groups of size 27 acting on Z9
2. These

examples show that depending on the choice of fe, a unitary group representation may lead
to an orbit that is a Parseval frame or just a frame.

Examples 4.2.10 (Two binary cyclic Z27-frames). Let Γ = Z27 be the group of integers
{0, 1, . . . , 26} with addition modulo 27. Let S9 be the cyclic shift on Z9

2, so for each canonical
basis vector ei with i ≤ 8, S9ei = ei+1 and S9e9 = e1. Since S9 is a permutation matrix, the
map ρ : i 7→ Si9 is a homomorphism from Γ to GL(Z9

2). Choosing fe = [1 0 1 1 1 1 1 1 0]∗ gives
that {fj}j∈Γ spans Z9

2, but Θ∗FΘF 6= I9, so F is a frame but not Parseval.

Moreover, choosing fe = e1 shows that {fi}i∈Γ with fi = Si9e1 = e1+i(mod 9) and e0 ≡ e9

repeats the sequence of canonical basis vectors three times. Consequently, the synthesis
operator is Θ∗F = [I9 I9 I9] and Θ∗FΘF = I9, so F is Parseval.

An exhaustive search of all Parseval frames obtained from group orbits under the action
of Z27 on Z9

2 reveals that up to unitary equivalence, the second example is the only case
of a Parseval Z27-frame for Z9

2. Such an exhaustive search is made feasible by methods
developed in Section 4.3.4. In a preceding paper, the linear dependence among repeated
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frame vectors, as is exhibited in the frame having synthesis operator [I9 I9 I9], has been called
trivial redundancy [5]; In the next example, we show that another group of the same size
generates frames as well as Parseval frames without the occurrence of repeated vectors in
either case.

Example 4.2.11 (Two binary Gabor frames). Let a, b ∈ GL(Z3
3) and the suggestively named

ρa, ρb ∈ GL(Z9
2) be defined by

a :=
[

1 0 0
0 1 1
0 0 1

]
, b :=

[
1 1 0
0 1 0
0 0 1

]
, ρa :=

[
I3 0 0
0 X 0
0 0 Y

]
, ρb :=

[
0 I3 0
0 0 I3
I3 0 0

]
,

where 0 is the 3× 3 matrix of zeros, X =
[

0 0 1
1 0 0
0 1 0

]
, and Y = X2.

The group generated by a and b under matrix multiplication is the nonabelian finite
Heisenberg-Weyl group modulo 3, denoted HW3. From the fact that products of powers of
a and b give all upper triangular ternary matrices whose diagonal entries are fixed at 1, one
can deduce that this group has order 27 (see also [70]). The matrices ρa and ρb generate a
group isomorphic to HW3 and have been chosen such that setting ρ(a) := ρa and ρ(b) := ρb
extends to an isomorphism ρ : HW3 → GL(Z9

2). For compactness of notation, we designate
a third group element4 c and corresponding ρc ∈ GL(Z9

2)

c :=
[

1 0 1
0 1 0
0 0 1

]
and ρc := ρ(c) =

[
X 0 0
0 X 0
0 0 X

]
,

and order the elements of HW3 in the following sequence:

e, a, a2, b, ab, a2b, b2, ab2, a2b2,

c, ac, a2c, bc, abc, a2bc, b2c, ab2c, a2b2c,

c2, ac2, a2c2, bc2, abc2, a2bc2, b2c2, ab2c2, a2b2c2.

Choosing fe = [1 1 0 1 0 0 0 0 0]∗ and f ′e = [1 1 0 1 1 0 1 0 0]∗ induces HW3-frames {fe} and
{f ′e} whose synthesis operators Θ∗1 := [fe|fa|fa2| · · · |fa2b2c2 ] and Θ∗2 := [f ′e|f ′a|f ′a2| · · · |f ′a2b2c2 ]
are given in Figure 4.1. One may verify that {f ′g}g∈HW3 is the only Parseval frame of the pair
by calculating the corresponding frame operators.

4.2.4 Regular representations and group frames

Constructing a faithful unitary representation of a finite group Γ is always possible; if Γ
has order k and given a k-dimensional vector space V , one can find a collection of k × k
permutation matrices {Pg}g∈Γ ⊂ GL(V ) that form a group isomorphic to Γ. This is just a
result of Cayley’s theorem for groups based on the left or right regular representation, as
given below. The challenge, of course, is to find vector spaces of smaller dimension carrying

4Note that {e, c, c2} is the center of HW3.
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Θ∗1 =


1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1
0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0



Θ∗2 =


1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0
1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1
0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1
1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1
0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0


Figure 4.1: Synthesis operators of two binary Gabor frames (see Example 4.2.11)

a unitary representation and vectors whose orbits under the group action form a Parseval
frame.

With this in mind, we recall that the regular representations of a finite group Γ over a
field K act on KΓ, the vector space of K-valued functions on Γ; the left regular representation
Λ = {Λg}g∈Γ and right regular representation R = {Rg}g∈Γ act on ϕ : Γ→ K according to

Λgϕ : h 7→ ϕ(g−1h) and Rgϕ : h 7→ ϕ(hg)

and hence define group isomorphisms. By associativity, ΛgRhϕ and RhΛgϕ are well defined,
and commutativity among operators of the regular representations follows from the chain of
equalities (

ΛgRhϕ
)
(x) =

(
Rhϕ

)
(g−1x) = ϕ(g−1xh) =

(
Λgϕ

)
(xh) =

(
RhΛgϕ

)
(x),

which holds for all g, h, x ∈ Γ and ϕ ∈ KΓ.

Remark 4.2.12. For future use, we note that for each g ∈ Γ, the nonzero entries of the
permutation matrix associated with Λg and the canonical basis are indexed by the set
{(gh, h) : h ∈ Γ}, and Rg is nonzero exactly on index set {(hg−1, h) : h ∈ Γ}. Written in
terms of the Kronecker delta,

(Λg)a,b = δgab−1 and (Rg)a,b = δga−1b, where δβα :=

{
1 if α = β

0 if α 6= β
.

We close the section by showing that, as in the real or complex case [76], the group
representations which generate binary Parseval group frames are unitary.
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Proposition 4.2.13 (Binary Parseval group frames are generated by unitary representa-
tions). Given a finite group Γ, let F be a binary Γ-frame generated by a group representation
ρ. If F is Parseval with analysis operator Θ, then ρ is a unitary representation with matrices
explicitly given by ρg = Θ∗ΛgΘ for each g ∈ Γ.

Proof. Let Γ, F and Θ be as in the hypothesis. For g, h ∈ Γ and x ∈ Zn2 ,

(ΛgΘx)(h) = Θx(g−1h) = 〈x, ρg−1fh〉 = 〈ρ∗g−1x, fh〉 = (Θρ∗g−1x)(h),

so the following diagram commutes:

Z2[Γ]
Λg // Z2[Γ]

Zn2

Θ

OO

(ρg−1 )∗
// Zn2

Θ

OO

By the Parseval property and the demonstrated intertwining relationship, we have ρ∗g−1 =

Θ∗Θρ∗g−1 = Θ∗ΛgΘ. Replacing g with g−1 and taking the transpose, we then get ρg =
Θ∗Λ∗g−1Θ. Next, the unitarity of Λg gives the claimed expression ρg = Θ∗ΛgΘ. These equali-
ties together imply that ρg = ρ∗g−1 ; we conclude that each ρg is unitary.

Example 4.2.14 (A binary Parseval Z2
3-frame). The family of vectors and matrix

F =


[

0
1
0
0
0

]
f
(0

0)

,

[
0
0
1
0
0

]
f
(0

1)

,

[
0
0
0
1
0

]
f
(0

2)

,

[
0
1
1
0
1

]
f
(1

0)

,

[
0
0
1
1
1

]
f
(1

1)

,

[
0
1
0
1
1

]
f
(1

2)

,

[
1
1
0
1
0

]
f
(2

0)

,

[
1
1
1
0
0

]
f
(2

1)

,

[
1
0
1
1
0

]
f
(2

2)

 and G =


1 0 0 1 0 1 1 1 0
0 1 0 1 1 0 0 1 1
0 0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 1 0
1 0 1 0 0 1 0 1 1
1 0 1 1 1 0 1 0 0
1 1 0 0 1 1 0 1 0
0 1 1 1 0 1 0 0 1


are a binary Parseval Z2

3 frame and its Gramian. Denoting the left regular representation of

Z3 as ρ̃ with ρ̃(1) ≡ ρ̃1 :=
[

0 0 1
1 0 0
0 1 0

]
, the left regular representation matrices of Z2

3 are defined by

the Kronecker products Λ(i
j

) = ρ̃i ⊗ ρ̃j, recalling that ρ̃i = ρ̃ i1 for i ∈ Z3. The corresponding

matrices ρ
(
i
j

)
:= Θ∗Λ(i

j

)Θ provide a representation of the group Z2
3 on the vector space Z5

2.

ρ (0
0) =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
, ρ (0

1) =

[
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

]
, ρ (0

2) =

[
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

]
,

ρ (1
0) =

[
0 0 0 0 1
1 1 0 1 0
1 1 1 0 0
1 0 1 1 0
0 1 1 1 0

]
, ρ (1

1) =

[
0 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 1 1 1 0

]
, ρ (1

2) =

[
0 0 0 0 1
1 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 1 0

]
,

ρ (2
0) =

[
0 1 1 1 0
0 1 1 0 1
0 0 1 1 1
0 1 0 1 1
1 0 0 0 0

]
, ρ (2

1) =

[
0 1 1 1 0
0 1 0 1 1
0 1 1 0 1
0 0 1 1 1
1 0 0 0 0

]
, ρ (2

2) =

[
0 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 0 0

]
.
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One may verify that the induced map ρ : Z2
3 → GL(Z5

2) is a unitary representation and
that F is in fact the orbit of f(0

0)
under ρ.

4.3 The structure of the Gramian of a binary

Parseval group frame

The Gramian captures geometric information about the structure of the associated frame,
since it records every pairwise dot product among frame vectors. If the frame is a group frame,
then it also reflects the group structure. As shown below, the Gramian of a binary Parseval
group frame is an element of the algebra generated by the right regular representation.

Theorem 4.3.1 (Gramians of binary Parseval group frames as elements of the group algebra).
Let Γ be a finite group with right regular representation {Rg}g∈Γ and associated group algebra
Z2[{Rg}], and suppose G is the Gramian of a binary Parseval Γ-frame F := {fg}g∈Γ. Then
the Gram matrix is in the group algebra. More explicitly, G is given by

G =
∑
g∈Γ

η(g)Rg, (4.3)

where the function η : Γ→ Z2 is defined by η(g) :=
〈
fg, fe

〉
.

Proof. Let ρ be the frame-generating group representation, which by Proposition 4.2.13 is a
unitary representation of Γ. Consider H =

∑
g∈Γ η(g)Rg with η as in the statement of the

theorem. We compute for a, b ∈ Γ the value

Ha,b =
∑
g∈Γ

η(g)(Rg)a,b

=
∑
g∈Γ

η(g)δga−1b = η(a−1b)

= 〈fa−1b, fe〉
= 〈ρbfe, ρ∗a−1fe〉
= 〈fb, fa〉 = Ga,b .

In the last identity, we have used the unitarity, ρa−1 = ρ∗a.

Theorem 4.3.2 (Gramians of binary Parseval frames in a group algebra imply group frame
structure). Let Γ be a finite group with regular representations Λ and R, and suppose F =
{fg}g∈Γ is a binary Parseval frame with Gramian G and analysis operator Θ. If G is in the
group algebra Z2[{Rg}], then ρg := Θ∗ΛgΘ defines a unitary representation of Γ and {fg}g∈Γ

is a Γ-frame obtained from the orbit of fe under the representation {ρg}g∈Γ.
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Proof. Assume that G = ΘΘ∗ ∈ Z2[{Rg}]. Since Λg and Rg′ commute for each g, g′ ∈ Γ, so
do Λg and G. From Θ∗ΘΘ∗ = Θ∗, then, we have Θ∗ΛgΘΘ∗ΛhΘ = Θ∗ΛghΘ for each g, h ∈ Γ,
and since (Θ∗ΛgΘ)∗ = Θ∗Λg−1Θ, it follows that ρg = Θ∗ΛgΘ defines a unitary representation
of Γ. Using these properties for ρg then shows that

ρgfe = Θ∗ΛgΘΘ∗δe = Θ∗ΘΘ∗Λgδe = Θ∗δg = fg ,

so the frame vectors are obtained from the orbit under the unitaries {ρg}g∈Γ.

We summarize the preceding two theorems in a characterization of binary Parseval group
frames.

Corollary 4.3.3 (Characterization of binary Parseval group frames in terms of Gramians).
Let Γ be a finite group with right regular representation {Rg}g∈Γ. A binary Parseval frame F
indexed by Γ is a Γ-frame if and only if its Gramian is in the algebra Z2[{Rg}g∈Γ].

