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Abstract

In this thesis we prove statistical properties of dynamical systems on a lattice with

randomly occurring jumps. The original model of this type, called a hybrid system,

was introduced by E. Kobre and L. S. Young in 2007. We use different methods to

derive the drift rate and the averaged Central Limit Theorem. We generalize their

results to piecewise uniformly expanding maps with countable partitions. We obtain

an upper bound for the speed of convergence in the Central Limit Theorem and

prove that the convergence is with tight maxima. We prove Large Deviation results.

We also prove a quenched Central Limit Theorem, subject to a condition that can

be verified following existing techniques for maps that are sufficiently expanding.

Finally, we expand the drift rate results and averaged Central Limit Theorem to

certain non-uniformly expanding systems.
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CHAPTER 1

Introduction and Historical Remarks

1.1 Introduction

Statistical mechanics provides a framework for relating the microscopic properties of

individual atoms and molecules to the macroscopic bulk properties of materials that

can be observed in everyday life. The ability to make macroscopic predictions based

on microscopic properties is the main goal of statistical mechanics.

Particle systems, as they appear in statistical mechanics, have been an impor-

tant model motivating much development in the field of Dynamical Systems. While
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1.1. INTRODUCTION

these are deterministic systems in the microscopic level, the evolution law is too

complicated. Instead one uses a stochastic approach to such systems.

More generally ideas from statistical mechanics have been brought to the setting

of dynamical systems by Y. Sinai [Sin68], D. Ruelle [Rue78] and R. Bowen [Bow70]

in the 1970s. The objects they introduced are called SRB measures and they play

an important role in the ergodic theory of dissipative dynamical systems.

On the other hand corresponding problems have been studied also in the context

of the theory of random maps which was much developed by Y. Kifer, [Kif98] and

L. Arnold, [Arn03]. The main idea of their approach is that evolution of many

physical systems can be better described by compositions of different maps rather

than by repeated application of exactly the same transformation. Y. Kifer proved

the existence of equilibrium states for random uniformly expanding systems. This

theory is applied to random networks, fractal dimensions of random sets and other

models.

In this dissertation we combine these two approaches with a model given by

E. Kobre and L. S. Young in [KY07]. Some other results in this direction can be

found in [CD09], [Len06]. The common goal of their approach is closing the gap

between deterministic and stochastic dynamics.

The model in [KY07] has an extended phase space given by a lattice structure and

moving particles on that lattice. The dynamics of particles is defined by microscopic

rules. In particular, the local dynamics is given by iterating the same piecewise

uniformly expanding circle map. They introduce random jumps from one node of
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1.1. INTRODUCTION

the lattice to another. The jumps give the macroscopic behavior of the particle

and depend on the state of the local dynamics. The main question is ”What can

we say about the global behavior of the particle on the lattice by looking at the

local behavior?”. In that sense the model is an attempt to understand the particle

systems.

One of the main goal of our work is generalizing the local dynamics of the model

given in [KY07]. We are able to prove the result for processes with local dynamics

that are given by piecewise uniformly expanding interval maps with countably many

partition. We prove the drift rate and Central Limit Theorem for these maps. This

extends the results to a more general class of maps. These maps may have non-

expanding parts, but they induce uniformly expanding interval maps (See Chapter

2 for the definition).

We are also interested in obtaining more information about the statistical be-

havior of these models. We show the speed of the convergence in the Central Limit

Theorem is 1/
√
n. We prove that the convergence in the Central Limit Theorem has

a property called “tight maxima” which is stronger than only converging to a normal

distribution. We also give the Large Deviation estimate.

Our work uses a different method than [KY07]. We use Perturbation Theory

which is in general used for deterministic dynamical systems. We show that with

some modifications the traditional methods for deterministic dynamical systems can

be used in the stochastic set up.

In this work we also attempt to give the Central Limit Theorem in the quenched

3



1.1. INTRODUCTION

sense. The averaged approach is the first possibility to understand a hard problem.

The quenched result helps to understand more of the behaviour of the process. In

Chapter 7, we are able to prove the quenched Central Limit Theorem for piecewise

uniformly expanding random dynamical systems subject to a condition on the higher

dimensional dynamics. We expect that the condition to be satisfied for our random

maps by following the method of [KL05]. The higher dimensional maps that we

consider are discussed at the end of Chapter 4.

4



CHAPTER 2

Setting and Results

In Chapter 2 we describe the model and state the results. This model was first

introduced by L. S. Young and E. Kobre in [KY07]. Kobre and Young consider

identical expanding circle maps as local dynamics of a lattice system. We describe

first the general model of [KY07]. Then we introduce special cases of this model

where our results apply. These special cases are more general than those considered

in [KY07].

Remark 2.0.1. The system that we consider lives on a lattice indexed by, say, Z.

After describing it, in order to keep the notation simpler, we continue with a lattice

indexed by N. See Important Remark on page 7.
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2.1. THE GENERAL HYBRID SYSTEM

2.1 The General Hybrid System

The general hybrid model is given on a lattice where we place a local dynamics

at each node. The local dynamics is given by a deterministic map and the global

dynamics is a result of random jumps from one node to another. During the iteration

of the deterministic map in one node, the point may jump to a neighbor node with

some probability, depending on its present state. Below is the formal description.

Let I := [0, 1], X := Id and Z the set of integers. Consider a one dimensional

lattice indexed by Z where each node is a copy of X. We denote the ith copy of X in

the lattice by Xi for i ∈ Z. For each i ∈ Z the local (deterministic) dynamics is given

by a map τi : Xi → Xi. For each i ∈ Z we define four subsets Lij and Rij of Xi, j =

1, 2, with Ri1 and Ri2 disjoint. The jump maps are ϕi1 : Ri1 ⊂ Xi → Li+1,1 ⊂ Xi+1

and ϕi2 : Ri2 ⊂ Xi → Li−1,2 ⊂ Xi−1. We call Rij and Lij the outgoing, respectively

incoming, jump sets.

The jump probabilities are 0 < pij < 1, j = 1, 2.

Here is how the system evolves. Let x0 ∈ Xi, i ∈ Z, be the initial state. One step

of the dynamics consists of the following: we apply the map τi and check whether

τi(x0) ∈ Xi is in the jump set Ri1 ∪ Ri2 ⊂ Xi. If not, then the evolution continues

from τi(x0). Otherwise, the point can jump to a neighboring site, according to the

following rule. If τi(x0) ∈ Ri1 then there are two possibilities: with probability pi1

the point jumps to the right node to ϕi1(τi(x0)) ∈ Li+1,1 ⊂ Xi+1 and with probability

1 − pi1 it stays at τi(x0) ∈ Ri1 ⊂ Xi. If τi(x0) ∈ Ri2 then with probability pi2 the

point jumps to the left to ϕi2(τi(x0)) ∈ Li−1,2 ⊂ Xi−1 and with probability 1− pi2 it

6



2.1. THE GENERAL HYBRID SYSTEM

stays at τi(x0) ∈ Ri2 ⊂ Xi.

We keep iterating the system according to this rule. We study the statistical

properties of the system on ∪i∈ZXi.

More generally, one can define the process with more than two jump intervals,

and the jump maps need not to be to the neighboring sites.

Important Remark (approach, notation from now on). Our approach is to

translate the hybrid dynamics into a random dynamical system, following [KY07].

For simplicity, we state the results and explain the method of proof below for dynamics

on ∪i∈NXi, with only one jump interval, to the right. Here N = {0, 1, 2, . . . } is the

set of natural numbers. For this, one-sided case, the translation yields two maps,

applied randomly. If there are T jump intervals then one needs 2T maps.

The statements of the results presented below adjust, mutatis mutandis, to the

general case. The proofs are given already for arbitrary finite random systems, so

need no modification.

Therefore, from now on the jump maps are ϕi : Ri ⊂ Xi → Li+1 ⊂ Xi+1 with

jump probabilities pi, where i ∈ N.

The process can be seen as a Markov process on the state space X = X0 ∪X1 ∪

X2 ∪ . . .. Since each point in X belongs to only one Xi which is just a copy of X,

we identify X with N×X. Then each point on X can be given as (i, x) where i ∈ N

indicates the location in the lattice and x ∈ X indicates the particular point in Xi.

When the process is at a point of Xi for some i ∈ N, we say the system is at site i.

7



2.1. THE GENERAL HYBRID SYSTEM

The transition probabilities P for the Markov process are given by

P((i, x), (i, τi(x))) =


1, if τi(x) /∈ Ri,

1− pi, if τi(x) ∈ Ri.

P((i, x), (i+ 1, ϕi(τi(x)))) =


0, if τi(x) /∈ Ri,

pi, if τi(x) ∈ Ri.

and zero otherwise.

If a point (i, x) in site Xi moves to a site Xi+1 under this process we say the point

x ∈ Xi “jumped to the right”. Whenever a point x ∈ Xi ends up in Ri we decide

whether the point jumps to the right or not.

Definition 2.1.1. Consider the Markov process on X defined above. For any point

(i, x) ∈ X we introduce the random variable Jn(i, x) which is the number of times

the point x ∈ Xi has jumped to the right in the first n iterates of the Markov process.

Definition 2.1.2 (drift rates). Let (i, x) ∈ X be the initial state of the Markov

process. Define the pointwise drift rate of (i, x) to be α ∈ R if

lim
n→∞

Jn(i, x)

n
= α a.s.

Remark 2.1.3. The almost surely in the above definition refers to the choices one

makes when entering the jump intervals.

To start the process we give an initial probability distribution µ0 on the state

space X of the Markov process. The measure of the ith copy of the lattice under µ0,

8



2.2. SOME SPECIAL HYBRID SYSTEMS

µ0(Xi), is called the weight of site i with respect to µ0. We are also interested in how

the initial distribution µ0 evolves under the Markov process. Denote by µ1, µ2, . . . the

probability distributions on X after the 1st, 2nd, . . . iterates of the Markov process.

One can also describe the asymptotic behaviour of the center of mass:

Definition 2.1.4 (center of mass). Let µ be a probability distribution on X . Define

the center of mass of µ to be

C(µ) =
∑
i

i µ(Xi)

whenever the sum converges absolutely.

Definition 2.1.5 (absolutely continuous distribution). We say that µ is an abso-

lutely continuous distribution on X if µ|Xi is absolutely continuous with respect to

the (normalized) Lebesgue measure on Xi for each i.

Definition 2.1.6 (drift rate of the center of mass). Let µ0 denote an initial prob-

ability distribution on X , and µ1, µ2, . . . denote the distributions on X after the

1st, 2nd, . . . iterates of the Markov process. Then the drift rate of the center of mass

of µ0 is the limit

lim
n→∞

C(µn)

n

whenever the limit exists.