4.3.1 Characterizing the structure of the Gramian

In order to facilitate a catalogue of binary Parseval group frames, we identify necessary and
sufficient conditions for their Gramians.

In the real or complex case, each symmetric idempotent matrix is the Gram matrix of
a Parseval frame. In the binary case, [2, Theorem 4.1] characterizes Parseval frames with
the additional requirement that at least one row or column vector is odd. This condition
is equivalent to the condition that the Gramian has at least one odd vector in its range,
since the span of the column vectors of a matrix forms the range of the matrix; we use these
statements interchangeably throughout this paper. This condition is also equivalent to that
of having at least one nonzero entry on the diagonal, since the idempotence and symmetry
of a Gramian G induce the identity between the dot product of a vector Gδg with itself and
the corresponding diagonal entry of the Gramian,

〈
Gδg, Gδg

〉
= Gg,g for all g ∈ Γ.

We next combine the results we obtained so far with the characterization of the Gramians
of binary Parseval frames to characterize Gramians that belong to binary Parseval group
frames.

Theorem 4.3.4 (The structure of Gramians of binary Parseval group frames). Given a finite
group Γ with right regular representation R, a map G : ZΓ

2 → ZΓ
2 is the Gramian of binary

Parseval Γ-frame if and only if G is symmetric and idempotent, G ∈ Z2[{Rg}] and the range
of G contains an odd vector.

Proof. As noted above, [2, Theorem 4.1] characterizes the Gram matrices of binary Parseval
frames as symmetric, idempotent matrices having at least one odd column. Thus, given a
finite group Γ, the characterization in the current theorem reduces to Corollary 4.3.3, and is
thereby proven.
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In short, this last theorem states that we can move back and forth between elements in
the unitary equivalence class of a frame and the Gramian. Since we focus on the construction
of Gramians hereafter, we summarize how to obtain a group frame from the corresponding
Gramian more explicitly. To this end, we recall that if G is the Gramian of a binary Parseval
frame, then it factors into G = ΘΘ∗ where the columns of Θ are orthonormal with respect to
the dot product and form a basis for the range of G. This means the columns of Θ∗ are in the
space whose dimension is the rank of G, as expected. Moreover, for any such factorization of
G, the columns of Θ∗ form a binary Parseval frame in the unitary equivalence class associated
with G. Factoring G can be achieved by performing a version of a Gram-Schmidt algorithm,
as demonstrated in [2]. We summarize the most practically relevant consequences of these
observations and the preceding theorems.

Corollary 4.3.5 (Gramian candidates in group algebra induce unitary class representative
group frames). Let Γ be a finite group with left and right regular representations {Λg}g∈Γ and
{Rg}g∈Γ, respectively. If a map G ∈ Z2[{Rg}g∈Γ] is symmetric and idempotent and its range
contains an odd vector, then it can be factored in the form G = ΘΘ∗ where fg = Θ∗δg defines
a binary Parseval frame {fg}g∈Γ for Zk2 and k is the rank of G. Moreover, ρg = Θ∗ΛgΘ
defines a unitary representation of Γ, and the vectors {fg}g∈Γ are a binary Parseval Γ-frame
obtained from the orbit of fe under the representation {ρg}g∈Γ.

4.3.2 Additional properties of the Gramian

Since regular representation matrices are permutation matrices, a consequence of Theorem
4.3.1 is that each of the rows of the Gramian of a binary Parseval group frame has the same
weight. Thus, if a Gramian is assumed to be that of a binary Parseval group frame, the
condition that one column is odd is equivalent to the condition that every column is odd,
which equates to the condition that every diagonal entry is a 1, or even simply that η(e) = 1.
Continuing under the assumption that the Gramian may be written as G = Σgη(g)Rg, the
quantity of 1’s in a column is the quantity of elements g ∈ Γ such that η(g) = 1; it follows
that G has an odd column if and only if the sum Σgη(g) = 1.

Now, suppose Γ is a finite group of order k and that we wish to exhaustively search for
Γ-frames. The characterization in Theorem 4.3.4 tells us that the candidate set of Gramians
is a subset of H =

∑
g∈Γ

η(g)Rg

η(e) = 1
η(g) = η(g−1) for all g ∈ Γ∑

g η(g) = 1

 . (4.4)

From a computational standpoint, the three necessary criteria are easy to check as properties
of the coefficient function η; in fact, no matrix multiplication is required until we wish to check
idempotence. The following proposition reduces the idempotence condition to a property of
η as well.
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Proposition 4.3.6 (Idempotence in group algebra characterized by convolution identity).
Given a finite group Γ with right regular representation {Rg}g∈Γ and a binary function η :
Γ→ Z2, the matrix

∑
g η(g)Rg is idempotent if and only if η is invariant under convolution

with itself; that is, if and only if η(h) = η ∗ η(h) :=
∑

g η(g)η(g−1h) for each h ∈ Γ.

Proof. Let Γ and {Rg}g∈Γ be as given above and η : Γ → Z2 be a binary function. We note
that (∑

g∈Γ

η(g)Rg

)2

=
∑

g1,g2∈Γ

η(g1)η(g2)Rg1g2 =
∑
g,h∈Γ

η(g)η(g−1h)Rh; (4.5)

it follows that
∑
η(g)Rg =

(∑
η(g)Rg

)2
implies η(h) =

∑
g η(g)η(g−1h) for each h ∈ Γ. On

the other hand, suppose η : Γ→ Z2 is convolution invariant. Then∑
h∈Γ

η(h)Rh =
∑
h∈Γ

[∑
g∈Γ

η(g)η(g−1h)
]
Rh =

∑
g,h∈Γ

η(g)η(g−1h)Rh,

which by equation (4.5) is equal to
(∑

η(g)Rg

)2
, and the proof is complete.

Example 4.3.7. Consider D3, the dihedral group of order 6, described 〈a, b : a3 = 1, b2 =
1, b−1ab = a−1〉; ordering the elements 1, a, a2, b, ab, a2b, then the right regular representation
matrices of D3 are given by 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


R1

,

 0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


Ra

,

 0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0


Ra2

,

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


Rb

,

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0


Rab

,

 0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0


Ra2b

.

A quick check for convolution invariance among the twelve coefficient functions satisfying
the conditions in (4.4) shows that only I6 and G1 := R1 + Ra + Ra2 give suitable Gramians.
Synthesis matrices for the two classes are given by Θ∗G1

:= [ 1 1 1 0 0 0
0 0 0 1 1 1 ] and Θ∗I6 = I6.

It follows from Proposition 4.3.6 that the coefficient function of the Gramian of a binary
Parseval group frame is always convolution invariant, but convolution invariance of such a
function does not ensure matrix symmetry:

Example 4.3.8. Let {Rj}6
j=0 be the right regular representation matrices for the group Z7,

noting that R∗j = R−1
j = R−j. Consider the coefficient function given by

η(x) =

{
1 if x ∈ {0, 1, 2, 4}
0 if x ∈ {3, 5, 6}

,

which is easily verified to satisfy η = η ∗ η. It is clear, however, that the matrix G =∑6
j=0 η(j)Rj is not symmetric (since η(1) 6= η(6), for example), so G is not the Gramian of

any frame.
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Adding idempotence under convolution to the conditions in (4.4) removes the need to
require that the coefficient function sums to 1, which is then implicit in η(e) = 1. We
conclude a characterization of the coefficient functions of binary Parseval group frames.

Theorem 4.3.9 (Gramians of binary Parseval Γ-frames characterized by η). Given a finite
group Γ with right regular representation matrices {Rg}g∈Γ and G =

∑
g η(g)Rg, then G is

the Gramian of a binary Parseval Γ-frame if and only if η(e) = 1, η is symmetric under
inversion of its argument and idempotent under convolution.

Proof. Since G =
∑

g η(g)Rg and R∗g = Rg−1 for all g ∈ Γ, it follows that G is symmetric
if and only if η is. Further, Proposition 4.3.6 equates the idempotence of G with that of η.
Now, η(e) = 1 if and only if η(g) = 1 for all g ∈ Γ, if and only if G has at least one odd
column.

Theorem 4.3.4 provides four conditions which characterize the Gramians of binary Parse-
val group frames, three of which we have just demonstrated are equivalent to conditions on
η. Since G automatically satisfies the remaining condition as an element of the group algebra
Z2[{Rg}], it follows that G =

∑
g η(g)Rg is the Gramian of a binary Parseval Γ-frame if and

only if η(e) = 1, η = η ∗ η, and η(g) = η(g−1) for all g ∈ Γ.

In light of the last theorem, we can replace the necessary conditions (4.4) with necessary
and sufficient conditions for G being the Gramian of a binary Parseval Γ-frame F ,

G ∈


∑
g∈Γ

η(g)Rg

η(e) = 1
η(g) = η(g−1) for all g ∈ Γ
η = η ∗ η

 , (4.6)

where η is assumed to be a Z2-valued function on Γ.

4.3.3 Binary Parseval frames from orbits of abelian groups

Next, we focus on the special case of abelian groups.

Lemma 4.3.10 (Idempotence from square root condition for abelian groups). Given a finite
abelian group Γ and function η : Γ→ Z2, η is idempotent under convolution if and only if

η(g) =
∑
h2=g

η(h) for all g ∈ Γ.

Proof. Fix g ∈ Γ and partition Γ into Kg := {h ∈ Γ : h2 = g} and B := Γ\Kg. Since Γ is
abelian and by the definition of B, we have that for each element x ∈ B there is a unique
element x−1g = gx−1 ∈ B, and x 6= x−1g. We refine our partition on Γ by separating B
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into disjoint sets B1 and B2 such that no two elements x, y ∈ Bi multiply to g, arbitrarily
assigning one element from each pair {x, x−1g} to B1 and the other to B2.

The idempotence under convolution is thus expressed

η(g) =
∑
h∈Γ

η(h)η(h−1g)

=
∑
h∈Kg

η(h)η(h−1g︸︷︷︸
=h

) +
∑
x∈B1

η(x)η(x−1g) +
∑
y∈B2

η(y)η(y−1g)

=
∑
h∈Kg

η(h)η(h) +
∑
x∈B1

[
η(x)η(x−1g) + η(x−1g)η( x︸︷︷︸

=(x−1g)−1g

)
]

=
∑
h∈Kg

η(h) + 2
∑
x∈B1

η(x)η(x−1g)

=
∑
h∈Kg

η(h),

where the last two identities follow from noting z2 = z and 2z = 0 for all z ∈ Z2.

Example 4.3.11 (Binary Parseval group frames of Z6). We use the preceding lemma to
classify the binary Parseval group frames generated by the (abelian) additive group Γ := Z6.
Suppose G =

∑
η(g)Rg is the Gramian of a binary Parseval Z6-frame F ; in the notation

of the proof of Lemma 4.3.10, we have K1 = K3 = K5 = ∅, for which the “square root
condition” asserts η(1) = η(3) = η(5) = 0. By the coefficient function characterization of the
Gramian, η(0) = 1, and since 2 + 2 = 4, we have that either η(2) = η(4) = 1 or G is the
identity matrix. It follows, noting that both options induce idempotent matrices, that any
binary Parseval Z6-frame has a Gram matrix that is either I6 or G := R0 +R2 +R4, 1 0 1 0 1 0

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1


G

=

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


R0

+

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0


R2

+

 0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


R4

.

To complete the classification, we note that G and I6 represent distinct classes, since the
Gramians of switching equivalent binary Parseval frames have the same number of nonzero
entries. Synthesis matrices for the two classes are given by Θ∗G := [ 1 0 1 0 1 0

0 1 0 1 0 1 ] and Θ∗I6 = I6.

In the special case that every element in a group has exactly one square root, an even
stronger consequence holds for η. This “unique square root” property is determined solely
by the parity of a group’s order (see, for example, Proposition 2.1 in [54]), and we recall part
of this characterization in the following lemma.

Lemma 4.3.12. A finite group of odd order has unique square roots.
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Proof. Let Γ be a group such that |Γ| = 2n− 1 for some integer n ≥ 2, and suppose a2 = b2

for some a, b ∈ Γ. Then a2n−1 = e, so a = a · a2n−1 = a2n = b2n = b.

Theorem 4.3.13 (Odd-ordered abelian groups and η). Let Γ be a finite abelian group of odd
order. Then the map g 7→ {g′ ∈ Γ : g2m = g′ for some m ∈ N} partitions Γ, and a function
η : Γ→ Z2 is idempotent under convolution if and only if η is constant on these sets.

Proof. Since Γ has odd order, the unique square root property reduces the condition

η(g) =
∑
h2=g

η(h) for all g ∈ Γ

to
η(g2) = η(g) for all g ∈ Γ;

thus, it remains only to show that the map defined in the hypothesis partitions Γ. Let g ∈ Γ,
and for j ∈ N, define γj := g2j . Since Γ finite, we may take N to be the least positive integer

such that γN+1 ∈ {γj}Nj=1. By Γ’s unique square roots, it follows that γN+1 = γ1, or g = g2N .

Now, let h ∈ Γ be distinct from g, and similarly define a sequence by γ̂j := h2j , with minimal

M such that h = h2M . It follows that either {γj}j∈N = {γ̂j}j∈N or {γj}j∈N ∩{γ̂j}j∈N = ∅, and
the claim is shown.

Example 4.3.14 (Classes of Z17-frames). Suppose G =
∑

g η(g)Rg ∈ Z2[Z17] is the Gramian
of a binary Parseval Z17-frame. Z17 satisfies the conditions of Theorem 4.3.13 and η is
idempotent under convolution (by Theorem 4.3.9, the “coefficient characterization” theorem),
so we know that η is constant on each of the sets ∆1 := {1, 2, 4, 8, 16, 15, 13, 9} and ∆3 :=
{3, 6, 12, 7, 14, 11, 5, 10}. Since ∆1 and ∆3 are closed under inversion (taking negatives, in
this case), η may take different values on the sets. Thus, G is one of exactly four operators,
given by

I17, I17 +
∑

j∈∆1
Rj, I17 +

∑
j∈∆3

Rj, and
∑

j∈Z17
Rj.

In illustrating an application of Theorem 4.3.13, this example also motivates us to intro-
duce some additional notation.

Definition 4.3.15 (Symmetric doubling orbit, symmetric doubling orbit partition, R[g]). Let
Γ be a finite abelian group having unique square roots. For any element g ∈ Γ, the symmetric
doubling orbit of g is the set

[g] := {g2m : m ∈ N} ∪ {(g−1)2m : m ∈ N}.

We define
R[g] :=

∑
h∈[g]

Rh

and say that the collection Γ′ = {[g]}g∈J is the symmetric doubling orbit partition of Γ
(indexed by representatives J ⊂ Γ) if

⋃
g∈J [g] = Γ and for distinct g, h ∈ J we have [g] 6= [h].
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Remark 4.3.16. We comment on our terminology. Since Γ is abelian, let us momentarily
consider it as an additive group and express it as Γ ∼=

⊕k
i=1 Zpi . Modifying the notation in

Definition 4.3.15 accordingly, we have

[g] := {h ∈ Γ : 2mg = h for some m ∈ N} ∪ {h ∈ Γ : 2m(−g) = h for some m ∈ N},

which is equivalent to {ρmg}Lm=1 ∪
{
ρm(−g)

}L
m=1

for some L ∈ N, where ρm := 2mIk.

It is easy to verify that the matrices {2mIk}Lm=1 are representation matrices for the mul-
tiplicative subgroup generated by 2 in ZL, which motivates the “doubling orbit” part of the
name symmetric doubling orbit : {ρmg}Lm=1 is, in fact, the orbit of g under the action of 〈2〉×ZL .

We proceed with two results making use of the new notation. The first may be considered
a corollary of Theorems 4.3.9 and 4.3.13, and the second uses the symmetric doubling orbit
partitioning to provide a count of the binary Parseval Γ-frame unitary equivalence classes for
our specified groups Γ.

Theorem 4.3.17 (Characterization of binary Parseval Γ-frames for odd order, abelian Γ).
Let Γ be an odd-ordered abelian group with right regular representation R and symmetric
doubling orbit partition {[g]}g∈J . Let G be a linear map G : ZΓ

2 → ZΓ
2 , then G is the Gramian

of a binary Parseval Γ-frame if and only if G =
∑

g∈J ν([g])R[g] for some ν : Γ′ → Z2 with
ν([e]) = 1.

Proof. Assume G is the Gramian of a binary Parseval Γ-frame, so that it may be written
G =

∑
g∈Γ η(g)Rg; then η is idempotent under convolution (by Theorem 4.3.9) and thus

constant on symmetric doubling orbits (by Theorem 4.3.13). It follows that ν([g]) := η(g) is
well defined and satisfies G =

∑
[g]∈J ν([g])R[g] and ν([e]) = 1.

Conversely, assume G =
∑

g∈J ν([g])R[g] for some ν such that ν([e]) = 1, and define
η : Γ→ Z2 by assigning η(g) = ν([g]), then the conditions of Theorem 4.3.13 are met and η
is idempotent under convolution. Noting that η(e) = 1, the conditions of Theorem 4.3.9 hold
as well, and G is thereby the Gramian of a binary Parseval Γ-frame.

Corollary 4.3.18 (Enumerating unitary equivalence classes of binary Parseval
Γ-frames). Let the group Γ and the set Γ′ be as above and define k := |Γ|, k′ := |Γ′|, then the

number of Gramians of unitarily inequivalent binary Parseval Γ-frames is 2k
′−1 ≤ 2

1
2

(k−1).

Proof. The value 2|Γ′|−1 is the number of functions ν : Γ′ → Z2 having the property that
ν([e]) = 1, thus enumerating the functions delineated in Theorem 4.3.17. The quantity

2
1
2

(k−1) is achieved if Γ = Z2
3, as well as any other case such that

∣∣[g]
∣∣ = 2 for all g ∈ Γ\{e}.

Exceeding this bound implies the existence of h ∈ Γ\{e} such that
∣∣[h]
∣∣ = 1, which implies

h = h2. Since the only idempotent element of a group is the identity element, such an h does
not exist.

48



Results in [4] justify the use of Gramians as class representatives of binary Parseval frames.

For a group of size k, the naive upper bound of 2k
2

binary matrices thereby drops to 2
1
2

(k2−1)

symmetric binary matrices with at least one odd column. Theorem 4.3.1 in this dissertation
puts our Gramians in Z2[{Rg}], a set of order 2k. In the case of abelian Γ with unique square
roots, Corollary 4.3.18 gives the number of distinct Gramians of binary Parseval Γ-frames

exactly as 2|Γ′|−1, where |Γ′| ≤ 1
2
(k + 1) is the quantity of symmetric doubling orbits of Γ.

Thus, for a given abelian group Γ of odd order k, the unitary equivalence classes of binary

Parseval frames are classified by computing the ranks of 2|Γ′|−1 ≤ 2
1
2

(k−1) Gramians.

Writing the elements of Zqp as vectors suggests plotting subsets of the group for visualiza-
tion purposes. Noting that inverse elements are obtained by multiplying by −1 mod p, the
fact that each symmetric doubling orbit is a collection of scalar multiples of a single element
puts each of the points of a given symmetric doubling orbit on a line in Zqp containing the
origin.

For many odd-prime/natural-number pairs p, q, in fact, the nontrivial symmetric doubling
orbits of Zqp are each identical to that line, minus the origin; this property holds any time the
multiplicative subgroup of Zp generated by 2 is Zp\{0}, as in the cases of p ∈ {3, 5, 11, 13}.
It also occurs when

∣∣∣〈2〉×Zp∣∣∣ = 1
2
(p− 1) and (−1) /∈ 〈2〉×Zp , since the symmetric part completes

the set; the smallest p for which this occurs is 7.

The work in this paper shows that any Gramian in the group algebra of the regular
representations yields a binary Parseval Zqp-frame for q ∈ N and odd prime p if the group
elements represented in the sum are the union of a collection of these linear subspaces.
However, the converse of this statement is not true, as each Mersenne prime (that is, having
the form 2n−1) greater than 7 provides a counter example, as does every Fermat prime (i.e.,
of the form 2n + 1) greater than 5. We illustrate this in Fig. 4.2 with plots of the symmetric
doubling orbits of Z2

p for the smallest value that demonstrates this behavior, p = 17. Each
plot shows a pair of orbits (one in red, one in black) that partition a line into two subsets. Any
of the 236 linear combinations of coefficients that are constant on these symmetric doubling
orbits represents a distinct Gramian of a binary Parseval Z2

17-frame.

4.3.4 An algorithm for classifying binary Parseval Γ-frames
for abelian Γ of odd order

For groups of smallest order, the unitary equivalence classes are manageable. However, even
for Z3

3 the enumeration of Parseval frames becomes too tedious to do by hand. One reason
is that group automorphisms may lead to different Gramians. The resulting set could be
reduced to one representative without losing structural information. We recall that switching
offers a coarser equivalence relation that is suitable for removing copies obtained by group
automorphisms.
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Figure 4.2: Symmetric doubling orbits of Z2
17, plotted in pairs that are complements in

one-dimensional subspaces of Z2
17.

Proposition 4.3.19 (Automorphisms on Γ and automorphic switching equivalence). Let Γ
be a finite group with right regular repesentation matrices {Rg}g∈Γ, and let F := {fg}g∈Γ be a
binary Parseval Γ-frame with Gramian G :=

∑
g η(g)Rg, then an operator H is the Gramian

of a binary Parseval Γ-frame that is automorphically switching equivalent to F if and only if
H =

∑
g η(σ(g))Rg for some σ ∈ Aut(Γ).

Proof. Let ρ be the group representation that induces F ; we first show that the composition
of the coefficent function η with an automorphism induces the Gramian of an automorphically
switching equivalent frame.

Let σ ∈ Aut(Γ) and define H :=
∑

g η(σ(g))Rg. From ρ◦σ being a group homomorphism,
it follows that {ρσ(g)fe}g∈Γ is a binary Parseval Γ-frame that is automorphically switching
equivalent to F . By Corollary 4.3.3, the Gramian G′ of {ρσ(g)fe}g∈Γ admits a coefficient
function ν such that G′ =

∑
g ν(g)Rg. It remains only to prove that ν = η ◦ σ, so that

G′ = H.

Recall from the proof of Theorem 4.3.1 that for a, b ∈ Γ, Ga,b = η(a−1b) and G′a,b =
ν(a−1b). We conclude

ν(a−1b) =
〈
ρσ(b)fe, ρσ(a)fe

〉
= Gσ(a),σ(b)

= η
(
σ(a)−1σ(b)

)
= η

(
σ(a−1b)

)
,
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this last identity following from the fact that σ is an automorphism.

Conversely, suppose F ′ := {f ′g}g∈Γ is a Γ-frame that is automorphically switching equiv-
alent to a frame F induced by a representation ρ. Let the unitary U and σ ∈ Aut(Γ) give
f ′g = Ufσ(g) = Uρσ(g)fe for all g ∈ Γ. Let the Gramians of F and F ′ be G =

∑
g η(g)Rg and

H =
∑

g ν(g)Rg, respectively. We equate

ν(a−1b) =
〈
f ′b, f

′
a

〉
=
〈
Uρσ(b)fe, Uρσ(a)fe

〉
=
〈
ρσ(b)fe, ρσ(a)fe

〉
= η

(
σ(a−1b)

)
,

and we see that H =
∑

g η(σ(g))Rg has the claimed form.

Next, we study how symmetric doubling orbits behave under automorphisms. Let g, h ∈ Γ
and a ∈ N such that g = h2a . Under an automorphism σ ∈ Aut(Γ), we identify σ(g) =
σ(h2a) = σ(h)2a . Consequently, if g ∈ [h], then σ(g) ∈

[
σ(h)

]
. This means the action of σ on

Γ passes to an action on the symmetric doubling orbits.

Definition 4.3.20. For a finite abelian group Γ partitioned into symmetric doubling orbits
Γ′ = {[g]}[g]∈J and an automorphism σ, we let σ̃ be the associated bijection on Γ′ such that
σ̃([g]) =

[
σ(g)

]
.

Corollary 4.3.21 (Automorphisms on Γ and symmetric doubling orbits). Let Γ, {Rg}, F ,
G and η be as above, and suppose Γ is abelian of odd order. Let Γ′ be the symmetric doubling
orbit partition of Γ, and G =

∑
[g]∈Γ′ η̃([g])R[g] with η̃ : Γ′ → Z2, then an operator H is the

Gramian of a binary Parseval Γ-frame that is automorphically switching equivalent to F if
and only if H =

∑
[g]∈Γ′ η̃(σ̃([g]))R[g] for some σ ∈ Aut(Γ).

Proof. Let σ ∈ Aut(Γ) and σ̃ be the associated bijection on Γ′. Let η(g) = η̃([g]) for each
g ∈ Γ. Consequently,

∑
[g]∈Γ′ η̃(σ̃([g]))R[g] =

∑
g∈Γ η(σ(g))Rg. Applying Proposition 4.3.19

completes the proof.