2.2 Some Special Hybrid Systems

In this section we describe special cases of the general model given in the previous

section. We give the results for these special cases in the next section.

9



2.2. SOME SPECIAL HYBRID SYSTEMS

We assume that the local dynamics is one-dimenensional and translation-invariant.

That is, X = I (so d = 1), and at each site i the maps τi are the same map τ , the

jump intervals Ri = R and Li = L are the same, ϕ : R→ L are the same jump map,

the jump probabilities are pi = p with 0 < p < 1.

The properties of the local maps and jump maps are given in more detail for each

model below.

2.2.1 Model I: Uniformly Expanding Maps, T0 and T1

First we define a set of functions that we call T1 and then we give the definition for

Model I.

Definition 2.2.1 (the class T1(Y )). Let Y be a finite union of closed bounded disjoint

intervals in R, m denote the normalized Lebesgue measure on Y and τ : U → Y be

a continuous map with U ⊂ Y open and dense, and m(U) = 1. Let S = Y \ U . By

taking the closure of each connected component of U we obtain a countable family

β of closed intervals with disjoint interiors such that
⋃
B∈β

B ⊃ U and B ∩ S consists

exactly of the endpoints of B for each B ∈ β. Fix λ > 1.

The functions T1(Y ) are described by the following properties:

(i) the restriction τB of τ to an interval B ∩ U , B ∈ β, admits an extension to a

homeomorphism of B, and τB is differentiable with |τ ′B| > λ > 1;

10



2.2. SOME SPECIAL HYBRID SYSTEMS

(ii) the function g(x) defined by

g(x) =


1/|τ ′(x)|, if x ∈ U,

0, if x ∈ S.
(2.1)

is of bounded variation on Y .

We give the above definition for a more general set Y since we define functions

in the following chapters on sets other than I. But the local dynamics is given by a

map defined on I as explained below.

Definition 2.2.2 (Model I). The Markov process given in the previous section is

called Model I if the followings are satisfied:

• The local phase space is the 1-dimensional interval I.

• The local dynamics is given by τ : U → U at each node i ∈ N where τ ∈ T1(I).

• The outgoing jump interval R ⊂ U is arbitrary, but the same for each node

i ∈ N.

• The incoming jump interval L is U at each node i ∈ N.

• The jump map ϕ : R → Y is differentiable with |τ ′| · |ϕ′| > λ > 1 whenever τ ′

exists, where λ is given in Definition 2.2.1.

The assumption of having a countable partition is the first generalization of the

results in [KY07]. In their paper they use uniformly expanding maps with finite

partitions.

11



2.2. SOME SPECIAL HYBRID SYSTEMS

Definition 2.2.3 (the class T0). We denote by T0 the set of maps in T1 with finite β.

For some of the theorems, we need the corresponding random system to be weak-

mixing. For the definition of weak-mixing, see Definition 6.0.3.

For the definition of the corresponding random dynamical system see Defini-

tion 9.1.1.

2.2.2 Model II: Non-uniformly Expanding Maps, T2

In this section first we define a more general set of maps that we call T2 and then

give a more general Markov process than the Model I where the local dynamics is

given by maps in T2.

Definition 2.2.4 (the class T2(X)). Let X be a finite union of closed bounded disjoint

intervals in R and m denote the normalized Lebesgue measure on X.

The class T2(X) consists of maps ς : X → X for which the induced map τ on

Y ⊂ X is in T1(Y ), for Y ⊂ X as in Definition 2.2.1.

We define next what it means for a map ς : X → X to induce a mapping τ

on Y ⊂ X. This class contains certain types of non-uniformly expanding maps like

Pomeau-Manneville maps and maps that have a Young Tower structure as introduced

in [You99].

Definition 2.2.5 (induced maps). Let
∞⋃
i=1

Yi ⊂ Y ⊂ X be a disjoint union of open

intervals such that m

(
∞⋃
i=1

Yi

)
= m(Y ).

12



2.2. SOME SPECIAL HYBRID SYSTEMS

A dynamical system ς : X → X is said to induce the map

τ :
∞⋃
i=1

Yi → Y if τ(x) = ςR(x)(x)

where R :
∞⋃
i=1

Yi → N+ is the first return time to Y and R is constant on each

partition element Yi.

We say that the induced system τ :
∞⋃
i=1

Yi → Y has summable return times if

∞∑
i=1

Rim(Yi) <∞

where Ri = R|Yi.

Definition 2.2.6 (Model II). The Markov process given in the general hybrid model

is called Model II if the following are satisfied:

• The local phase space is the 1-dimensional interval I.

• At each node the local map is the same map ς : I → I with ς ∈ T2(I). Let

τ ∈ T1(Y ) be the induced map of ς on Y ⊂ X.

• At each node the outgoing jump interval is the same interval R ⊂ Y and the

incoming jump interval is L ⊂ Y .

• The jump map ϕ : R → Y is differentiable with |τ ′| · |ϕ′| > λ > 1 whenever τ ′

exists, where the value λ corresponding to τ is from Definition 2.2.1.

• The return time of the induced system is summable.

13



2.3. RESULTS

2.3 Results

For the special cases given in the previous sections note that the local maps τi and

the jump probabilities pi do not depend on the site number i. Then for Models I

and II the random variable that counts the number of jumps in the first n iterates

does not depend on the initial site. So we consider the random variable Jn(0, x)

and denote it by Jn(x) for x ∈ X0. The results are given for the random variable

Jn(x). For simplicity we give the results for initial absolutely continuous probability

distributions µ0 with µ0(X0) = 1 and we say µ0 is concentrated on X0. The results

can be generalized to an absolutely continuous initial distribution µ0 with C(µ0) <∞.

Theorem 2.3.1 (Drift Rate). Let the Markov process on X = N×I be as in Model I

or Model II, with initial site X0.

Then there is α ∈ R such that for m-almost every initial state x0 ∈ X0 we have

lim
n→∞

Jn(x0)

n
= α a.s.

Let µ0 be the absolutely continuous initial probability distribution on X . We also

give the drift rate result for the center of mass.

Theorem 2.3.2. For the Markov process on X = N×I given in Model I or Model II,

if µ0 is an absolutely continuous initial probability distribution concentrated on X0,

then

lim
n→∞

C(µn)

n
= α

where α ∈ R is the value given in Theorem 2.3.1. The same is true for absolutely

continuous distributions µ0 with finite center of mass.

14



2.3. RESULTS

Given an initial probability distribution concentrated on X0, there exists a unique

measure Pµ0 on sequences of observations {x0, x1, x2, . . .} where each xi ∈ X, x0 is

chosen with respect to µ0 and the sequence is given with respect to the transition

probability P of the Markov process. In the following theorem we state that the

random variable Jn satisfies the Central Limit Theorem with respect to the mea-

sure Pµ0 .

Theorem 2.3.3 (Central Limit Theorem). For a weak-mixing Markov process on

X = N × I given in Model I or Model II, if µ0 is an absolutely continuous initial

probability distribution concentrated on X0, then for every interval J ⊂ R we have

lim
n→∞

Pµ0
{
Jn − nα√

n
∈ J
}

=
1√
2πσ

ˆ
J

e−u
2/2σdu

for some σ > 0, where Pµ0 is the measure associated to the transition probability P

of the Markov process.

The following results give more details about the convergence of the process to a

normal distribution for local maps in T1(I). The first theorem gives the rate of con-

vergence to the normal distribution. The second theorem states that the convergence

to a normal distribution is with tight maxima. And the last theorem is the Large

Deviation estimate which measures the probability of outliers in the convergence of

Theorem 2.3.1.

Theorem 2.3.4 (Speed for the Central Limit Theorem). For a weak-mixing Markov

process on X = N×I given in Model I and µ0 absolutely continuous, the convergence

to a normal distribution given by Theorem 2.3.3 has speed O(n−1/2): there exists

15



2.3. RESULTS

C > 0 such that for every interval J ⊂ R we have∣∣∣∣Pµ0 {Jn − nα√
n

∈ J
}
− 1√

2πσ

ˆ
J

e−u
2/2σdu

∣∣∣∣ ≤ C√
n
.

Theorem 2.3.5 (Tight Maxima). For the weak-mixing Markov process on X =

N × I given in Model I and µ0 absolutely continuous, the convergence to a normal

distribution given in Theorem 2.3.3 is with tight maxima: for every ε > 0 there exists

c > 0 such that

Pµ0
{

max
1≤k≤n

|Jk − kα|√
n

> c

}
≤ ε, for every n ≥ 1.

Theorem 2.3.6 (Large Deviation). For the weak-mixing Markov process on X =

N × I given in Model I and µ0 absolutely continuous, there exists A > 0 such that

for all a ∈ (0, A)

Pµ0
{
|Jn − nα|

n
≥ a

}
≤ Ce−Ca

2n for some C > 0.

For the weak-mixing Markov process on X = N× I we also obtain the quenched

version of the Central Limit Theorem for Model I, if the local maps are in T0(I).

Recall that these are the maps used in [KY07]. The quenched Central Limit Theorem

states that the Markov process satisfies the Central Limit Theorem for almost all

jump choices that is made during the evolution of the process. The formal statement

is given for the corresponding random dynamical system, see Theorem 7.4.6, and the

correspondence to the Markov process is explained in Section 9.2.
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CHAPTER 3

Preliminaries

In Chapter 3 we review the material needed for the following sections including

functions of bounded variations in dimension one, the skew product realization of

random dynamical systems and uniform ergodic theory.

3.1 Functions of Bounded Variation in 1D

The definitions and the notations in this section follow the book by Gora and Bo-

yarski, see [KL05].
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3.1. FUNCTIONS OF BOUNDED VARIATION IN 1D

Definition 3.1.1. For a function f : I → I, the total variation of f is given by

∨
I

(f) = sup{
r∑
i=1

|f(ζi)− f(ζi−1)|}

where supremum is taken over all finite partitions of I, 0 = ζ1, ζ2, . . ., ζr = 1. We

say that f is of bounded variation if
∨
I

(f) < ∞ and denote the set of functions of

bounded variation on I by BV (I).

The set BV (I) is clearly a vector subspace of L1(I). The set of all functions

f ∈ BV (I) with

ˆ
I

fdm = 0 is also a vector space in BV (I). We denote the set of

such functions by BV0(I) and restrict ourselves to BV0(I) to simplify the calculations

in most of the proofs in following chapters.

Definition 3.1.2. For each f ∈ BV (I) define var(f) by

var(f) = inf

{∨
I

(f̃) : f̃ = f for m-a.e.

}

and the BV-norm by ‖f‖BV := ‖f‖1 + var(f).

The space BV (I) equipped with BV-norm is a Banach space.