By identifying Gramians in the group algebra with functions on the group, Corollary 4.3.3
reduces the search for Gram matrices associated with a given Γ to a search over a subset of
Z2-valued coefficient functions on Γ; Theorem 4.3.9 specifies that subset. Proposition 4.3.19
allows a classification of the valid coefficient functions in terms of the automorphism group
on Γ. Specialized results for abelian groups summarized in Corollary 4.3.21 provide us with
a concrete method for obtaining all binary Parseval group frames for abelian, odd-ordered
groups. The following result provides theoretical justification for an algorithm guaranteed to
produce a list of Gram matrices that contains exactly one representative from each automor-
phic switching equivalence class.
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Theorem 4.3.22. Given an odd-ordered abelian group Γ and a set M which generates the
automorphism group of Γ, the algorithm described in the Practitioner’s Guide below partitions
the Gramians of binary Parseval Γ-frames under automorphic switching equivalence.

Proof. Let Γ′ be the symmetric doubling orbit partitioning of Γ. Corollary 4.3.21 reduces the
theorem’s partitioning to the comparison of symmetric doubling orbit coefficient functions.
In particular, two binary Parseval Γ-frames are automorphically switching equivalent if and
only if their Gramians

∑
[g]∈Γ′ η([g])R[g] and

∑
[g]∈Γ′ ν([g])R[g] have the property that η([g]) =

ν(σ̃([g])) for all g ∈ Γ and σ̃ determined by the action of some σ ∈ Aut(Γ) on the symmetric
doubling orbits. Given a coefficient function η, the algorithm does one of two things each time
it accesses the multiplication table: it either identifies another coefficient function belonging
to the same partition as η, or it terminates the search for coefficient functions in that partition.
It thus remains to show that the algorithm exhausts the partition for any such η.

Let η : Γ→ Z2 be constant on symmetric doubling orbits. EnumerateM = {Mi}Ni=1 and
define M0 := Id ∈ Aut(Γ), and let Ω0 := {Sη}, where Sη := η−1(1). For j ∈ N, define the set
collection

Ωj := {Mi(S) : i = 0, 1, . . . , N and S ∈ Ωj−1}.

Note that Ωj−1 ⊆ Ωj for all j ∈ N, since S ∈ Ωj−1 implies that M0(S) ∈ Ωj. The algorithm
produces each Ωj sequentially and terminates the search for elements in η’s partition at the
end of identifying the elements of Ωj if Ωj = Ωj−1. Now, if ν(g) = η(σ(g)) for all g ∈ Γ and
some σ ∈ Aut(Γ), then there is a finite sequence l1, l2, . . . , lk such that σ = MlkMlk−1

· · ·Ml1 .
It follows that the partition reprepresented by η is the set ΩL for some L ∈ N; thus, the
algorithm produces the partition of η if and only if there is an integer jη such that

Ω1 ( Ω2 ( · · · ( Ωjη = Ωjη+i for all i ∈ N. (4.7)

Let j0 ∈ N be such that Ωj0−1 = Ωj0 ; existence follows from the finiteness of Z2[Γ]. To prove
that such jη exists, it is enough to show that the equality Ωj0 = Ωj0−1 implies Ωj0 = Ωj0+i

for all i ∈ N.

Let S ′ ∈ Ωj0+1. By the inclusion Ωj0 ⊆ Ωj0+1, it is left to show that S ′ ∈ Ωj0 . By the
definition of Ωj0+1, we have S ′ = Mi(S) for some i ∈ {0, 1, . . . , N} and some S ∈ Ωj0 = Ωj0−1.
Since S ∈ Ωj0−1, it follows that S ′ = Mi(S) ∈ Ωj0 , and the proof is complete.
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A Practitioner’s Guide to Generating Gramians of Binary Parseval
Γ-Frames for abelian Γ of Odd Order

1. Produce a set J so that {e} ∪ J indexes the symmetric doubling orbit partition
Γ′ of Γ.

2. Select M ⊂ Aut(Γ) to seed a multiplication table. If M generates Aut(Γ), this
algorithm provides a partition of Γ-frames into automorphic switching equiva-
lence classes. (See Remark 4.3.23)

3. Produce the automorphism multiplication table containing a row for each Mi ∈
M, with entry (i, j) giving Mi(

[
gj
]
).

4. For each m ≤ 1
2
|Γ′|, apply the method described in Example 4.3.24 to partition

subsets of the collection {
⋃
g∈K [g] : K ⊂ J,|K| = m}. For m > 1

2
|Γ′|, use the

fact that for given indexing sets K,K ′, the sets
⋃
g∈K [g] and

⋃
g∈K′ [g] represent

the same class if and only if
⋃
g∈J\K [g] and

⋃
g∈J\K′ [g] do.

Remark 4.3.23 (Sampling Aut(Γ)). Choosing M = Aut(Γ) guarantees accurate partition-
ing, although Aut(Γ) may be difficult to calculate. Theorem 4.3.22 tells us that we can obtain
this partitioning as long asM is a generating set for Aut(Γ). IfM is not known to generate
Aut(Γ), the potential undersampling of the automorphism group may simply lead to the case
that some classes are represented multiple times; the number of Gramians is still smaller than

2|Γ′|−1.

The following example demonstrates how the algorithm works.

Example 4.3.24 (Classifying binary Parseval Z2
3-frames). Let the symmetric doubling orbit

partition of Z2
3 given by set Γ′ = {[g] : g ∈ {e}∪J} with J := {(1

0),(
1
1),(

0
1),(

1
2)}. We shall classify

binary Parseval Z2
3-frames up to automorphic switching equivalence by identifying suitable

Gramian representatives for each class. These Gramians have the form I +
∑m

i=1R[gi] for
some m ∈ {0, 1, 2, 3, 4} and distinct gi’s, and we proceed by considering one value of m at a
time. We make use of the fact that for any finite vector space V , Aut(V ) ≡ GL(V ).

m = 0 : The cases of m = 0 and m = 4 are trivial and listed in the summary.

m = 1 : The matrix [ 1 1
1 0 ] ∈ GL(Z2

3) gives

[ 1 1
1 0 ]

[
(1
0)
]

=
{

[ 1 1
1 0 ](1

0), [
1 1
1 0 ](2

0)
}

=
{
(1
1),(

2
2)
}

=
[
(1
1)
]

;

applying the preceding corollary, I + R[
(1
0)
] and I + R[

(1
1)
] are thus Gramians of automor-

phically switching equivalent binary Parseval Z2
3-frames. With this in mind, consider the

multiplication table given in Table 4.1. The first row shows that for g, h ∈ J , [g] = [ 1 1
1 0 ]a [h]

for some integer a. It follows that the four operators I+R[g] represent the same automorphic
switching equivalence class.
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Table 4.1: Multiplication table for selected M ∈ GL(Z2
3)

[
(1
0)
] [

(1
1)
] [

(1
2)
] [

(0
1)
]

[ 1 1
1 0 ]

[
(1
1)
] [

(1
2)
] [

(0
1)
] [

(1
0)
]

[ 2 1
1 0 ]

[
(1
2)
] [

(0
1)
] [

(1
1)
] [

(1
0)
]

[ 1 1
0 1 ]

[
(1
0)
] [

(1
2)
] [

(0
1)
] [

(1
1)
]

m = 2 : Similarly, the first two entries in the first row give

[ 1 1
1 0 ]

([
(1
0)
]
∪
[
(1
1)
])

= [ 1 1
1 0 ]

[
(1
0)
]
∪ [ 1 1

1 0 ]
[
(1
1)
]

=
[
(1
1)
]
∪
[
(1
2)
]
,

implying
I +R[

(1
0)
]+R[

(1
1)
] and I +R[

(1
1)
]+R[

(1
2)
]

are representatives of the same equivalence class. Proceeding down the first two columns, we
find that Gramians I +R[

(1
2)
] +R[

(0
1)
] and I +R[

(1
0)
] +R[

(1
2)
] represent that same class.

Reentering the table with the index pair(1
2),(

0
1), we find the sets

[
(0
1)
]
∪
[
(1
0)
]

and
[
(0
1)
]
∪
[
(1
1)
]
; it

follows that each of the six distinct Gramians I+
∑2

i=1R[gi] represent the same class. Note: If
this step had not exhausted the “m = 2” case, we would continue to reenter the multiplication
table with each new equivalent

⋃
gi until the class stops growing.

m = 3 : We make use of set complements. Fixing g, h ∈ J , let a satisfy [g] = [ 1 1
1 0 ]a [h]. It

follows that
⋃
g′ 6=g [g′] = [ 1 1

1 0 ]a
⋃
h′ 6=h [h′], since each M ∈ GL(Z2

3) is a bijection on
⋃
g′∈J [g′].

We conclude that each of the sums I+
∑3

i=1R[gi] represents the same equivalence class, since
g and h were chosen arbitrarily.

Summary: Binary Parseval Z2
3-frames partition into five automorphic switching equiva-

lence classes, with representative Gramians given by the identity operator, the 9× 9 matrix
of 1’s, and three more representatives

I +R[
(1
0)
], I +R[

(1
0)
]+R[

(0
1)
], and I +R[

(1
0)
]+R[

(1
1)
]+R[

(0
1)
].

Hence, the nontrivial Gramians turn out to have ranks 3 (m = 1), 5 (m = 2), and 7
(m = 3). The Gram matrices belonging to a given rank are equivalent, so we partitioned the
fourteen nontrivial Gramians I +

∑m
i=1 R[gi] into three equivalence classes.

4.4 Binary Parseval group frames as codes

One motivating application of binary Parseval group frames is their use as codes. The range
of the analysis operator Θ is the so-called code book in Zk2. Each codeword y in this codebook
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is the image of a unique vector x ∈ Zn2 which is obtained by x = Θ∗y.

When k > n, the redundancy introduced by the embedding Θ makes it possible to accu-
rately recover x from a corrupted codeword ỹ := EΘx+ ε, provided the diagonal error matrix
E and error vector ε are known to meet certain specified conditions.

For our binary case, we consider two types of errors: erasures (ỹ = EΘx, Ei,i ∈ {0, 1})
and bit-flips (ỹ = Θx + ε, ε ∈ ZJ2 ). We say that a binary Parseval frame F is robust to m
erasures if for every diagonal binary matrix E having at most m zeros on the diagonal, the
operator EΘ admits a left inverse. This is equivalent to the condition that the Hamming
distance between any two vectors in the image of Θ (or, equivalently, of the Gramian of F)
is at least m+ 1, since any pair of vectors that differ in only m entries are indistinguishable
if those entries are “erased.” By the linearity of Θ, this is also equivalent to the condition
that each nonzero vector in ΘZn2 has weight exceeding m.

On the other hand, we say that F is robust to m bit-flips if ‖Θx1 −Θx2‖0 ≥ 2m + 1 for
all x1, x2 ∈ Zn2 , x1 6= x2. This notion of “robustness to error” implies the ability to identify
each vector in the set B := {Θx + ε : x ∈ Zn2 ,‖ε‖0 ≤ m} as the (corrupted) image of a
unique vector in Zn2 . Note that if ‖Θx1 −Θx2‖0 = 2m for some pair x1, x2 ∈ Zn2 , then there
exist m-weighted error vectors ε1 and ε2 such that Θx1 + ε1 = Θx2 + ε2. Now suppose that
for any distinct y1, y2 ∈ ΘZn2 , we have ‖y1 − y2‖0 ≥ 2m + 1, and let ỹ ∈ B; by the triangle
inequality, there is exactly one point y ∈ ΘZn2 such that‖y − ỹ‖0 ≤ m. Thus, we may recover
the intended signal y by identifying the nearest point in ΘZn2 to ỹ, and recovery of x = Θ∗y
follows.

Again appealing to the linearity of Θ, both robustness conditions are expressed in terms of
the minimum weight among nonzero vectors in the range of Θ. For Parseval frames, the range
of the analysis operator coincides with that of the Gramian, so it can be stated equivalently
in terms of the range of the Gramian.

Definition 4.4.1 (Code weight of a Gramian or frame). Given an operator G : ZJ2 → ZJ2 ,
the code weight of G is the value miny∈G(ZJ2 )\{0}‖y‖0.

In the following section, we compare Zqp-frames with Zpq -frames. The final major result
in this paper is a proof that every binary Parseval Zpq -frame is switching equivalent to a Zqp-
frame. We also include a number of examples in which the classes of Zpq -frames are mapped
to their switching equivalent Zqp frames for select p’s and q’s and show that in addition to
subsuming binary Parseval Zpq -frames, there are examples of Zqp-frames that outperform them
as codes.

4.4.1 Comparing frames generated with Zpq vs. Zqp

Fix m ∈ N, and let F1 and F2 be switching equivalent binary Parseval frames. Theorem 4.9
in [4] establishes that this equivalence implies that F1 is robust to m erasures if and only if
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F2 is. By the Gramian code weight characterization of robustness to each type of error, it
follows that F1 is robust to m bit-flips if and only if F2 is. Theorem 4.11 in [5] characterizes
switching equivalence between binary Parseval frames as permutation equivalence between
their Gramians G1 and G2:

F1
∼=sw F2 if and only if G1 = P ∗G2P for some permutation matrix P.

Hence, for the purposes of evaluating binary Parseval group frames as codes, whether we are
concerned about erasures or bit-flips, we may restrict our attention to permutation equiva-
lence classes of the Gramians of such frames.

Applying the techniques in this paper, we have classified binary Parseval group frames
for each of the groups below, using Gramians as class representatives. Recalling that the
quantity of vectors in a group frame is given by the size of the group, and that the rank of
the Gramian is the dimension of the inducing frame, we can directly compare the performance
of several frames as error-correcting codes. To facilitate comparing Zpq and Zqp for a given
pair p, q, we combine details for the two groups in a single table; in each of the comparisons
below, Zqp-frames perform at least as well as Zpq -frames, and they often outperform their Zpq
counterparts. In fact, the exhaustive search of best performing codes associated with binary
Parseval frames generated with Zqp is guaranteed to be at least as good as the best codes
generated with Zpq , as shown in Theorem 4.4.6 below.

We now provide a sequence of results which culmintate in the proof of Theorem 4.4.6,
which states that, given an odd prime p and q ∈ N, any binary Parseval Zpq -frame is switching
equivalent a binary Parseval Zqp-frame. Practically, this reduces to showing that the Gramian
of a binary Parseval Zpq -frame satisfies the Gram characterization for a Zqp-frame for some
reindexing. We accomplish this by showing that the symmetric doubling orbits of Zpq par-
tition those of Zqp, in the sense that for each n ∈ Zpq , the matrix R[n] can be written as the
sum of matrices in {R[g]}g∈Zqp .

The map which produces this reindexing is the inverse of the function φ : Zqp → Zpq given
by

φ(g) :=

q∑
i=1

pi−1gi, (4.8)

where the arithmetic is carried out in Zpq ; this mapping is akin to converting from numbers
written in base p. It is worth noting that for a given i ∈ {1, 2, . . . , q − 1} and g ∈ Zqp, we
have that pi divides φ(g) if and only if the first i entries of g are zero; if pi divides φ(g) and
pi+1 does not, then the j-th entry of g, denoted gj, is nonzero.

We recall a few fundamental properties of finite multiplicative groups in the context of this
work. For a given n ∈ N, we may consider Zn as the ring (Zn, ·,+), in which case the subset
of elements having multiplicative inverses forms the multiplicative group Z×n := (Z/nZ)×.
The elements of Zn that provide elements in Z×n are those coprime with n.
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Here we shall denote the multiplicative subgroup of Z×n generated by element k as 〈k〉×n :=
〈k〉×Zn .

Proposition 4.4.2. Let p, q, k ∈ N with p prime and 1 < k < p. Then
∣∣∣〈k〉×pq ∣∣∣ = pq−1

∣∣∣〈k〉×p ∣∣∣
and x ∈ 〈k〉×pq if and only if x(mod p) ∈ 〈k〉×p .

Proof. Note that Z×p ∼= Zp−1, since each nonzero element of Zp is coprime with p. Recalling
that a finite cyclic group of order mn is isomorphic to Zm × Zn if m and n are coprime, we
have that

Z×pq ∼= Zpq−1(p−1)
∼= Zpq−1 × Zp−1

∼= Zpq−1 × Z×p .

It follows that
∣∣∣Z×p ∣∣∣ = p−1 and

∣∣∣Z×pq ∣∣∣ = pq−1(p−1). We consider now the subgroups 〈k〉×p ≤ Z×p
and 〈k〉×pq ≤ Z×pq .

Note that x ∈ 〈k〉×pq implies that x(mod p) ∈ 〈k〉×p , so that each element in 〈k〉×pq may be
written in the form mp + t for some m ∈ {0, 1, . . . , pq−1 − 1} and some t ∈ 〈k〉×p considered

as an element of Z. It follows that
∣∣∣〈k〉×pq ∣∣∣ ≤ pq−1

∣∣∣〈k〉×p ∣∣∣. We shall show equality holds

by demonstrating that the reverse inequality holds; the resulting equality will imply that
every element of Z×pq of the form mp + t as above is an element of 〈k〉×pq , completing the
characterization 〈k〉×p = {x(mod p) | x ∈ 〈k〉×p }.

Let
γq : 〈k〉×pq → Zpq−1 × 〈k〉×p

kj 7→ j × kj,

where we consider Zpq−1 × 〈k〉×p as a group in the natural way, inheriting its group operation
componentwise. For i, j ∈ N, we have

γq(k
ikj) = γq(k

i+j) = (i+ j, ki+j) = (i, ki)(j, kj) = γq(k
i)γq(k

j),

and thus γq is a group homomorphism. Since the orders of the cyclic groups Zpq−1 and 〈k〉×p
are coprime, it follows that γq exhausts its range and that

∣∣∣γq(〈k〉×pq)∣∣∣ =
∣∣Zpq−1

∣∣∣∣∣〈k〉×p ∣∣∣. This

implies
∣∣∣〈k〉×pq ∣∣∣ ≥ pq−1

∣∣∣〈k〉×p ∣∣∣. We conclude that
∣∣∣〈k〉×pq ∣∣∣ = pq−1

∣∣∣〈k〉×p ∣∣∣ and that x ∈ 〈k〉×pq if and

only if x(mod p) ∈ 〈k〉×p .

Corollary 4.4.3. Let p, q, k ∈ N with p prime and 1 < k < p. Then for each y ∈ Z×pq ,∣∣∣y〈k〉×pq ∣∣∣ = pq−1
∣∣∣〈k〉×p ∣∣∣

and x ∈ y〈k〉×pq if and only if x(mod p) ∈ y〈k〉×p (mod p).

57



Proof. Fix y ∈ Z×pq . Since the cosets of a subgroup partition a group into equal sized sets,

the preceding proposition yields
∣∣∣y〈k〉×pq ∣∣∣ =

∣∣∣〈k〉×pq ∣∣∣ = pq−1
∣∣∣〈k〉×p ∣∣∣.

Now, if x ∈ y〈k〉×pq , then x(mod p) ∈ y〈k〉×p . Since∣∣∣{x ∈ Z×pq : x(mod p) ∈ y〈k〉×p }
∣∣∣ = pq−1

∣∣∣〈k〉×p ∣∣∣ ,
it follows that

y〈k〉×pq = {x ∈ Z×pq : x(mod p) ∈ y〈k〉×p },

and the proof is complete.

Theorem 4.4.4. Given p, q, k ∈ N with p prime and 1 < k < p, let x, y ∈ Zpq and define
nonnegative integers x′, y′, jx, jy such that x = x′pjx, y = y′pjy , and p divides neither x′ nor
y′. Then x ∈ y〈k〉×pq if and only if jx = jy and x′(mod p) ∈ y′〈k〉×p (mod p).

Proof. Suppose x ∈ y〈k〉×pq , so that x′pjx = kly′pjy for some l ∈ N. Then jx = jy, since k and
p are coprime and p is coprime with each of x′ and y′. Next, set r := jx = jy and write

x′pr ≡ kly′pr(mod pq). (4.9)

Since x and y may be seen as elements in prZpp ∼= Zpq−r , we may also identify x′ and y′ as
elements of Z×pq−r ≤ Zpq−r and note that congruence (4.9) implies

x′ ≡ kly′(mod pq−r).

Then, using y′ ∈ Z×pq−r , Corollary 4.4.3 yields x′(mod p) ∈ y′〈k〉×p (mod p).

Conversely, assume jx = jy =: r and x′(mod p) ∈ y′〈k〉×p (mod p). Then the conditions of

Corollary 4.4.3 are met for x, y ∈ Z×pq−r and x′ ≡ kl
′
y′ (mod pq−r) for some l′ ∈ N. Embedding

y′〈k〉×pq−r into Zpq by g 7→ prg for g ∈ y′〈k〉×pq−r , we have that x = x′pr ≡ 2l
′
y′pr (mod pq) =

2l
′
y.

The following lemma makes precise the claim that the map φ given by (4.8) maps the
doubling orbits of Zqp into those of Zpq .

Lemma 4.4.5. Given p, q ∈ N with p an odd prime, let x ∈ Zpq . If g ∈ φ−1(x〈2〉×pq), then for
h ∈ Zqp, we have that φ(g〈2〉×p + h) ⊆ x〈2〉×pq + φ(h). As a consequence, φ(φ−1(x〈2〉×pq) + h) =
x〈2〉×pq + φ(h).

Proof. We begin by proving the lemma for the case that h = 0. Let x, p and q be as in
the hypothesis, and let g = φ−1(x). Since 〈2〉×p is cyclic, it suffices to show that for each
g′ ∈ φ−1(x〈2〉×pq) there exists k ∈ N such that φ(2g′) = 2kx; since 〈2〉×pq is cyclic, it suffices to
demonstrate this for the case g′ = g.
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If x = 0 then g = (0)qi=1, and the claim is shown; assume, then, that x 6= 0 and define
nonnegative integers x′ and r such that x = x′pr and p does not divide x′. Note that r gives
the quantity of leading zeros in the sequence (gi)

q
i=1.

Expressing this equality in terms of the definition of φ,
q∑
i=1

pi−1(2gi (mod p)) ≡ 2kx (mod pq),

where 2gi (mod p) is considered as an element of Z. For each i ∈ JqK, we may express
2gi (mod p) as 2gi − δip for some δi ∈ {0, 1}, since the value is either 2gi or 2gi − p. Since
i ≤ r implies gi = 0, it follows that δi = 0 for such i. Thus

φ(2g) ≡
q∑
i=1

pi−1(2gi − δip) (mod pq)

≡ 2

q∑
i=1

pi−1gi −
q∑
i=1

δip
i (mod pq)

≡ 2φ(g)−
q∑

i=r+1

δip
i (mod pq).

It follows that 2φ(g)−
∑q

i=r+1 δip
i ≡ 2φ(g) (mod pr). The conditions given in Theorem 4.4.4

are thus satisfied for x and φ(2g), implying φ(2g) ∈ 2φ(g)〈2〉×pq = 2x〈2〉×pq = x〈2〉×pq . We
conclude that φ(2jg) ∈ x〈2〉×pq for all j ∈ N.

We now consider the general case, letting h ∈ Zqp. Again, since 〈2〉×p and 〈2〉×pq are cyclic,
we may assume that g = φ−1(x). We must show that φ(g + h) = 2jx + φ(h) for some j.
Similar to the h = 0 case, we define δ′i so that gi +hi− δ′ip ∈ {0, 1, . . . , p− 1} for each i ∈ JqK.
Recalling that the value r gives the number of leading zeros of g, we note that δi = δ′i = 0
for i ≤ r. Then

φ(g + h) ≡
q∑
i=1

pi−1(gi + hi − δ′ip) (mod pq)

≡ φ(g) + φ(h)−
q∑
i=1

δ′ip
i (mod pq)

≡ x−
q∑

i=r+1

δ′ip
i + φ(h) (mod pq)

∈ x〈2〉×pq + φ(h)

by Theorem 4.4.4, since x −
∑q

i=r+1 δ
′
ip
i ≡ x (mod pr). We conclude that φ(g〈2〉×p + h) ⊆

x〈2〉×pq + φ(h) for all g ∈ φ−1(x〈2〉×pq) and h ∈ Zqp.

It follows that φ(φ−1(x〈2〉×pq) + h) ⊆ x〈2〉×pq +φ(h). Set equality follows from the fact that
φ is a bijection, since both sides of the inclusion have the same number of elements.

59



We are ready to prove the section’s main result. We wish to show that for each Gramian
of a binary Parseval Zpq -frame, the corresponding Gramian indexed by Zqp, as obtained from
the reindexing given by φ−1, is in the group algebra Z2[Zqp]; this is sufficient to show that
the underlying frame is a binary Parseval Zqp-frame, since the Gramian retains idempotence,
symmetry and the weights of range vectors under switching.

Theorem 4.4.6. Let p, q ∈ N with p an odd prime and define φ : Zqp → Zpq by φ(g) :=∑q
i=1 p

i−1gi, carrying out the arithmetic in Zpq . If F = {fx}x∈Zpq is a binary Parseval Zpq-
frame for Zn2 , then F ′ := {fφ−1(x)}x∈Zpq is a binary Parseval Zqp-frame.

Proof. Let F = {fx}x∈Zpq be a binary Parseval Zpq -frame for Zn2 . Denote the frame’s analysis
matrix and Gramian by ΘF and G, respectively, and let ΘF ′ and G′ denote those of F ′. Since
G and G′ are switching equivalent, G′ inherits symmetry, idempotence and column weights
from G. By the characterization of binary Parseval group frames given by Theorem 4.3.4, it is
then left to show that G′ is a element of the group algebra of the right regular representation
of Zqp, denoted Z2[{R′g}].

Let R := {Rx}x∈Zpq be the right regular representation of Zpq and let η be the bi-
nary coefficient function such that G =

∑
x∈Zpq η(x)Rx, as guaranteed by Theorem 4.3.9.