Definition 3.1.3. We say that a set of functions on I is strongly compact in L1-

norm if every sequence of functions has a convergent subsequence that converges in

L1-norm to an L1(I) function.

Proposition 3.1.4. If a set of functions of bounded variation is bounded with respect

to the BV -norm, then the set of functions is strongly compact in L1-norm.

Proof. See [BG97], Chapter 2, Proposition 2.3.4.
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3.2. UNIFORM ERGODIC THEORY

3.2 Uniform Ergodic Theory

The aim of the following section is to give the Uniform Ergodic Theorem which we

use in Chapter 5 to give the spectral properties of the random Perron-Frobenius

operator. First we fix the notation for the section and give the related definitions.

We follow the book of Krengel and Brunel, see Section 2.2 of [KB75]. More details on

spectral theory can be found in the Linear Operators, Part I by Dunford-Schwartz,

see [DS09].

Definition 3.2.1. The spectrum σ(P) of a bounded linear operator P on a Banach

space X consists of all complex numbers λ such that λI − P is not invertible. The

complement of the spectrum is the resolvent set, %(P) = C \ σ(P) and ρ(P) =

sup{|λ| : λ ∈ σ(P)} is called the spectral radius.

Note that if P is a bounded operator on a Banach space, then the inverse of

λI − P is bounded whenever it exists, by the Open Mapping Theorem.

Definition 3.2.2. An isolated point λ0 of σ(P) is called a pole of order n if S(λ,P) =

(λI − P)−1 has a Laurent expansion around λ0 given by

S(λ,P) =
∞∑

k=−n

Bk(λ− λ0)k with B−n 6= 0,

B−1 is called the residue of S(λ,P) at λ0.

Definition 3.2.3. A linear operator P is called power bounded if

sup
n
‖Pn‖ < 1,
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3.2. UNIFORM ERGODIC THEORY

and Cesaro bounded if

sup
n
‖ 1

n

n−1∑
i=0

P i‖ < 1.

where ‖ · ‖ is the operator norm.

Definition 3.2.4. A linear operator P on a Banach space X is called compact if

the image under P of the unit sphere of X is conditionally compact. P is called

quasi-compact if there exists a compact operator K and m ∈ N such that

‖Pm −K‖ < 1.

Definition 3.2.5. The operator P is called uniformly ergodic if there exists a finite

dimensional projection K such that

lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
n=0

Pn −K

∥∥∥∥∥ = 0.

Set An(P) = 1
n

∑n−1
i=0 P i. Now we can give the main theorem of the section which

is used in Chapter 5.

Theorem 3.2.6 (Uniform Ergodic Theorem). Let P be power bounded, quasi-compact

linear operator in a Banach space X. Then each power has a representation

Pn =
k∑
i=1

λni Pi +Rn, n = 1, 2, . . .

where λ1, . . . , λk are the finitely many poles of S(.,P) with |λi| = 1 and finite multi-

plicity. Pi is the projection given as the limit of An(λ−1
i P) and R is the quasi-compact

operator defined by

R = P −
k∑
i=1

λiPi
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3.3. RANDOM MAPS

satisfying

PPi = PiP = λiPi,

P2
i = Pi, PiPj = 0,

PiR = RPi = 0, for i = 1, 2, . . . , k,

‖R‖ < 1,

and

‖Rn‖ ≤ M

(1 + ε)n

where M and ε are positive constants independent from n.

Proof. See [KB75], Section 2.2, Theorem 2.8 for the proof.

3.3 Random Maps

Let (Y,B, µ) be a measure space with a probability measure µ on Y . Let {T1, . . . , TN}

be a set of measurable functions on Y and let T represent the random map chosen ran-

domly from the set {T1, . . . , TN} with respect to the probability vector (p1, . . . , pN).

We can define a deterministic system that gives the same dynamics of the random

dynamical system on Y . Let {1, . . . , N} be the symbol set and Ω be the set of all

sequences on that symbol set. We first give the definition of a Bernoulli shift on Ω.

Then we define the corresponding deterministic map F on Ω× Y .

Definition 3.3.1. Let Ω = {ω = (ω1, ω2, . . .) : ωi ∈ {1, 2, . . . , N}} be the set of

one sided sequences of symbols {1, 2, . . . , N}. Let σ : Ω → Ω be the left shift map

defined by (σ(ω))j = ωj+1. Let (p1, . . . , pN) be a probability vector on the symbol set
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3.3. RANDOM MAPS

{1, . . . , N}. Let π be the Bernoulli measure defined on Ω and A be the σ-algebra

defined by the infinite product of the σ-algebras of the finite set {1, . . . , N}. We call

the measure preserving dynamical system (Ω,A, π,σ) a Bernoulli shift.

For the set of constituent functions {T1, . . . , TN}, let Ω = {1, . . . , N}N be the set

of corresponding sequences of the symbol set. Let π be the Bernoulli measure on Ω

where (p1, . . . , pN) is the probability vector on the random maps. The corresponding

deterministic system of the random dynamical system (T, µ, Y ) is given by (F , π ×

µ,Ω× Y ) where

F (ω, x) = (σ(ω), Tω1(x))

where σ is the left shift map on Ω and ω1 is the first symbol of the sequence ω.

Definition 3.3.2. Let T be a random map on Y with the set of constituent functions

{T1, . . . , TN} and probability vector (p1, . . . , pN). We say that a probability measure

µ on Y is stationary for the random map T if for every measurable set B ⊂ Y we

have

µ(B) =
N∑
i=1

piµ(T−1
i (B)).

Note that µ is stationary for the random map T if and only if π×µ is an invariant

measure for the corresponding skew product realization F , see [Kob05] page 17 for

the proof or [Arn03], Example 1.4.7 to see when the product measure is invariant.

Definition 3.3.3. Let T be a random map on Y with constituent functions {T1, . . . , TN},

B be the Borel σ-algebra on Y . We call a measurable set J ∈ B an invariant set

under the random map T if m(J4∪Ni=1 Ti(J)) = 0.
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3.3. RANDOM MAPS

Definition 3.3.4. Let T be a random map on Y , let B be the Borel σ-algebra on

Y and let µ be a stationary measure for the random system. We call the random

system (T,B, µ) ergodic if for any invariant measurable set J ∈ B we have µ(J) = 0

or µ(J) = 1.

Again the stationary measure µ is ergodic for T in the sense of Definition 3.3.4

if and only if µ× π is ergodic for the deterministic map F , see [Kob05] page 18 for

the proof.

Definition 3.3.5. Let T be a random map on Y with constituent functions {T1, . . . , TN}

and probability vector (p1, . . . , pN). The operator PT : L1(Y )→ L1(Y ) defined by

PT =
N∑
i=1

piPTi

is called the random Perron-Frobenius operator of the random map T where PTi is

the Perron-Frobenious operator of the single map Ti given by

PTif(x) =
∑

y:Tiy=x

f(y)

|T ′i (y)|
.

Note that for functions f, g ∈ L1(Y ) and for arbitrary h ∈ L1(Y ) we have

ˆ
PT (f) ghdm =

ˆ
f

(
N∑
i=1

pigh ◦ Ti

)
dm

=

ˆ
f

(
N∑
i=1

pig ◦ Ti · h ◦ Ti

)
dm

=
N∑
i=1

pi

ˆ
(f · g ◦ Ti)h ◦ Tidm

=
N∑
i=1

pi

ˆ
PTi (f · g ◦ Ti)hdm.

23



3.4. ORNSTEIN THEORY

Since h is arbitrary we get

gPT(f) =
N∑
i=1

piPTi (f · g ◦ Ti) . (3.1)

where PTi is the Perron-Frobenius operator of the single map Ti.

3.4 Ornstein Theory

Ornstein Theory is about Bernoulli processes and their entropy. What we are inter-

ested in is a criteria for a dynamical system to be a Bernoulli process. First we give

the definition of a Bernoulli process and then give the criteria we use in Chapter 6

to show that the dynamical system we are interested in is Bernoulli. For proofs of

the results we refer the reader to Section 7 of the book by Donald S. Ornstein, see

[Orn74].

Definition 3.4.1. A dynamical system (X,B, µ, T ) is said to be Bernoulli if it is

isomorphic to a Bernoulli shift (Ω,A, π,σ), that is there exist measurable, measure

preserving functions Φ : X → Ω and Ψ : Ω→ X such that

• for µ-almost all x ∈ X, Φ(Tx) = σ(Φx) and x = Ψ(Φx),

• for π-almost all ω ∈ Ω, ω = Φ(Ψω).

Definition 3.4.2. Let α and β be two measurable partitions. We define a binary

operation d on partitions with respect to a measure µ by

d(α, β) =
∑

A∈α,B∈β

|µ(A ∩B)− µ(A)µ(B)|
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3.4. ORNSTEIN THEORY

=
∑
A∈α

∑
B∈β

|µ(A|B)− µ(A)|µ(B).

Notation 3.4.3. Let T : X → X with a measurable partition β of X. We denote

the refined partition by

βmn =
m∨
n

T i(β) = T n(β) ∨ T n+1(β) ∨ . . . ∨ Tm(β)

for n ≤ m.

Here is the criteria we use later in Chapter 6 to show that the system we work

on is Bernoulli. See [Orn74], Section 7 for the proof.

Theorem 3.4.4. Let T : X → X with partition β of X and measure µ on X. If the

partition β satisfies

sup
l,k≥1

d(βn0 , β
l+k+n
l+n ) −→ 0, as n→∞

then the dynamical system (T, µ) has the Bernoulli property in the sense of Definition

3.4.1.
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CHAPTER 4

Stationary Measures For Random Dynamical Systems

In Chapter 4 we assume that Y is a finite union of closed intervals in R. Let m be the

normalized Lebesgue measure on Y . We prove the existence of absolutely continuous

stationary measure for the random map T when each of the constituent functions

T1, T2, . . . , TN belongs to the class T1(Y ) given in Model I, Section 2.2.

4.1 Existence of Stationary Measures

The aim of this section is to prove the existence of an absolutely continuous stationary

measure of T. We use the method that is used by Rychlik to show the existence of
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4.1. EXISTENCE OF STATIONARY MEASURES

an absolutely continuous invariant measure for a single map in T1(Y ) on the unit

interval. See [Ryc83]. First we derive an inequality of the form of Equation (4.1)

below for the random Perron-Frobenius operator associated to the random map T.

The inequality is called the Lasota-York inequality for a single expanding maps. Then

we use the standard compactness arguments of the fundamental paper of Lasota and

Yorke [LY73] to show the existence of a stationary density. Here is the main result

of Chapter 4.