Since Zpq is an odd-ordered abelian group and η is idempotent under convolution, Theorem
4.3.13 provides that η is constant on cosets of the the multiplicative subgroup 〈2〉×pq . We
shall demonstrate that φ induces an isomorphism between the sets {

∑
y∈x〈2〉×

pq
Ry}x∈Zpq and

{
∑

y∈x〈2〉×
pq
R′φ−1(y)}x∈Zpq .

Let Φ : ZZ
q
p

2 → ZZpq2 be defined on standard basis elements by Φe′g = eφ(g), where we use
the ′ (prime) to distinguish basis elements of the domain from those in the range. We wish
to show that for each x, z ∈ Zpq , the following holds:∑

y∈x〈2〉×
pq

Ryez = Φ

( ∑
y∈x〈2〉×

pq

R′φ−1(y)e
′
φ−1(z)

)
. (4.10)

As described in Section 4.2.4, we may explicitly express the image a function ϕ under Ry by
Ryϕ : z 7→ ϕ(y + z), and Eq. (4.10) becomes∑

y∈x〈2〉×
pq

ey+z = Φ

( ∑
y∈x〈2〉×

pq

e′φ−1(y)+φ−1(z)

)
=

∑
y∈x〈2〉×

pq

e′φ(φ−1(y)+φ−1(z)).

Thus, we are left to show that x〈2〉×pq +z = φ(φ−1(x〈2〉×pq)+φ−1(z)) for any x, z ∈ Zpq . Taking
h := φ−1(z), this is exactly the content of Lemma 4.4.5, and the proof is complete.
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We illustrate this statement with some examples. It is worth noting ahead of the examples
that there is an important distinction between the symmetric doubling orbit partitionings of
Zqp and Zpq . For an odd prime p, it is a simple exercise to show that each [x] in Zqp that is not
[e] has the same order as the symmetric doubling orbit of 1 in Zp. In contrast, according to
Theorem 4.4.4, Zpq partitions into kq nontrivial orbits for some k ∈ N, k of each of q different
sizes. Since automorphisms preserve symmetric doubling orbits (Proposition 4.3.19), they also
preserve orbit size; it follows that the computational savings offered by applying Corollary
4.3.21 as in Example 4.3.24 do not apply or are significantly reduced when the group under
consideration is Zpq . In fact, for the values of p and q we explore here, the 2q binary Parseval
Zpq -frame unitary equivalence classes promised by Corollary 4.3.18 coincide with automorphic
switching equivalence classes. As we note in our closing remarks regarding Z17q , this does not
hold in general. Of course, the number of symmetric doubling orbits of Zpq grows linearly
in q and may be considered as subsets of symmetric doubling orbits of Zq

p (Theorem 4.4.6),

whose number grows exponentially as (pq − 1)/
∣∣[g]
∣∣ for any g ∈ Zqp\{e}.

The next step is to compute the code weight of each of the Gramians. We pause to reflect
on the computational savings made available by the methods developed thus far. Results in
[4] justify the use of Gramians as class representatives of binary Parseval frames as codes; for a

group of size k, the naive upper bound of 2k
2

binary matrices thereby drops to 2
1
2
k(k−1)(2k−1)

symmetric binary matrices with at least one odd column. Theorem 4.3.1 in this paper puts our
Gramians in Z2[{Rg}], a set whose size is of order 2k. In the case of abelian Γ with unique
square roots, Corollary 4.3.18 gives the number of Gramians of binary Parseval Γ-frames

exactly as 2|Γ′|−1, where|Γ′| ≤ 1
2
(k+1) is the quantity of symmetric doubling orbits of Γ. Thus,

for a given abelian group Γ of odd order k, we must process no more than 2|Γ′|−1 ≤ 2
1
2

(k−1)

Gramians to determine code weights, and these matrices can be computed directly. We may
process even fewer Gramians if we reduce the set to representatives of automorphic switching
equivalence classes. Note that in determining the code weight of a k × k Gramian G, the
2rank(G) vectors in the operator’s range may be obtained by taking all linear combinations of
up to rank(G) columns of G, for a total

∑rank(G)
i=1

(
k
i

)
operations; comparing this combinatorial

problem with the algorithm above, it is evident that computational savings result from any
reduction in the quantity of Gramians we are to process.

Let us first consider the work for Z2
3 and Z3

3 to illustrate this.

Example 4.4.7. The nontrivial Gramians in Example Example 4.3.24 turn out to have ranks
3 (m = 1), 5 (m = 2), and 7 (m = 3), and thus require(9

3), (
9
5), and(9

7)computations to exhaust
linear combinations of columns as described. For the cost of producing a 3× 4 multiplication
table and a computing a handful of table look-ups and comparisons, we partitioned the
fourteen nontrivial Gramians I +

∑m
i=1R[gi] into three classes; the return on that cost in the

form of having fewer Gramians to weight-check was the reduction from 4·(9
3)+6·(9

5)+4·(9
7)= 1236

computations to (9
3)+(9

5)+(9
7)= 246.

The group Z3
3 has 14 symmetric doubling orbits, including [e]. The characterization of

automorphic switching equivalence classes given by Corollary 4.3.21 provides that the 213
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unique Gramians of binary Parseval Z3
3-frames reduce to only thirty representatives. The

resulting computational savings are substantial even before taking into account the cost of
finding code weights, which has grown to

∑rank(G)
i=1

(
27
i

)
operations per Gramian.

4.4.1.1 Format of comparison tables

Each comparison table contains representatives of switching equivalence classes of binary
Parseval Γ-frames for each of the groups we compare. For each such class, we provide the
rank and code weight of the representing Gramian. After the first table, we exclude the
trivial Gramians given by the identity and the matrix of all ones; the Gramians themselves
are encoded as indexing elements of their symmetric doubling orbit summands. Whenever
a class in Zpq matches the performance of a class in Zqp, the two classes are described in the
same row of the associated table. In many such cases, the two classes represent switching
equivalent frames.

In the comparison of Z2
3 and Z9, for example, the Gramians given by G1 =

∑
g∈J1 R[g]

with J1 = {(0
0),(

1
0),(

1
1),(

0
1)} ⊂ Z2

3 and G2 =
∑

g∈J2 R[g] with J2 = {0, 1} ⊂ Z9 each have rank 7
and code weight 2, and thus are listed in the same row.

Example 4.4.8 (Z9 vs. Z2
3). The symmetric doubling orbit partitioning of Z9 consists of [0],

[3] = {3, 6}, and [1] = {1, 2, 4, 5, 7, 8}. In this case, each of the four binary Parseval Z9-frames
is switching equivalent to one of the five binary Parseval Z2

3-frames delineated in Example
4.3.24. Apart from the trivial cases of the Gramian being the identity matrix or the matrix
of all 1’s, this correspondence

I +R[
(1
0)
] = I +R[3] and I +R[

(1
0)
]+R[

(1
1)
]+R[

(0
1)
] = I +R[1],

assumes an appropriate identification of group elements. Table 4.2 provides the implications
for the performance of codes.

Table 4.2: Comparing Parseval frames with Gramians G =
∑

g∈J R[g] obtained from groups

Z2
3 and Z9, together with their code weights. See Example 4.4.8 for details.

Gram
rank

Code
weight J ⊂ Z2

3 J ⊂ Z9

1 1 {(0
0),(

1
0),(

1
1),(

0
1),(

1
2)} {0, 1, 3}

3 3 {(0
0),(

1
0)} {0, 3}

5 3 {(0
0),(

1
0),(

1
1)} –

7 2 {(0
0),(

1
0),(

1
1),(

0
1)} {0, 1}

9 1 {(0
0)} {0}
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Table 4.3: Comparing Parseval frames with GramiansG =
∑

g∈J R[g] obtained from groups

Z3
3 and Z27, together with their code weights. See Example 4.4.9.

Gram
rank

Code
weight J ⊂ Z3

3 J ⊂ Z27

3 9

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

0
1
2

)}
{0,3,9}

5 9

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
2
0

)}
–

7 6

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
2
0

)
,
(

1
2
1

)}
{0,1,9}

7 9

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
2

)
,
(

1
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)}
–

9 3

{(
0
0
0

)
,
(

0
0
1

)}
{0,9}

9 6

{(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
2

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
1

)}
–

9 8

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
1
2

)
,
(

1
2
0

)}
–

11 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
2
1

)}
–

11 6

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
2

)
,
(

1
0
1

)}
–

11 6

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
2

)
,
(

1
2
0

)}
–

13 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
2

)
,
(

1
2
0

)}
–

13 4

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
2

)
,
(

1
2
0

)
,
(

1
2
1

)}
–

13 6

{(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
2

)
,
(

1
0
0

)}
–

13 6

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
1
0

)
,
(

1
1
2

)
,
(

1
2
0

)}
–

15 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)}
–

15 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
1
1

)
,
(

1
2
0

)}
–

15 4

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
2
0

)}
–

15 5

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
2
0

)
,
(

1
2
1

)}
–

17 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
1
1

)}
–

Continued on next page
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Table 4.3 – Continued from previous page
Gram
rank

Code
weight J ⊂ Z3

3 J ⊂ Z27

17 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
2
1

)}
–

17 4

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

1
0
1

)}
–

19 2

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
1
2

)
,
(

1
2
0

)
,
(

1
2
1

)}
{0,1,3}

19 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
1
1

)}
–

19 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
2

)
,
(

1
2
0

)}
–

21 2

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
2

)}
{0,3}

21 3

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
1
1

)
,
(

1
2
0

)}
–

23 2

{(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
2

)
,
(

1
1
0

)
,
(

1
1
1

)}
–

25 2

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
2
0

)
,
(

1
2
1

)}
{0,1}

Example 4.4.9 (Z27 vs. Z3
3, see Table 4.3). The symmetric doubling orbit partitioning of

Z27 consists of [0], [9] = {9, 18}, [3] = {3, 6, 12, 15, 21, 24}, and [1] = Z27\([0] ∪ [9] ∪ [3]).
The eight resulting Gramians each represent a distinct automorphic switching equivalence
class of binary Parseval Z27-frames. The group Z3

3, as mentioned in Example 4.4.7, has 13
nontrivial symmetric doubling orbits and generates 30 automorphic switching equivalence
classes of binary Parseval group frames.

Example 4.4.10 (Z125 vs. Z3
5, see Table 4.5). The symmetric doubling orbit partitioning

of Z125 consists of [0] and three orbits, having orders
∣∣[25]

∣∣ = 4,
∣∣[5]
∣∣ = 20,

∣∣[1]
∣∣ = 100. As

with with the other Zpq cases thus far, the symmetric doubling orbits of Z125 are invariant
under automorphism on Z125. It follows that the eight distinct Gramians induced by the
three nontrivial symmetric doubling orbits represent eight distinct classes of binary Parseval
Z125-frames.

The symmetric doubling orbit partitioning of Z3
5 consists of [e] and 31 orbits of order 4.

The 231 distinct Gramians, each representing a distinct unitary equivalence class of binary
Parseval Z3

5-frames, reduce to 7152 automorphic switching equivalence classes. Obtained by
applying the algorithm described in this paper implemented in Matlab [58], Table 4.4 gives
a breakdown of the these classes by the size of J :
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Table 4.4: Number of nonzero terms |J | summed in
∑

g∈J R[g] and number N|J| of resulting
automorphic switching equivalence classes.

|J | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N|J| 1 1 1 2 3 5 12 22 42 92 174 296 476 669 832 948
|J | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

The 0
1

entry corresponds to the identity matrix and the 31
1

entry, the matrix of all 1’s.
The counting the bottom row, which gives the total number of automorphically switching
equivalent classes per quantity of nontrivial symmetric doubling orbit summands, sums to
7152.

For obvious reasons, we do not list representatives from each of the 7152 automorphism
equivalence classes. Instead, the comparisons in Table 4.5 place each of the six nontrivial
Gramians of binary Parseval Z125-frames next to a Z3

5 representative of the same rank and
having maximal code weight among binary Parseval Z3

5-frames of the same dimension.
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Table 4.5: Comparing groups Z3
5 and Z125 as generators of binary Parseval frames, best

performers for each given rank of the Gramian. See Example 4.4.10.