Proposition 4.1.1. Let T be a random map defined on Y with constituent functions

T1, T2, . . . , TN and with probability vector (p1, p2, . . . , pN). If each Tj belongs to the

class T1(Y ) then T has an absolutely continuous stationary measure µ.

First we recall the Lasota-York inequality for a single map in T1(Y ) which arises

from the paper of Rychlik [Ryc83].

Proposition 4.1.2. Let T : Y → Y be a map in T1(Y ). Let PT be the Perron-

Frobenius operator of T . Then there exist constants C,R > 0 and r ∈ (0, 1) such

that for all f ∈ BV (Y ) and for every n ≥ 1 we have

‖PnT (f)‖BV ≤ Crn‖f‖BV +R‖f‖1 (4.1)

where BV (Y ) is the space of bounded variation functions on Y and where ‖.‖BV

denotes the BV-norm as in Definition 3.1.2.

Before we prove Proposition 4.1.1 we give some notations for the random dy-

namical system. The constituent functions belong to the class T1(Y ). For each Ti
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4.1. EXISTENCE OF STATIONARY MEASURES

with i ∈ {1, 2, . . . , N}, let Ai = {ai1, ai2, . . .} with aij < ai,j+1 denote the countably

many discontinuities of the map Ti. Let βi denote the partition of Y with respect to

the map Ti consisting of the closed intervals Iij = [aij, ai,j+1]. For our purposes, a

partition will mean a countable family of closed intervals such that each two of them

can have only endpoint in common and exhausting Y up to a set of measure zero.

Let Ui =
⋃∞
j=0 int(Iij) where “int” is for interior and Si = Y \ Ui with m(Si) = 0.

The restriction of Ti to Iij, namely Tij satisfies |T ′ij| > λi > 1 for some λi.

First we show that any composition of the T1(Y )-maps is still a T1(Y )-map. For

` ∈ N the ` composition of the maps T1, T2, . . . , TN has

|(Tω` ◦ . . . Tω2 ◦ Tω1)
′| > λ` > 1

where (ω1, ω2, . . . , ω`) is an arbitrary ` sequence with ωk ∈ {1, 2, . . . , N} for every k ∈

{1, 2, . . . , `}. The derivative of the ` composition is defined in each partition element

of the composition which is obtained by refining the partition after each iterate

according to which function is applied at that iterate. Note that we have N ` many

different compositions. Let {ϕj} with 1 ≤ j ≤ N ` represent the enumeration of all

possible ` compositions of constituent maps for T`, and let {qω} be the corresponding

probabilities of occurrence. The partition for ϕω = Tω` ◦ . . . ◦ Tω2 ◦ Tω1 is precisely

given as follows:

Let Aω1 = {aω1
1 , a

ω1
2 , . . .} be the countably many discontinuity points of Tω1 ,

Aω2 = {aω2
1 , a

ω2
2 , . . .} be the discontinuity points of Tω2 , and so on. Let Sϕω = Aω1 ∪

T−1
ω1

(Aω2)∪(T−1
ω1
◦T−1

ω2
)(Aω3)∪. . .∪(T−1

ω1
◦. . .◦T−1

ω`−1
)(Aω`) and let Uϕω = Y \Sϕω . The

map ϕω is defined on Uϕω . Now we define the partition for ϕω to be the refinement
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4.1. EXISTENCE OF STATIONARY MEASURES

βω which consists of all the sets of the form B1 ∩ T−1
ω1

(B2) ∩ (T−1
ω1
◦ T−1

ω2
)(B3) ∩ . . . ∩

(T−1
ω1
◦ . . . ◦ T−1

ω`−1
)(B`) where B1 ∈ βω1 , B2 ∈ βω2 . . . B` ∈ βω` .

We choose λ > 1 to be λω1 · λω2 · . . . · λω` > 1 so the ` composition is uniformly

expanding on partition βω. To conclude that Tω` ◦ . . . ◦ Tω2 ◦ Tω1 ∈ T1(Y ) the last

information we need is given by the following lemma.

Lemma 4.1.3. For any ` composition of constituent T1(Y )-maps, namely for ϕ, the

map gϕ(x) defined by

gϕ(x) =


1/|ϕ′(x)|, if x ∈ Uϕ

0, if x ∈ Sϕ

is of bounded variation where Uϕ, Sϕ is given as above so Uϕ is of the form
⋃∞
k=0(xk, xk+1)

where {x0, x1, . . .} are the discontinuity points of ϕ and Sϕ = Y \ Uϕ.

Proof. Let ϕ = Tω` ◦ . . . ◦ Tω2 ◦ Tω1 be fixed with Tωi ∈ {T1, T2, . . . , TN} and let

β = {Ik}∞k=0 be the partition of Y where the endpoints are in Sϕ.∨
Y

gϕ =
∞∑
k=0

∨
Ik

gϕ since gϕ = 0 at the endpoins of Ik,

=
∞∑
k=0

∨
Ik

1

|(Tj` ◦ . . . ◦ Tj2 ◦ Tj1)′|

=
∞∑
k=0

∨
Ik

1

|(T ′j`(Tj`−1 ◦ . . . ◦ Tj1))(T ′j`−1(Tj`−2 ◦ . . . ◦ Tj1) . . . (T ′j1)|

The first equality follows from an elementary result on functions of bounded

variation given below, see [BG97], Chapter 2.
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(*) Given a countable partition
⋃∞
i=1 Ii of I and given f ∈ BV (I) with f(x) =

constant for all x ∈ I \
⋃∞
i=1 int(Ii) we have

∨
I

f =
∑
Ii∈I

∨
Ii

f.

By using (*) we see that it is enough to work on each partition element Ik sepa-

rately to show the inequality. At this point we assume ` = 2 to make the calculations

easier and give the rest of the proof for the case ` = 2. The general case can be ob-

tained by induction on `. Note that each map Tωl , l = 1, 2 satisfies |T ′ωl | ≥ λωl > 1,

so 0 ≤ 1

|T ′ωl(x)|
≤ 1

λωl
< 1 for any x ∈ Y . Therefore we have

∥∥∥∥ 1

|T ′jl |

∥∥∥∥
∞

= sup
x∈Y

1

|T ′jl(x)|
≤ 1

λjl
< 1. (4.2)

On each Ik the properties of functions of bounded variation yield the following

inequality, see [BG97]:

∨
Ik

1

|T ′ω2
(Tω1)||T ′ω1

|
≤

(∨
Ik

1

|T ′ω2
(Tω1)|

)∥∥∥∥ χIk|T ′ω1
|

∥∥∥∥
∞

+

∥∥∥∥ 1

|T ′ω2
(Tω1)|

∥∥∥∥
∞

(∨
Ik

1

|T ′ω1
|

)

≤

 ∨
Tω1 (Ik)

1

|T ′ω2
|

(∨
Ik

2

|T ′ω1
|

)
+

∥∥∥∥ 1

|T ′ω2
|

∥∥∥∥
∞

(∨
Ik

1

|T ′ω1
|

)

≤

(∨
Y

1

|T ′ω2
|

)(∨
Ik

2

|T ′ω1
|

)
+

(∨
Y

2

|T ′ω2
|

)(∨
Ik

1

|T ′ω1
|

)

≤ 4

(∨
Y

1

|T ′ω2
|

)(∨
Ik

1

|T ′ω1
|

)
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Note that the restriction of Tω1 to Ik is uniformly expanding, therefore it is continu-

ous, monotonic with a continuous inverse Tω1|−1
Ik

. Thus it is a homeomorphism and

has a finite variation on Ik. Then to get the first term in the second inequality above

we use the following result on functions of bounded variation, see [BG97]:

(**) If f1, f2 ∈ BV (I1) and if f1 : I1 → I2 is a homeomorphism for I2 ⊂ I1, then

we have ∨
I2

f2 =
∨
I1

f2 ◦ f1

We can continue by summing the variation over all partition elements {Ik}.

∑
Ik

∨
Ik

1

|T ′ω2
(Tω1)||T ′ω1

|
≤ 4

(∨
Y

1

|T ′ω2
|

)(∑
Ik

∨
Ik

1

|T ′ω1
|

)

= 4

(∨
Y

1

|T ′ω2
|

)(∨
Y

1

|T ′ω1
|

)
<∞

(4.3)

Note that if {Ij1k} is the partition corresponding to Tω1 where the end points of Iω1k =

[aω1k, aω1k+1] consists of the discontinuity points of Tω1 , then Iω1k = [aω1k, xk1 ] ∪

[xk1 , xk2 ]∪ . . .∪ [xkf−1
, xkf ]∪ . . . for some partition elements of {Ik} where xk1 , xk2 , . . .

are discontinuities only for Tω2 . Let [xkf−1
, xkf ] be denoted by Ikf . Therefore, we

have

∑
Ik

∨
Ik

1

|T ′ω1
|

=
∑
Ik

∨
Ik1

1

|T ′ω1
|

+
∨
Ik2

1

|T ′ω1
|

+ · · · =
∑
Iω1k

∨
Iω1k

1

|T ′ω1
|

=
∨
Y

1

|T ′ω1
|

which gives the very last equality in Equation (4.3). By induction we can write

∞∑
k=0

∨
Ik

1

|(Tω` ◦ . . . ◦ Tω2 ◦ Tω1)
′|
≤ 4`−1

(∨
Y

1

|T ′ω1
|

)(∨
Y

1

|T ′ω2
|

)
. . .

(∨
Y

1

|T ′ω` |

)
< ∞

31



4.1. EXISTENCE OF STATIONARY MEASURES

We give the last inequality we obtain in the proof of Lemma 4.1.3 as a corollary

since it is needed later.

Corollary 4.1.4.∨
Y

1

|(Tω` ◦ . . . ◦ Tω2 ◦ Tω1)
′|
≤ 4`−1

(∨
Y

1

|T ′ω1
|

)(∨
Y

1

|T ′ω2
|

)
. . .

(∨
Y

1

|T ′ω` |

)
Lemma 4.1.5. If ϕ is a fixed ` combination of the constituent maps and if β is the

partition for ϕ then for B ∈ β we have

m(B) ≤ ‖gϕ‖∞ ≤ (‖gTω1‖∞ · . . . · ‖gTω`‖∞)`

Proof. We know that the Perron-Frobenious operator for ϕ ∈ T1(Y ) is defined by

(Pϕf)(x) =
∑

y:ϕ(y)=x

gϕ(y)f(y) (4.4)

where gϕ is as in Definition 2.2.1. Pϕ preserves the Lebesgue measure m, see [Bal00],

page 73. So

m(B) = m(χB) = m(PϕχB)

= m(
∑
ϕ(y)=x

gϕ(y)χB(y))

≤ m(ϕ(B))‖gϕ‖∞

≤ ‖gϕ‖∞
The rest follows from chain rule.