J ⊂ Z3
5

Code
weight

Gram
rank

Code
weight J ⊂ Z125{(

0
0
0

)
,
(

0
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

1
1
2

)
,
(

1
1
3

)
,
(

1
1
4

)}
25 5 25 {0,5,25}{(

0
0
0

)
,
(

0
0
1

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
0
2

)
,(

1
0
3

)
,
(

1
1
3

)
,
(

1
1
4

)
,
(

1
2
0

)
,
(

1
2
1

)
,
(

1
3
0

)} 25 21 10 {0,1,25}

{(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
3

)
,
(

1
0
1

)
,
(

1
0
2

)
,(

1
1
3

)
,
(

1
1
4

)
,
(

1
2
0

)
,
(

1
2
2

)
,
(

1
3
2

)} 25 25 5 {0,25}

{(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
4

)
,
(

1
1
3

)
,
(

1
2
1

)
,
(

1
3
0

)}
5 101 2 {0,1,5}{(

0
0
0

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

0
1
3

)
,
(

0
1
4

)
,
(

1
0
4

)
,(

1
1
0

)
,
(

1
1
1

)
,
(

1
1
2

)
,
(

1
2
2

)
,
(

1
2
3

)
,
(

1
2
4

)
,
(

1
3
1

)
,(

1
3
2

)
,
(

1
3
3

)
,
(

1
3
4

)
,
(

1
4
0

)
,
(

1
4
1

)
,
(

1
4
2

)
,
(

1
4
3

)
,
(

1
4
4

)} 5 105 2 {0,5}

{(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

0
1
2

)
,
(

0
1
3

)
,
(

0
1
4

)
,
(

1
0
0

)
,
(

1
0
1

)
,(

1
0
2

)
,
(

1
0
3

)
,
(

1
0
4

)
,
(

1
2
0

)
,
(

1
2
1

)
,
(

1
2
2

)
,
(

1
2
3

)
,
(

1
2
4

)
,
(

1
3
0

)
,(

1
3
1

)
,
(

1
3
2

)
,
(

1
3
3

)
,
(

1
3
4

)
,
(

1
4
0

)
,
(

1
4
1

)
,
(

1
4
2

)
,
(

1
4
3

)
,
(

1
4
4

)} 2 121 2 {0,1}
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Appendix A

Distance conversions

A.1 Exchange rates: formulas relating metrics

The proof of Lemma 2.2.8 demonstrates and uses the fact that 〈x,y〉 = n − 2dH(x,y) for
x,y ∈ Qn. Indeed, sets of binary vectors offer a number of potentially useful reformula-
tions of the distances between elements. The following tables of “exchange rates” provide a
useful reference when restricting attention to certain binary we shall see in later chapters.
Note: For compactness and consistency of notation, especially within the following tables,
the symbols d1 and d2 represent the `1 and `2 metrics, respectively. That is, for a vector
space V ,

d1 : V × V → R d2 : V × V → R
x× y 7→ ‖x− y‖1 x× y 7→ ‖x− y‖2 .

A.1.1 Formulas on Qn := {−1, 1}n ⊂ Rn

Normalizing factors: For x ∈ Qn, we have

‖x‖0 = n, ‖x‖1 = n, ‖x‖2 =
√
n.

Distances between vectors: For x,y ∈ Qn, we have just noted that Lemma 2.2.8 yields
〈x,y〉 = n−2dH(x,y). Additionally, combining the d2 normalization factor on Qn (i.e.,‖z‖2 =
√
n for all z ∈ Qn) with the definition dg(x,y) := 1

π
cos−1

(
〈x,y〉
‖x‖2‖y‖2

)
yields the equivalence

〈·, ·〉 ≡ n cos(πdg) on Qn. Applying the trigonometric identity sin2 θ
2

= 1
2
− 1

2
cos θ, we have

2dH ≡ n− 〈·, ·〉 ≡ n− n cos(πdg) ≡ 2n sin2(πdg/2) on Qn. (A.1)

Still considering x,y ∈ Qn, we note that |xi − yi| ∈ {0, 2} for each index i and that dH(x,y) =∣∣{i : xi − yi 6= 0}
∣∣. From this, we deduce that ‖x− y‖1 = 2dH(x,y) and that ‖x− y‖2

2 =

67



22dH(x,y), or, compactly, that

4dH ≡ 2d1 ≡ d2
2 on Qn. (A.2)

The balance of the details in Table A.1 may be obtained from simple manipulations of the
equivalences given in Eqs. (A.1) and (A.2) above.

Table A.1: Equivalences among pairwise comparisons for vectors in Qn, as demonstrated in
Appendix A.1.1. The equality dH = 1

2
d1 means dH(x,y) = 1

2
‖x− y‖1 for x,y ∈ Qn.

dH = ndh = 1
2
d1 = 1

4
d2

2 = 1
2
(n− 〈·, ·〉) = n sin2(π

2
dg)

1
n
dH = dh = 1

2n
d1 = 1

4n
d2

2 = 1
2
− 1

2n
〈·, ·〉 = sin2(π

2
dg)

2dH = 2ndh = d1 = 1
2
d2

2 = n− 〈·, ·〉 = 2n sin2(π
2
dg)

4dH = 4ndh = 2d1 = d2
2 = 2(n− 〈·, ·〉) = 4n sin2(π

2
dg)

n− 2dH = n− 2ndh = n− d1 = n− 1
2
d2

2 = 〈·, ·〉 = n cos(πdg)

1− 2
n
dH = 1− 2dh = 1− 1

n
d1 = 1− 1

2n
d2

2 = 1
n
〈·, ·〉 = cos(πdg)

A.1.2 Formulas on Σn
s := {x ∈ Σn :‖x‖1 = s}

When we examine the distances between {0, 1}-binary vectors in later sections, the vectors
will have the same sparsity—that is, they will have the same quantity of nonzero entries.

Normalizing factors: For x ∈ Σn
s , we have

‖x‖0 = s, ‖x‖1 = s, ‖x‖2 =
√
s.

Distances between vectors: Recall that ‖·‖0 ≡ dH on any vector space. Now, given
x,y ∈ Σn

s , we have that |xi − yi| ∈ {0, 1} for i ∈ {1, 2, . . . , n}; together these facts yield

‖x− y‖1 =
n∑
i=1

|xi − yi| =‖x− y‖0 = dH(x,y) for x,y ∈ Σn
s . (A.3)

Furthermore, since ‖x− y‖2
2 =

∑n
i=1|xi − yi|

2 =
∑n

i=1|xi − yi|, we may extend the equiva-
lences in Eq. (A.3) to read d1 ≡ dH ≡ d2

2 on Σn
s .

Next, we can partition the set of “mismatched entries” between x and y by

{i : xi − yi 6= 0} = {i : xi − yi = −1} ∪ {i : xi − yi = 1}
= {i : xi = 0, y = 1} ∪ {i : xi = 1, yi = 0},
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allowing us to derive the exchange between dH and the inner product:

dH(x,y)︸ ︷︷ ︸
# of mismatched entries

=

|{i:xi=1}|︷︸︸︷
s −

|{i:xi=1=yi}|︷ ︸︸ ︷
〈x,y〉︸ ︷︷ ︸

# of mismatches where x=1

+

|{i:yi=1}|︷︸︸︷
s −

|{i:xi=1=yi}|︷ ︸︸ ︷
〈x,y〉︸ ︷︷ ︸

# of mismatches where y=1

= 2(s− 〈x,y〉).

Finally, applying the d2 normalizing factor on Σn
s within the definition of dg yields 〈·〉 =

s cos(πdg), and the equivalences in Table A.2 can be filled in through algebraic manipulation.

Table A.2: Equivalences among pairwise comparisons for vectors in Σn
s , as demonstrated in

Appendix A.1.2.

dH = ndh = d1 = d2
2 = 2s− 2〈·, ·〉 = 4s sin2(π

2
dg)

s− 1
2
dH = s− n

2
dh = s− 1

2
d1 = s− 1

2
d2

2 = 〈·, ·〉 = s cos(πdg)

1− 1
2s

dH = 1− n
2s

dh = 1− 1
2s

d1 = 1− 1
2s

d2
2 = 1

s
〈·, ·〉 = cos(πdg)
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Appendix B

Some technical lemmata

In the context of approximating binomial coefficients—and, in particular, sums of term with
binomial coefficient factors—it can be useful to resolve the induced bounding inequalities in
the safety of an appendix. In addition to reducing clutter in the main narrative, there is,
perhaps, less guilt associated with adding in a little extra information.

B.1 Estimates involving binomial coefficients

The Stirling-Robbins estimate for the factorial,

√
2π
√
n

(
n

e

)n
e

1
12n+1 < n! <

√
2π
√
n

(
n

e

)n
e

1
12n for n ∈ N, (B.1)

provides bounds on the accuracy of the estimate n! ≈
√

2πn(n/e)n via the factors e
1

12n >

e
1

12n+1 > 1. These bounds are fundamental in the first two results in this section, which
are derived in support of any effort which benefits from being able to ignore the first couple
summands in an expression.

To accomplish this, we declare εn ≈
√

2π to be the exact correction factor such that
n! = εn

√
n(n/e)n, absorbing the constant; these factors naturally aggregate to provide a

correction factor ε(n, k) ≈ 1/
√

2π (assigned in Lemma B.1.1) for the binomial coefficient
estimate σ(n, k). As can be seen below in Eq. (B.3), ε(n, k) falls between 1/3 and 1/

√
2π for

all k < n; the following lemma uses the intermediate upper bound to demonstrate that for
a particular relevant summation, the amount accumulated by rounding σ(n, k) up to 1/

√
2π

exceeds the total of the first few summands, which can thus be disregarded in the rounding.
Let us proceed.

Lemma B.1.1 (Bounding the binomial coefficient approximation error). For all n ∈ N, let
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εn := n!√
n
( e
n
)n, and for k, n ∈ N such that k < n, define the functions

ε(n, k) :=
εn

εkεn−k
and σ(n, k) :=

√
n

k(n− k)

nn

kk(n− k)n−k
. (B.2)

Then
(
M
k

)
= ε(n, k) · σ(n, k) and

1

3
<

1√
2π

e
1

12n+1

e
1

12k
+ 1

12(n−k)
< ε(n, k) <

exp
[

1
12n

]
exp

[
1

12k+1
+ 1

12(n−k)+1

]√
2π

<
1√
2π
. (B.3)

Proof. The equality
(
n
k

)
= ε(n, k) ·σ(n, k) follows from the definitions of the functions therein.

To prove the claimed bounds for ε(n, k), we begin with Stirling’s approximation as given

in Eq. (B.1). Dividing by
√
n(n/e)n yields

√
2πe

1
12n+1 < εn <

√
2πe

1
12n , and the interior

inequalities within (B.3) follow directly from applications of these bounds to each of εn, εk,
and εn−k in ε(n, k). For the outer inequalities, we use the following easily verified properties

of the bounding factors e
1

12n+1
− 1

12k
− 1

12(n−k) and e
1

12n
− 1

12k+1
− 1

12(n−k)+1 : they are symmetric about
n/2, they are increasing in k on the interval 1 < k < n/2, and they are increasing in n.

It follows that (k, n) = (1, 2) satisfies

arg inf
0<k<n
k,n∈N

{
1√
2π
e

1
12n+1

− 1
12k
− 1

12(n−k)

}
and that

sup
0<k<n
k,n∈N

{
1√
2π
e

1
12n
− 1

12k+1
− 1

12(n−k)+1

}
= lim

n→∞

1√
2π
e

1
12n
− 1

12n2 +1
− 1

12(n−n2 )+1 =
1√
2π
.

Thus,

1

3
<

evaluation of
lower bound
at k=1,n=2︷ ︸︸ ︷
e−

19
150

√
2π

≤

lower bound induced
by lower bound for εn︷ ︸︸ ︷
e

1
12n+1

− 1
12k
− 1

12(n−k)

√
2π

< ε(n, k) (B.4)

and

ε(n, k) <

upper bound induced
by upper bound for εn︷ ︸︸ ︷
e

1
12n
− 1

12k+1
− 1

12(n−k)+1

√
2π

≤

evaluation of
upper bound

at k=n
2︷ ︸︸ ︷

e−
18n−1

12n(6n+1)

√
2π

<
1√
2π
, (B.5)

thereby completing the proof.
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The next lemma provides conditions under which we may ignore the first two terms
in our sum

∑k
j=0

(
s
j

) (
M−s
j

)
/
(
M
s

)
as a consequence of rounding the Stirling error factor

ε(s, 2)ε(M − s, 2)/ε(M, s) up to 1/
√

2π.