Lemma 4.1.3 concludes that any ` iterates of the random map T ∈ T1(Y ), say

ϕ(`) is still a T1(Y )-map. Therefore for every δ > 0 there exists an ` such that for

every x and for every ` composition of the constituent maps,
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gϕ(`) =
1

|(Tω` ◦ . . . ◦ Tω2 ◦ Tω1)
′|
< δ

since |(Tω` ◦ . . . ◦ Tω2 ◦ Tω1)
′| > λω` · . . . ·λω2 ·λω1 →∞ as `→∞. Hence for all ε > 0

there exists an ` such that for every ` composition of the constituent maps

2‖gϕ(`)‖∞ + ε < 1. (4.5)

We give four lemmas for a single map τ ∈ T1(Y ). We omit most of their proofs

since they can be found in any paper or book where they prove the existence of

invariant measures for uniformly expanding maps. We refer the reader to [Lit08],

Rychlik Lemma 2-5.

Lemma 4.1.6. Let τ ∈ T1(Y ), τ : Y → Y with countably many partition {Ik}. Then

for the Perron-Frobenius operator Pτ we have

∑
Ik

∨
Y

Pτ (f · χIk) =
∨
Y

(f · gτ )

where gτ is defined as in Model I, Equation 2.1 for τ .

Lemma 4.1.7. Given a finite partition Q of Y and any f ∈ BV (Y ) we have for

τ ∈ T1(Y ) that ∨
Y

(f · gτ ) ≤ Aτ
∨
Y

f +Bτ

∑
K∈Q

ˆ
K

|f |dm

where

Aτ = ‖gτ‖∞ + max
K∈Q
{
∨
K

gτ},

Bτ = max
K∈Q

∨
K gτ

m(K)
.
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The following lemma is the key point to generalize the result of expanding maps

on a finitely many partition to a countably many partition, so we also include the

proof.

Lemma 4.1.8. For any ε > 0 there exists a finite partition Q for τ ∈ T1(Y ) such

that

max
K∈Q

∨
K

gτ ≤ ‖gτ‖∞ + ε.

Proof. The points of discontinuity of V (x) =
∨
[a,x]

g is same as those of g : [a, b]→ R,

see [BG97]. Since 0 ≤ g ≤ 1/λ < 1 the magnitude of the discontinuity of g never

exceeds ‖g‖∞ and decays to zero sufficiently fast, so we have

∨
Y

g ≤M <∞, for some M ∈ R.

Then for every x ∈ Y there exists an open interval Ix containing x such that

∨
Ix

g ≤ ‖g‖∞ + ε.

Since
⋃
x∈Y

Ix covers the compact set Y there exists a finite subcover
m⋃
i=1

Ixi . Therefore,

if we choose a finite partition Q which is finer than the subcover ∪mi=1Ixi we get the

result.

Lemma 4.1.9. Let g`(x) = 1
|(τ`)′(x)| where τ ` is continuous and zero on the points of

discontinuities of τ `. For ε > 0 and L ∈ N where L is the smallest integer among

` ∈ N that satisfies

2 ‖g`‖∞ + ε < 1
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there exists a finite partition QL such that

max
K∈QL

∨
Y

gL ≤ ‖gL‖∞ + ε.

If we define AL and BL to be

AL := ‖gL‖∞ + max
K∈QL

∨
Y

gL,

BL := max
K∈QL

∨
Y gL

m(K)
,

then AL < 1.

Now we return back to the random dynamical system. We fix ε > 0 and denote

by L the smallest integer ` such that Equation 4.5 holds for every L composition

of the constituent maps. Note that this is different from iterating the same map

for L times, but still possible since each Ti for i = 1, . . . , N is expanding. Then we

continue applying the previous lemmas to maps ϕ(L) which are L compositions of

the constituent maps.

Lemma 4.1.10. For L satisfying Equation 4.5 there exists a finite partition Qϕ(L)

for each possible L composition of the constituent maps ϕ(L) so that

max
J∈Q

ϕ(L)

∨
J

gϕ(L) ≤ ‖gϕ(L)‖∞ + ε.

We define

Aϕ(L) = ‖gϕ(L)‖∞ + max
K∈Q

ϕ(L)

∨
K

gϕ(L) ,

Bϕ(L) = max
K∈Q

ϕ(L)

∨
K gϕ(L)

λ(K)
,

then

Aϕ(L) < 1.
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Proof. Proof is a result of Lemma 4.1.9 where the single map τ = ϕ(L) and ` = 1.

We define

AL = max
ϕ(L)
{Aϕ(L)} and BL = max

ϕ(L)
{Bϕ(L)}

where maximum is taken over all possible L compositions of the constituent maps,

so AL < 1.

Remark 4.1.11. For the fixed ε > 0, for each i = 1, 2, . . . , L − 1 we know that we

can find a finite partition Qϕ(i) for each i composition of the constituent maps by

Lemma 4.1.8 such that

max
J∈Q

ϕ(i)

∨
J

gϕ(i) ≤ ‖gϕ(i)‖∞ + ε.

Thus we define

Aϕ(i) = ‖gϕ(i)‖∞ + max
K∈Q

ϕ(i)

∨
K

gϕ(i) ,

Bϕ(i) = max
K∈Q

ϕ(i)

∨
K gϕ(i)

λ(K)
,

and

Ai = max
ϕ(i)
{Aϕ(i)} and Bi = max

ϕ(i)
{Bϕ(i)}

for i = 1, . . . , L− 1 where maximum is taken over all possible i compositions of the

constituent maps, and then we define

C1 = max{A1, A2, . . . , AL−1} and C2 = max{B1, B2, . . . , BL−1}.

Since each ϕ(i) ∈ T1(Y ), we have C1, C2 <∞.
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Remark 4.1.12.

(PTω2PTω1f)(x) = PTω2
(
PTω1f

)
(x)

=
∑

y:Tω2y=x

(PTω1f)y

|T ′ω2
y|

=
∑

y:Tω2y=x

∑
z:Tω1z=y

f(z)

|T ′ω1
z|

|T ′ω2
y|

=
∑

y:Tω2y=x

∑
z:Tω1z=y

f(z)

|T ′ω1
z||T ′ω2

y|

=
∑

z:Tω2◦Tω1z=x

f(z)

|(Tω2 ◦ Tω1)
′z|

= (PTω2◦Tω1f)(x).

Let Uϕ(i) be the partition of the i composition of the constituent maps ϕ(i). The map

ϕ(i) is piecewise uniformly expanding on Uϕ(i). Therefore for i = 1, 2, . . . , L− 1 if ω

run over all possible i compositions of the constituent maps which are N i many and

if q
(i)
ω is the probability of having such i composition ϕ

(i)
ω then we have

PTωiPTωi−1
. . .PTω1 = PTωi◦Tωi−1◦···◦Tω1 = P

ϕ
(i)
ω

by using the above argument. Then we get

∨
Y

P iT(f) =
∨
Y

N i∑
ω

qωPϕ(i)
ω

(f)

≤
N i∑
ω

q(i)
ω

∨
Y

P
ϕ
(i)
ω

(f)

≤
N i∑
ω

q(i)
ω

∑
J∈U

ϕ(i)

∨
Y

P
ϕ
(i)
ω

(fχJ)
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=
N i∑
ω

q(i)
ω

∨
Y

(fg
ϕ
(i)
ω

) by Lemma 4.1.6,

≤
N i∑
ω

q(i)
ω (A

ϕ
(i)
ω

∨
Y

f +B
ϕ
(i)
j
‖f‖1) by Lemma 4.1.7,

≤
N i∑
ω

q(i)
ω (Ai

∨
Y

f +Bi‖f‖1) by Remark 4.1.11,

≤ (Ai
∨
Y

f +Bi‖f‖1)

since
N i∑
ω

q(i)
ω = 1.

Note that for any fixed i composition we have the same inequality as of the aver-

aged i compositions by following the same steps. For fixed ϕ(i) = Tωi . . . Tω1,∨
Y

Pϕ(i)(f) ≤
∑

J∈U
ϕ(i)

∨
Y

Pϕ(i)(fχJ)

=
∨
Y

(fgϕ(i))

≤ Aϕ(i)

∨
Y

f +Bϕ(i)‖f‖1

≤ Ai
∨
Y

f +Bi‖f‖1

where Ai, Bi as in Remark 4.1.11.

Lemma 4.1.13. For all f ∈ BV (Y ) and for all n ∈ N∨
Y

PnT(f) ≤ C1A
j
L

∨
Y

f + (C2 +

j−1∑
k=0

AkL)BL‖f‖1

where n = Lj + i with i = 1, 2, . . . , L− 1.

Proof. ∨
Y

PnT(f) =
∨
Y

Pj
TL

(PTif)
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≤ AL[
∨
Y

Pj−1
T (PTif)] +BL‖f‖1

≤ AL[AL[
∨
Y

Pj−2
T (PTif)] +BL‖f‖1] +BL‖f‖1

= A2
L

∨
Y

Pj−2
T (PTif) + (AL + 1)BL‖f‖1

. . .

≤ AjL
∨
Y

(PTif) + (

j−1∑
k=0

AkL)BL‖f‖1

≤ AjL(C1

∨
Y

f + C2‖f‖1) + (

j−1∑
k=0

AkL)BL‖f‖1

≤ AjL(C1

∨
Y

f +
C2

AjL
‖f‖1) + (

j−1∑
k=0

AkL)BL‖f‖1 since AjL < 1,

= C1A
j
L

∨
Y

f + (C2 +

j−1∑
k=0

AkL)BL‖f‖1.

Remark 4.1.14. Again note that we have the above equality for any fixed n sequence

of constituent maps, say for ω = Tωn ◦ . . . ◦ Tω1 with n = Lj + i we have∨
Y

PTωn . . .PTω1 (f) =
∨
Y

P
T

(j)
ωL

. . .P
T

(j)
ω1

P
T

(j−1)
ωL

. . .P
T

(j−1)
ω1

. . .P
T

(1)
ω1

(PTωi . . .PTω1f)

≤ AL[
∨
Y

P
T

(j−1)
ωL

. . .P
T

(j−1)
ω1

. . .P
T

(1)
ω1

(PTωi . . .PTω1f)]

+BL‖f‖1

≤ AL[AL[
∨
Y

P
T

(j−2)
ωL

. . .P
T

(j−2)
ω1

. . .P
T

(1)
ω1

(PTωi . . .PTω1f)]

+BL‖f‖1] +BL‖f‖1

= A2
L

∨
Y

P
T

(j−2)
ωL

. . .P
T

(j−2)
ω1

. . .P
T

(1)
ω1

(PTωi . . .PTω1f)
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4.1. EXISTENCE OF STATIONARY MEASURES

+ (AL + 1)BL‖f‖1

. . .