Lemma B.1.2 (Subsuming initial terms). Let σ(·, ·) be the Stirling approximation function
given by equation (B.2), and let s,M ∈ N such that 10 ≤ s < 1

2
M . Then

2∑
j=0

(
s
j

)(
M−s
j

)(
M
s

)−1

<
1√
2π

σ(s, 2)σ(M − s, 2)

σ(M, s)
. (B.6)

Proof. We shall factor
(
s
2

)(
M−s

2

)(
M
2

)−1 ≡ ε(s,2)ε(M−s,2)
ε(M,s)

σ(s,2)σ(M−s,2)
σ(M,s)

from the left hand side of

the claimed inequality and use an upper bound on the error factor ε(s,2)ε(M−s,2)
ε(M,s)

to prove the

lemma. Applying the bounds on ε(·, ·) given by (B.3) in the preceding lemma,

ε(s, 2)ε(M − s, 2)

ε(M, s)
<

1√
2π

exp

[(
1

12s
− 1

25
− 1

12s− 23

)

+

(
1

12(M − s)
− 1

25
− 1

12(M − s)− 23

)

−
(

1

12M + 1
− 1

12s
− 1

12(M − s)

)]

=
1√
2π

exp

− 2

25
+

1

12s

(
2− 1

1− 23
12s

+
2

M
s
− 1

− 1
M
s
− 1− 23

12s

− 1
M
s

+ 1
12s

)

<
1√
2π

exp

− 2

25
+

1

12s

(
1 +

1
M
s
− 1
− 1

M
s

+ 1

)
<

1√
2π

exp

[
− 2

25
+

1

6s

]
(since M/s > 2).
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Thus, we have that

2∑
j=0

(
s
j

)(
M−s
j

)(
M
s

)−1

=
2∑
j=0

(
s
j

)(
M−s
j

)(
s
2

)(
M−s

2

) · (s2)(M−s2

)(
M
s

)
=

(
4 + 4s(M − s)

s(s− 1)(M − s)(M − s− 1)
+ 1

)
· ε(s, 2)ε(M − s, 2)

ε(M, s)

σ(s, 2)σ(M − s, 2)

σ(M, s)

<

(
4 + 4s(M − s)

(s− 1)2(M − s− 1)2
+ 1

)
· 1√

2π
exp

(
− 2

25
+

1

6s

)
σ(s, 2)σ(M − s, 2)

σ(M, s)

and since M − s > s ≥ 10,

<

(
4 + 4s2

(s− 1)2(s− 1)2
+ 1

)
1√
2π

exp

(
− 2

25
+

1

6s

)
σ(s, 2)σ(M − s, 2)

σ(M, s)
.

Noting that
(

4+4s2

(s−1)4
+ 1
)

exp
(
− 2

25
+ 1

8s

)
decreases monotonically to exp(− 2

25
) < 1 and is

less than 1 for s ≥ 10,

2∑
j=0

(
s
j

)(
M−s
j

)(
M
s

)−1

<
1√
2π

σ(s, 2)σ(M − s, 2)

σ(M, s)

for s ≥ 10, and inequality (B.6) is proven.

B.2 Estimating sums of exponentials

Given a sum of the form sum
∑k

xM=h exp(ax2 + bx+ c) allows us to bound using a standard1

approximation of
∫∞
x

exp(−t2)dt (see, e.g., [45]),

e−x
2

x+
√
x2 + 2

≤
∫ ∞
x

e−t
2

dt ≤ e−x
2

x+
√
x2 + 1

for x > 0 . (B.7)

1This Mills’ ratio bounding inequality, widely attributed to Yusaku Komatsu (1955), is typically expressed

in terms of e
x2

2 , as in 2[x+
√
x2 + 4]−1 < exp(−x

2

2 )
∫∞
x

exp(− t
2

2 )dt < 2[x+
√
x2 + 2]−1.
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When the arguments of the expression
∑k

xM=n exp(ax2 + bx + c) meet certain simple con-
straints, the corresponding estimate admits a compact expression. We offer this result as the
content of the following proposition:

Lemma B.2.1. Given the quadratic function g : R→ R defined by

g(x) := −A(x−B)2 +D

with A,B > 0, let h, k,M ∈ N satisfy h < k ≤ BM . Then, setting

γl(x) :=
eg(x)

A(B − x) +
√
A2(B − x)2 + 2A

and

γu(x) :=
eg(x)

A(B − x) +
√
A2(B − x)2 + A

,

we have

γl

(
k − 1

M

)
− γu

(
h− 1

M

)
<

1

M

k−1∑
xM=h

eg(x)

<

∫ k
M

h
M

eg(x)dx < γu

(
k

M

)
− γl

(
h

M

)
<

exp
(
g
(
k
M

))
2A
(
B − k

M

) .
Proof. The proof resolves to demonstrating the following string of inequlities:

γl

(
k − 1

M

)
− γu

(
h− 1

M

)
<

∫ k−1
M

h−1
M

eg(x)dx

<
1

M

k−1∑
xM=h

eg(x)

<

∫ k
M

h
M

eg(x)dx < γu

(
k

M

)
− γl

(
h

M

)
< γu

(
k

M

)

<
exp
(
g
(
k
M

))
2A
(
B − k

M

) .
Since eg(x) is increasing on the interval (−∞, B), for n0 ∈ [h,BM − 1] we have∫ n0

M

n0−1
M

eg(x)dx ≤ 1

M
exp

(
g
(n0

M

))
≤
∫ n0+1

M

n0
M

eg(x)dx.
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It immediately follows that∫ k−1
M

h−1
M

eg(x)dx <
1

M

k−1∑
xM=h

eg(x) <

∫ k
M

h
M

eg(x)dx.

Now, for 0 < a < b ≤ k
M

,∫ b

a

eg(x)dx =
eD√
A

∫ at

bt

e−t
2

dt =
eD√
A

(∫ ∞
bt

e−t
2

dt−
∫ ∞
at

e−t
2

dt

)
, (B.8)

where the substitution t2 := A(x − B)2 results in bt =
√
A(B − b) < at =

√
A(B − a).

Bounding expression (B.8) above we see∫ b

a

eg(x)dx =
eD√
A

∫ at

bt

e−t
2

dt

<
eD√
A

(
exp(−b2

t )

bt +
√
b2
t + 1

− exp(−a2
t )

at +
√
a2
t + 2

)

=
eD√
A

(
exp(−A(B − b)2)√

A(B − b) +
√
A(B − b)2 + 1

− exp(−A(B − a)2)√
A(B − a) +

√
A(B − a)2 + 2

)

=
exp(g(b))

A(B − b) +
√
A2(B − b)2 + A

− exp(g(a))

A(B − a) +
√
A2(B − a)2 + 2A

= γu(b)− γl(a)

< γu(b).

That γu(b) < exp(g(b))/[2A(B − b)] follows from A(B − b) <
√
A2(B − b)2 + A. Setting

a := h
M

and b := k
M

in the preceding chain of inequalities produces the sequence of upper
bounds claimed by the lemma.

Applying the same technique, the value
∫ (k−1)/M

(h−1)/M
eg(x)dx is bounded below by γl(

k−1
M

) −
γu(

h−1
M

), and the proof is complete.
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[52] Jelena Kovačević and Amina Chebira. Life beyond bases: The advent of frames (part
ii). IEEE Signal Processing Magazine, 24(5):115–125, 2007.

79



[53] Shu Lin and E.J. Weldon. Long BCH codes are bad. Information and Control, 11(4):445–
451, 1967.

[54] Maria Silva Lucido and Mohammad Reza Pournaki. Elements with square roots in finite
groups. Algebra Colloquium, 12(4):677–690, 2005.

[55] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes. Elsevier, 1977.

[56] Thomas G. Marshall. Coding of real-number sequences for error correction: A dig-
ital signal processing problem. IEEE Journal on Selected Areas in Communications,
2(2):381–392, 1984.

[57] Thomas G. Marshall. Fourier transform convolutional error-correcting codes. In Twenty-
Third Asilomar Conference on Signals, Systems and Computers, volume 2, pages 658–
662. IEEE, 1989.

[58] Robert P. Mendez. Supporting matlab programs repository. http://math.uh.edu/

~rpmendez/binaryParsevalGroupFrames/. Verified October 13, 2018.

[59] Robert P. Mendez, Bernhard G. Bodmann, Zachery J. Baker, Micah G. Bullock, and
Jacob E. McLaney. Binary parseval frames from group orbits. Linear Algebra and its
Applications, 556:265–300, 2018.

[60] Roberto Montemanni and Derek H. Smith. Heuristic construction of constant weight
binary codes. Technical Report No. IDSIA-12-07, 2007.

[61] Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. CoRR, abs/1202.1212, 2012.

[62] Yaniv Plan and Roman Vershynin. One-bit compressed sensing by linear programming.
Communications on Pure and Applied Mathematics, 66(8):1275–1297, 2013.

[63] Yaniv Plan and Roman Vershynin. Dimension reduction by random hyperplane tessel-
lations. Discrete & Computational Geometry, 51(2):438–461, 2014.

[64] Yaniv Plan, Roman Vershynin, and Elena Yudovina. High-dimensional estimation with
geometric constraints. Information and Inference: A Journal of the IMA, 6(1):1–40,
2017.

[65] Vera Pless. A classification of self-orthogonal codes over GF(2). Discrete Mathematics,
3(1-3):209–246, 1972.

[66] Gagan Rath and Christine Guillemot. Performance analysis and recursive syndrome
decoding of dft codes for bursty erasure recovery. IEEE Transactions on Signal Pro-
cessing, 51(5):1335–1350, 2003.

80



[67] Gagan Rath and Christine Guillemot. Frame-theoretic analysis of dft codes with era-
sures. IEEE Transactions on Signal Processing, 52(2):447–460, 2004.

[68] Holger Rauhut, Justin Romberg, and Joel A. Tropp. Restricted isometries for partial
random circulant matrices. Applied and Computational Harmonic Analysis, 32(2):242–
254, 2012.

[69] Mark Rudelson and Roman Vershynin. On sparse reconstruction from Fourier and Gaus-
sian measurements. Communications on Pure and Applied Mathematics, 61(8):1025–
1045, 2008.

[70] Julian Schwinger. Unitary operator bases. In Proceedings of the National Academy of
Sciences of the United States of America, pages 570–579, 1960.

[71] Claude Elwood Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423, 1948.

[72] Derek H. Smith, Lesley A. Hughes, and Stephanie Perkins. A new table of constant
weight codes of length greater than 28. The Electronic Journal of Combinatorics, 13(1):2,
2006.

[73] A. A. Tietavainen. An asymptotic bound on the covering radii of binary bch codes.
IEEE Transactions on Information Theory, 36(1):211–213, 1990.

[74] Richard Vale and Shayne Waldron. Tight frames and their symmetries. Constructive
Approximation, 21(1):83–112, 2004.

[75] Richard Vale and Shayne Waldron. Tight frames generated by finite nonabelian groups.
Numerical Algorithms, 48(1):11–27, 2008.

[76] Shayne Waldron. Group Frames, pages 171–191. Birkhäuser Boston, Boston, 2013.
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Index

〈·, ·〉, the dot product on Zn2 , 34
“{fj}”, 34

adversarial (noise), 10, 20
analysis operator, ΘF , 36
Aut(Γ), 36
automorphic switching equivalence,

∼=aut, 36

binary block code, 1
binary channel, 10
binary code, 1
binary frame, 35
binary Parseval frame, 35
binary vector, 8
bit, 6, see syn. entry
bit flip, 10
bits of information, 7
block code, 17
block decoding error, 18
block encoder, 17
block length, 17
Boolean cube (Σn), 8

capacity, 1
channel, 1, 9
channel decoder, 18
channel encoder, 17
code rate, 7
code space, 6
code words, 6

decoding error, 10
destination, 9
distance (of a code), 7, see syn.

min. Hamming dist.

entry (as a term of a sequence), 6
erasure, 10
erasure error, 10, see syn. erasure
error, 10
even (vector), 34

family of codes, 17
finite frame, 32
frame, 35, see syn. binary frame

Gaussian vector, 15
GF(2), ∼= Z2, 32
GL(V ), 37

Hamming ball (BH), 7
Hamming cube (Qn), 8
Hamming distance (dH), 7, 7
Hamming weight (‖·‖0), 8
hyperplane tessellation, 12, see syn.

standard random h.t.

information rate, 7, see syn. code rate
information source, 9

message, 1, 9
minimum d#-distance (mindist#), 7
minimum code distance, 7, see syn.

min. Hamming dist.
minimum distance, 7, see syn.

min. Hamming dist.
minimum Hamming distance (mindistH), 7
Mn(Z2), 34

noise, noisy, 1, 10
normalized geodesic distance (dg), 14

odd (vector), 34
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(column), 33, 34

Qn := {−1, 1}n, 8, see syn. Hamming cube

rate (of a code), 6, see syn. code rate
received signal, 9
receiver, 9
restricted isometry constant (δs), 13
restricted isometry property (rip), 13
robust, 10
robust against noise ratio ρ, 11

Σn := {0, 1}n, 8, see syn. Boolean cube
“
∑

j cjfj”, 34
separate (vectors), 12
sign (of a vector), 12
signal, 1, 9
source decoder, 18
source encoder, 17
sparse

k-sparse, 8
s-sparse, 13

sparsity, 68
standard random hyperplane tessellation, 12
support (supp(·)), 8
switching equivalence, ∼=sw, 35
symbol error, 10, see syn. bit flip
synthesis operator, Θ∗F , 36

transmit, 1
transmitter, 9

unitary binary matrix, 35
unitary equivalence, 35

weight (of a binary vector), 34

Z2, ∼= GF(2), 32
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