≤ AjL
∨
Y

(PTωi . . .PTω1f) + (

j−1∑
k=0

AkL)BL‖f‖1

≤ AjL(C1

∨
Y

f + C2‖f‖1) + (

j−1∑
k=0

AkL)BL‖f‖1

≤ AjL(C1

∨
Y

f +
C2

AjL
‖f‖1) + (

j−1∑
k=0

AkL)BL‖f‖1 by AjL < 1,

= C1A
j
N

∨
Y

f + (C2 +

j−1∑
k=0

AkL)BN‖f‖1.

The Lemma 4.1.15 below is the version for random dynamical system of the

Lasota-York inequality for a single map given in Proposition 4.1.2. After proving

Lemma 4.1.15 we proceed precisely as in the proof of Lasota-York inequality for a

single map, see [LY73].

Lemma 4.1.15. There exists constants C,R > 0 and r ∈ (0, 1) such that for all

f ∈ BV (Y )

‖PnT(f)‖BV ≤ Crn‖f‖BV +R‖f‖1. (4.6)

Proof.

‖PnT(f)‖BV = ‖PnT(f)‖1 + varY (PnT(f))

= ‖PnT(f)‖1 + inf
f̂

∨
Y

(PnT(f̂))

Since PTi(f) is a contraction for each map Ti, we have

‖PT(f)‖1 ≤
N∑
i=1

pi‖PTi(f)‖1 ≤
N∑
i=1

pi‖f‖1 = ‖f‖1,
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which implies by induction that

‖PnT(f)‖1 ≤ ‖f‖1.

Together with Lemma 4.1.13, we have for n = Lj + i that

‖PnT(f)‖BV ≤ ‖f‖1 + inf
f̂

(C1A
j
L

∨
Y

f̂ + (C2 +

j−1∑
k=0

AkL)BL‖f̂‖1)

= ‖f‖1 + C1A
j
L inf

f̂

∨
Y

f̂ + (C2 +

j−1∑
k=0

AkL)BL‖f‖1

≤ ‖f‖1 + C1A
j
L‖f‖BV + (C2 +

j−1∑
k=0

AkL)BL‖f‖1

We choose R = 1 + (C2 +
∑j−1

k=0A
k
L)BL and to have C1A

j
L = Crn we choose r = A

1/L
L

so we can choose C = C1r
−L+1 which implies

‖PnT(f)‖BV ≤ Crn‖f‖BV +R‖f‖1.

Remark 4.1.16. Note that we have the inequality in Equation (4.6) also for any

fixed n-sequence of maps again by Remark 4.1.14, so say for ω = Tn . . . T1 we have

‖PTn . . .PT1(f)‖BV ≤ Crn‖f‖BV +R‖f‖1 (4.7)

since the coefficients are chosen to be the maximum of all coefficients that works for

all L possible compositions of constituent maps.

The above inequality in Equation 4.7 is not needed for this chapter but is used

in Chapter 6 to prove a result for a fixed sequence of maps.
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Proof of Proposition 4.1.1. For the given random dynamical system, let 1 = χY be

the characteristic function on Y . We have 1 ∈ BV (Y ). Then by Lemma 4.1.15 we

have

‖PnT(1)‖BV ≤ Crn‖1‖BV +R‖1‖1 = Crn +R ≤ C +R.

Therefore the sequence {PnT(1)}∞n=0 is bounded by a constant in BV (Y ) so the time

averages, namely {
1

n

n−1∑
j=0

PjT(1)

}∞
n=1

.

Then by Proposition 3.1.4 we conclude that the set of time averages is strongly

compact in L1-norm as in Definition 3.1.3. Therefore there exists a subsequence of

the set of time averages, say {fnk}∞k=0 for

fn =
1

n

n−1∑
j=0

PjT(1),

and an L1 function h so that

‖fnk − h‖1 → 0. (4.8)

as k →∞.

Now we show that the measure µ defined by µ(A) =

ˆ
A

hdm is a stationary

measure for the random dynamical system so satisfies PT(h) = h.

‖PT(h)− h‖1 ≤ ‖PT(h)− PT(fnk)‖1 + ‖PT(fnk)− fnk‖1 + ‖fnk − h‖1

where the first and the third term on the right hand side are converging to zero by

Equation 4.8 since PT is a contraction. For the second term we have

‖PT(fnk)− fnk‖1 =

∥∥∥∥∥PT

(
1

nk

nk−1∑
j=0

PjT(1)

)
− 1

nk

nk−1∑
j=0

PjT(1)

∥∥∥∥∥
1
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=

∥∥∥∥∥ 1

nk

nk∑
j=1

PjT(1)− 1

nk

nk−1∑
j=0

PjT(1)

∥∥∥∥∥
1

≤ 1

nk
‖PnkT (1)− 1‖1

≤ 1

nk
‖PnkT (1)‖1 + ‖1‖1

≤ 2

nk

since PT is a contraction. Therefore second term also converges to zero as k → ∞

which concludes the result.

4.2 Expanding the Stationary Measure to a 2D

Random Dynamical System

In this section we introduce a random dynamical system where the constituent maps

are defined on a torus. This section is not aiming to generalize the 1D results to the

maps on a torus but needed to prove some limit theorems for 1D random dynamical

system and the results apply only to some special type of maps on a torus. First we

introduce these special maps.

Definition 4.2.1. Let T be a piecewise expanding map on I = [0, 1]. We define the

corresponding torus map of T to be AT : T→ T given by

AT (x, y) =

 T 0

0 T


 x

y

 = (T (x), T (y))
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The random dynamical system on a torus is defined in a similar way. Let {AT1 , . . . , ATN}

be the constituent maps of the system on a torus where each ATi is the correspond-

ing torus map of a piecewise expanding map Ti on [0, 1], and let (p1, . . . , pN) be the

probability distribution on maps ATi . Let Ai denote the map ATi to simplify the

notation.

The Perron-Frobenius operator of each map Ai is defined in the usual way.

PAif(x) =
∑

(y):Ai(y)=(x)

f(y)

|JAi|(y)

for f : T→ R. Here |JAi| is the Jacobian of Ai and given by

|JAi| =

∣∣∣∣∣∣∣
 ∂Ti

∂x1

0

0
∂Ti
∂x2


∣∣∣∣∣∣∣

so |JAi|(y) = |T ′i (y1)||T ′i (y2)|. Note that if Ai(y1, y2) = (x1, x2) then we simply have

Ti(y1) = x1 and Ti(y2) = (x2). Thus, the Perron-Frobenius operator of Ai is given

by

PAif(x1, x2) =
∑

y1,y2:Ti(yj)=(xj)

f(y1, y2)

|T ′i (y1)||T ′i (y2)|

Similarly, the random Perron-Frobenius operator is given by

PA =
N∑
i=1

piPAi .

For any fixed sequence of constituent maps on a torus, say Aω1Aω2Aω3 . . . there is

a unique sequence of constituent maps on I, namely Tω1Tω2Tω3 . . . so we keep using

the same sequences with a symbol space {1, . . . , N} so ωT = ω and denote the

corresponding skew product system as follows

F n
T (ωT, (x, y)) = (σn(ω), (Tωn ◦ . . . Tω1(x), Tωn ◦ . . . Tω1(y))), for (x, y) ∈ T,
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where σ is the shift map defined on sequences ω ∈ Ω.

To prove that such systems also have absolutely continuous stationary measures

and satisfies the limit theorems one can follow the methods of the paper by P. Gora

and A. Boyarski, see [GB89]. All the arguments can be generalized to random dy-

namical systems on a torus given by the special maps by applying the same methods

we use for maps on I like taking maximum or minimum of the coefficients over all

possible combinations of the maps. The idea for higher dimensional maps is refining

the partitions according to the finitely many constituent maps so the proofs work as

in the deterministic system.

In our case we define the partition α0 for a map Ai on a torus to be {B × B :

B ∈ β} where β is the partition for the corresponding map Ti on I. The restriction

of each Ai to a partition element is C2, one to one and expanding that is

|JAi|(y) = |T ′i (y1)||T ′i (y2)| > λA > 1 since |T ′i | > λ > 1.

Now by defining the partition α notice that we have squares and rectangles inside the

torus where each corner is a singular point. The condition given by Gora and Boyarski

in [GB89] for the existence of invariant measure is a lower bound on the expansion

rate that depends on the nature of the partition, specifically on the minimal angle

on the boundaries of the regions in the partition. Particularly if x ∈ T is a singular

point of one of the partition element say a ∈ α then let θ(x) be the angle of the corner

of the possible biggest cone that can be drawn in the partition with the corner x

and define γ(a) = | cos(θ(x0) + π/2)| where x0 is a singular point in a that gives the

minimum angle θ(x). In our case if we use the partition α then for every x we have
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θ(x) = π/4, see example in page 282 in [GB89]. Furthermore for a fixed partition

a ∈ α, θ(x) is the same angle for every singular point x ∈ a. Then we define γ to be

γ = inf
a∈α
{| cos(θ(x) + π/2)| : x is a singular point in a} =

1√
2

We use the following result to prove the quenched Central Limit Theorem for random

dynamical systems given by maps in T0 in Chapter 7.

Claim 4.2.2. Let each Ai : T → T be a piecewise C2 expanding maps with a maxi-

mum expanding rate λ. If λ−1(1+
√

2) < 1 then the random dynamical system admits

an absolutely continuous stationary measure.

One can also choose to follow the methods of the paper by Keller, G. and Liv-

erani, C., see [KL05] to prove that such systems have absolutely continuous stationary

measures and satisfy the limit theorems. In their paper they give the Lasota-York

inequality for a single map that is exactly in the form of our maps on a torus de-

fined above with only constraint that they have finite partition. They use bounded

variation arguments as we do for a 1D case, so one can generalize their arguments

to random dynamical systems. Again we give the quenched Central Limit Theorem

for random dynamical systems given by maps in T0, so the following assumption is

enough.

Claim 4.2.3. Let each Ai : T → T be the corresponding torus map of a map Ti in

T1(I) with finite partition. Then the random dynamical system on torus admits an

absolutely continuous stationary measure.

In the following chapters we study the spectral properties of the random Perron-

Frobenius operator and give the statistical results only for one dimensional random
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dynamical systems. However the random dynamical system on a torus given by the

special maps Ai corresponding to Ti ∈ T0 satisfies the same spectral properties and

therefore the limit theorems. In the derivation of quenched Central Limit Theorem

we use these results without proof. The proof should follow from the approach of

[KL05] or [GB89], for spectral properties of certain maps in higher dimension.
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CHAPTER 5

Spectral Properties of the Random Perron-Frobenius Operator

In Chapter 5 we give the spectral properties of PT. For maps in T0, E. Kobre and

L. S. Young gives the spectral properties in [Kob05]. Their method relies on the

theorem of Ionescu-Tulcea-Marinescu, see [ITM50]. We apply the uniform ergodic

theory and follow the steps of Rychlik in [Ryc83] to reproduce the same results.

5.1 Spectral Properties of PT

We first show that the random Perron-Frobenius operator is quasi-compact as in

Definition 3.2.4.

48



5.1. SPECTRAL PROPERTIES OF PT

Proposition 5.1.1. There exists L ≥ 1 and a finite dimensional operator K on

BV (Y ) such that ‖PLT −K‖BV < 1.

Proof. Choose L and a partition Qϕ(L) for each possible L composition of constituent

maps ϕ(L) such that Lemma 4.1.7 holds with each Aϕ(L) < 1/4. Let Q be the

refined partition of partitions Qϕ(L) for each map ϕ(L) and A = max{Aϕ(L)}. Let

E(f) = E[f |Q] where E[f |Q] is the conditional expectation of f with respect to Q

and K = PLT E . We prove that the choice for K is good.

Let f ∈ BV (Y ) be fixed and take f1 = f − E[f |Q] = (I − E)(f). To prove that

‖PLT −K‖ < 1 it is enough to show that ‖PLT (f1)‖BV < 2A‖f‖BV since

‖PLT (f1)‖BV = ‖PLT (I − E)(f)‖BV

= ‖PLT (f)− (PLT E)(f)‖BV

= ‖PLT (f)−K(f)‖BV

≤ 2A‖f‖BV for an arbitrary f,

implies ‖PLT −K‖ ≤ 2A with A < 1/4 where the last norm is the operator norm.

For every K ∈ Q,
´
K
f1dm = 0 by definition of conditional expectation, so∨

Y

PLT (f1) ≤ A
∨
Y

f1 +BL‖f1‖1 by Remark 4.1.12

≤ A
∨
Y

f1

= A
∨
Y

(f − E[f |Q])

≤ A
∨
Y

f + A
∨
Y

E[f |Q]

≤ 2A
∨
Y

f ≤ 2A‖f‖BV .
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since for any finite partition Q, we have
∨
Y E[f |Q] ≤

∨
Y f .

We also have ‖PLT f1‖1 ≤ ‖f1‖1 by the contractive property of PT. Furthermore,

by Lemma 4.1.5, we get

m(B) ≤ ‖gϕ(L)‖∞ ≤ Aϕ(L) ≤ A (5.1)

since A = max{Aϕ(L)} and since for each ϕ(L) the constant Aϕ(L) is chosen to be

Aϕ(L) = ‖gϕ(L)‖∞ + max
K∈Q

ϕ(L)

∨
K

gϕ(L) .

Also

‖f1χB‖∞ = ‖(f − E[f |Q])χB‖∞

≤ ‖fχB‖∞ + ‖E[f |Q]χB‖∞

≤ 2‖fχB‖∞ ≤ 2‖fχB‖BV

(5.2)

Then Equation 5.1 and Equation 5.2 together imply that

‖f1‖1 =
∑
B

ˆ
B

|f1|dm where B ∈ βϕ(L)

≤
∑
B

ˆ
B

‖f1χB‖∞dm

=
∑
B

‖f1χB‖∞m(B)

≤
∑
B

2‖fχB‖BVA = 2A‖f‖BV .

Thus, ‖PLT f1‖BV = ‖PLT f1‖1 +
∨
Y PLT f1 ≤ 4A‖f‖BV < ‖f‖BV since A < 1/4.

Theorem 5.1.2. The operator PT on bounded variations has the following properties:

(i) σ(PT) ∩ S1 consists of a finite number of simple poles of the resolvent of PT.

Moreover, σ(PT) ∩ S1 is a union of full cyclic groups.
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(ii) Other points of σ(PT) are contained within a circle of radius ρ ∈ (0, 1).

(iii) If σ(PT) ∩ S1 = {ζ1, ζ2, . . . , ζk}, we denote the projection to the corresponding

eigenspace for j = 1, 2, . . . , k by QjT; then PT admits the representation

PT =
k∑
j=1

ζjQjT +RT,

where RT : BV → BV and spectral radius of RT is ρ(RT) = infn ‖RT‖1/n < ρ.

Operators QjT and RT commute, and QiTQiT = QiT, QjTQiT = 0 and QjTRT = 0

for i 6= j, i, j = 1, 2, . . . , k.

The facts given above are all implied by Proposition 5.1.1 and a lemma we give

below which shows that PT is power bounded. Then the rest is a consequence of

theory of operators. However we still show the steps to prove the fact since they are

used to prove one of the main results of the models.

Lemma 5.1.3. There exists F > 0 such that the operator PT satisfies

sup
n
‖PnT‖ ≤ 2F + 1,

therefore PT is power bounded.

Proof. We show that for every n ≥ 1 and f ∈ BV we have

∑
B∈βn

‖Pn(f · χB)‖BV ≤ (2F + 1)‖f‖BV

which implies the result. So we can consider each term Pn(f · χB) separately. Now

for such B1 ∈ βn that satisfies

‖Pn(f · χB1)‖1 <
∨
Pn(f · χB)
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we have ∑
B1∈βn ‖P

n(f · χB1)‖BV ≤
∑

B1∈βn 2
∨
Pn(f · χB)

≤ 2F (
∨
f + ‖f‖1) = 2F‖f‖BV

where F is greater than the coefficients of variation and L1-norm in Lemma 4.1.13,

the Lasota-York type inequality for the variation that we show before giving the

inequality for BV-norm. The other type of sets are B2 ∈ βn so that

∨
Pn(f · χB2) < ‖Pn(f · χB2)‖1 ≤ ‖f · χB2‖1

so simply all terms can give at most

‖f‖1 ≤ ‖f‖BV .

Therefore we get∑
B∈βn

‖Pn(f · χB)‖BV =
∑
B1∈βn

‖Pn(f · χB1)‖BV +
∑
B2∈βn

‖Pn(f · χB2)‖BV

≤ 2F‖f‖BV + ‖f‖BV

= (2F + 1)‖f‖BV .

The proof of Theorem 5.1.2 is mainly the result of the Uniform Ergodic Theorem

proved by Yosida-Kakutani, see [YK41] for power bounded quasi-compact operators

P . The proof depends on spectral theory. We give the Uniform Ergodic Theorem in

Chapter 3 and here we use the theorem to give the proof of the Theorem 5.1.2.

Proof of Theorem 5.1.2 . By using the Uniform Ergodic Theorem, we get all the

facts of Theorem 5.1.2 except that σ(PT) ∩ S1 is a union of full cyclic groups.
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To show that an eigenvalue ζ ∈ σ(PT) ∩ S1 generates a cyclic group we have to

show that there exists n0 ∈ N such that ζn0 = ζ. Assume the contrary and asuume

ζ 6= 1. Note that if ζ ∈ σ(PT) then there exists h ∈ BV (Y ) such that PT(h) = ζh

where h is the eigenfunction of Q, the projection operator to the eigenspace of zeta

so QjT(h) = RT(h) = 0 where QjT and RT as in Theorem 5.1.2 for any ζj 6= ζ. We

also have PnT(h) = ζnh which implies lim
n→∞

PnT(h) = lim
n→∞

ζnh, so limn→∞Qn(h) =

Q(h) = ζh since Q is idempotent. It is not possible on S1 for a point ζ to have the

property limn→∞ ζ
n = ζ which gives the contradiction. Then ζn0 = ζ implies that

ζn0−1 = 1.

Theorem 5.1.4. Operators QjT and RT have unique expansions as operators to L1

and QjT is bounded as an operator from L1 to BV , ‖QjT‖1 ≤ 1 and supn ‖RT‖1 <∞.

For every f ∈ L1, limn→∞RT(f) = 0.

Proof. The proof depends on noticing that for ζ ∈ S1,

lim
n→∞

1

n

n−1∑
i=0

(PT/ζ)i =


0, if ζ 6∈ {ζ1, . . . , ζk}

QjT, if ζ = ζj.

Also note that BV is dense in L1 and QjT can be defined in L1 since ‖PT/ζ‖1 = 1.

5.2 PT with only Eigenvalue 1

In this section we analyze the situation when σ(PT) ∩ S1 consists of only 1. This

situation is enough to consider for such random dynamical systems because the

random Perron-Frobenius operator has only finitely many eigenvalues on S1 and
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each is a root of unity. Then if M ∈ N is a common multiple of orders of eigenvalues

then the operator PMT has the only eigenvalue 1. From Theorem 5.1.2, we have

PT = QT +RT.

Notation 5.2.1.

An(P) :=
1

n

n−1∑
i=1

Pn.

Theorem 5.2.2. There exists nonnegative functions ϕ1, . . . , ϕs ∈ BV and ψ1, . . . , ψs ∈

L∞ such that

(i) For every f ∈ L1,

QT(f) =
s∑
i=1

(ˆ
(ψi.f)dm

)
ϕi.

(ii) Pϕi = ϕi,
N∑
j=1

pj(ψi ◦ Tj) = ψi for i = 1, . . . , s.

(iii)

ˆ
ϕidm = 1,

ˆ
ϕiψjdm = δij, min{ϕi, ϕj} = min{ψi, ψj} = 0 for i = 1, . . . , s.

(iv) There exists measurable sets C1, . . . , Cs ⊂ Y such that ψi = χi a.e. for i =

1, . . . , s and Y =
s⋃
i=1

Ci a.e.

(v) Let UT denote P∗T, so
∞⋂
n=1

UnT (L1) =
∞⋂
n=1

UnT (L∞) = span{ψ1, . . . , ψs}.

(vi) For every f ∈ L1 (or L∞), UnTf → Q∗T(f) in σ(L1, BV ) topology (or σ(L∞, BV )

topology) as n→∞ and

Q∗T(f) =
s∑
i=1

(ˆ
fϕidm

)
ψi.
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Proof. Operator QT is a positive operator since it is given as the limit of An(ζ−1P)

for ζ = 1, see Theorem 5.1.4. Let Z = ker(I − PT) be the projection of PT onto

the eigenspace corresponding to the eigenvalue 1. Then for f, g ∈ Z we have

QT(min{f, g}) ≤ min{QTf,QTg} = min{f, g}. On the other hand, P preserves

the Lebesgue measure m as given in Equation 4.4, so the limit of the average An(P)

which is QT. Then we have

ˆ
QT(min{f, g})dm =

ˆ
min{f, g}dm

Therefore

0 ≤ min{f, g} − QT(min{f, g})

and ˆ
min{f, g} − QT(min{f, g})dm = 0

implies that

min{f, g} − QT(min{f, g}) = 0

m-a.e., so min{f, g} = QT(min{f, g}) m-a.e.

Let

∆ = {ϕ ∈ Z :

ˆ
ϕdm = 1 and ϕ ≥ 0}

which is a convex and a compact set. Such a set has extreme points so let ϕ1, ϕ2

be two different extreme points of ∆. We have min{ϕ1, ϕ2} = 0 so they are linearly

independent and there are finitely many extreme points of ∆, say {ϕ1, . . . , ϕs} with

s ≤ dimZ. By Krein-Milman theorem we know that ∆ is the closed convex hull of

its extreme points so dim(∆) = s. Furthermore, ∆ spans Z so we have dimZ = s.
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Now, we have the basis for Z, namely {ϕ1, . . . , ϕs}. Therefore, for every f ∈ Z

we have

f = c1ϕ1 + . . .+ csϕs

for some combinations ci. If {ϕ∗1, . . . , ϕ∗s} is the dual basis defined by ϕ∗i (ϕj) = 1 for

i = j, and ϕ∗i (ϕj) = 0 otherwise, then we have

f = c1ϕ
∗
1(ϕ1)ϕ1 + . . .+ csϕ

∗
s(ϕs)ϕs

= ϕ∗1(c1ϕ1)ϕ1 + . . .+ ϕ∗s(csϕs)ϕs

= ϕ∗1(c1ϕ1 + . . .+ csϕs)ϕ1 + . . .+ ϕ∗s(c1ϕ1 + . . .+ csϕs)ϕs

since ϕ∗i (ϕj) = 0 for i 6= j

= ϕ∗1(f)ϕ1 + . . .+ ϕ∗s(f)ϕs.

If we write QT(f) as a linear combination of the basis by using the dual basis as

above we get

QT(f) = ϕ∗1(QT(f))ϕ1 + . . .+ ϕ∗s(QT(f))ϕs

= (Q∗Tϕ∗1)(f)ϕ1 + . . .+ (Q∗Tϕ∗s)(f)ϕs by the definition of Q∗T

= µ1(f)ϕ1 + . . .+ µs(f)ϕs by defining Q∗Tϕ∗i = µi

where µi is a functional in L1. So we can find ψi ∈ L∞ for each i so that

µi(f) =

ˆ
fdµi =

ˆ
fψidm.

Therefore, we get

QT(f) =

(ˆ
fψ1dm

)
ϕ1 + . . .+

(ˆ
fψsdm

)
ϕs

which proves the first part of the theorem.
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Now, for the second part it is clear that for ϕi ∈ Z we have PTϕi = ϕi since Z is

the eigenspace corresponding to the eigenvalue 1. Also we observe that P∗T = UT is

given by

UT(f) =
N∑
j=1

pjf ◦ Tj

where T1, . . . , TN are the constituent functions for the random dynamical system

since

PTf(x) =
∑N

j=1 pjPTjf(x)

=
∑N

j=1 pj
∑

y∈T−1
j (x) gTj(y)f(y)

implies for any f1, f2 ∈ L1 that

< f1,PTf2 > =
∑N

j=1 pj < f1,PTjf2 >

=
∑N

j=1 pj < P∗Tjf1, f2 >

=
∑N

j=1 pj < f1 ◦ Tj, f2 >

= < UT(f1), f2 > .

We have QT(f) = QTPTf since f ∈ Z where

QT(PTf) =
s∑
i=1

(ˆ
PT(f)ψidm

)
ϕi

by the first part of the proof. If we set it equal to QT(f) =
∑s

i=1

(´
fψidm

)
ϕi

together with P∗T = UT, we get

ˆ
f(UTψi)dm =

ˆ
(PTf)ψidm =

ˆ
fψidm

for every f ∈ L1, so UTψi = ψi for i = 1, . . . , s which proves second part of the

theorem.

For the third part we already know that min{ϕi, ϕj} = 0 because of the way they

are defined. We leave the proof of min{ψi, ψj} = 0 after proving part (vi). To show,

57



5.2. PT WITH ONLY EIGENVALUE 1

´
ϕiψjdm = δij we use the fact that the projection operator QT is idempotent, in

other words Q2
T = QT. Then QT(f) =

s∑
i=1

(ˆ
fψidm

)
ϕi implies

Q2
T(f) = QT

(
s∑
i=1

(ˆ
fψidm

)
ϕi

)

=
s∑
i=1

(ˆ s∑
j=1

(ˆ
fψjdm

)
ϕiψj

)
ϕi

=
s∑

i,j=1

(ˆ
fψjdm

)(ˆ
ϕiψjdm

)
ϕi.

And by setting equal to QT(f) =
∑s

i=1(
´
fψidm)ϕi we get

´
ϕiψjdm = δij.

We can also prove (vi) easily by using QT(f) =
∑s

i=1(
´
fψidm)ϕi. For every

g ∈ L1, we have

ˆ
(Q∗Tf)gdm =

ˆ
f (QTg) dm

=

ˆ
f

s∑
i=1

(ˆ
gψidm

)
ϕidm

=
s∑
i=1

(ˆ
fϕidm

)(ˆ
gψidm

)
=

ˆ ( s∑
i=1

(ˆ
fϕidm

)
ψi

)
gdm

which implies Q∗Tf =
s∑
i=1

(ˆ
fϕidm

)
ψi. Furthermore, for every g ∈ L1

ˆ
(UnTf) gdm =

ˆ
f (PnTg) dm −→

ˆ
f (QTg) dm =

ˆ
(Q∗Tf)gdm

which implies UnTf −→ Q∗Tf .

Now we can prove the part we left in (iii) which is min{ψi, ψj} = 0: We have
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UnTf → Q∗Tf =
s∑
i=1

(ˆ
fϕidm

)
ψi by part (iv). Choose f to be ϕj, so we get

UnTϕj −→ Q∗Tϕj =
s∑
i=1

(ˆ
ϕjϕidm

)
ψi =

(ˆ
ϕ2
jdm

)
ψj

since ϕjϕi = 0 for i 6= j. Then

min{ψi,UnTϕj} = min{ψ,
Nn∑
ω

qkϕj ◦ Tωn ◦ . . . ◦ Tω1} where Tωn ◦ . . . ◦ Tω1

is one of the Nn many n-combinations of the

constituent maps with probability qk,

=
N∑
ω

pk min{ψi, ϕj} ◦ Tωn ◦ . . . ◦ Tω1

= 0 since

ˆ
ψiϕjdm = 0 for i 6= j.

And

ˆ
(UnTϕj)ψidm →

ˆ (ˆ
ϕ2
jdmψj

)
ψidm =

(ˆ
ϕ2
jdm

)(ˆ
ψiψjdm

)
implies

´
ψiψjdm = 0 since

´
ϕ2
jdm > 0. Thus, min{ψi, ψj} = 0 for i 6= j so part (iii) is

completed.

To prove part (iv) we use part (vi), that is UnTf → Q∗Tf by choosing f to be 1,

so UnT1 = 1 → Q∗T1, so Q∗T1 = 1. And Q∗Tf =
s∑
i=1

(

ˆ
fϕidm)ψi with f = 1 implies

that 1 = Q∗T1 =
∑s

i=1(
´
ϕidm)ψi =

∑s
i=1 ψi. Thus each ψi is of the form χCi with⋃s

i=1Ci = Y .

Now only part (v) is left. It is clear that span{ψ1, . . . , ψs} ⊂
⋂∞
i=1 UnT (L1) since

each ψj ∈ L1 and UT(ψj) = ψj. To show span{ψ1, . . . , ψs} =
⋂∞
i=1 UnT (L1) let f ∈⋂∞

i=1 UnT (L1). Since f ∈ UnT (L1) for every n ∈ N, choose fn ∈ L1 for every n ∈ N such

that f = UnT (fn). Note that ‖f‖∞ = ‖UnT (fn)‖∞ ≥ ‖fn‖∞. The sequence {Q∗Tfn}∞n=1
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is bounded in span{ψ1, . . . , ψs}, so there exists a subsequence {Q∗Tfnk}∞k=1 such that

Q∗Tfn → f0 where f0 ∈ span{ψ1, . . . , ψs} as k → ∞. If we show that f0 = f we are

done.

Let g ∈ L1 be arbitrary. For any k ∈ N we have

ˆ
(gf)dm =

ˆ
g(UnkT fnk)dm

=

ˆ
(PnkT g)fnkdm

=

ˆ
((PnkT −QT)g)fnkdm +

ˆ
(QTg)fnkdm

=

ˆ
((PnkT −QT)g)fnkdm +

ˆ
g(Q∗Tfnk)dm

→ 0 +

ˆ
gf0dm as k →∞.

Since g ∈ L1 is arbitrary we have f = f0 m-a.e.
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CHAPTER 6

Mixing Properties of the Random Dynamical System

In Chapter 6, we show that random dynamical system (T, µ) has a Bernoulli scheme.

We give the definition of what it means for a random dynamical system to be

Bernoulli. Before that we give the theorem below which makes it clear that why

analyzing an operator with only eigenvalue 1 is enough.

Definition 6.0.3 (weak-mixing). We say that the random dynamical system (T, µ)

is weak-mixing if the random Perron-Frobenius operator PT has only the eigenvalue

1 on the unit circle, and it has multiplicity one (that is, dim ker(PT − I) = 1).
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In the rest of the thesis we assume that the dimension of the eigenspace corre-

sponding to 1 is one; that is, the corresponding skew product realization of the random

dynamical system is weak-mixing.

Theorem 6.0.4. Let PT be the random Perron-Frobenius operator of the random

dynamical system with functions from T1(Y ) as given before. Fix an integer M such

that σ(PMT )∩S1 = {1}. Let ϕ1, . . . , ϕs and ψ1 = χC1 , . . . , ψs = χCs be as in Theorem

5.2.2 applied to PMT . Then there exists a permutation π of the set {1, 2, . . . , s} such

that

PT(ϕi) = ϕπ(i),

UT(ψπ(i)) = ψi for i = 1, 2, . . . , s.

6.1 Bernoulli Property

First we define the Bernoulli property for the random dynamical system ({T}, µ)

where 1 is the only eigenvalue of PT on the unit circle and there exists only one

h ∈ L1 such that PT(h) = h with
´
ϕdm = 1. We prove that the skew product

realization of the random dynamical system (T, µ) where µ = hm has the Bernoulli

property, so it is mixing, implying that the random dynamical system is ergodic. We

use results of Ornstein Theory for deterministic maps.

Definition 6.1.1. Let T be a random map defined on Y with constituent maps

Ti : Y → Y , i = 1, . . . , N and probability distribution (p1, . . . , pN) on the maps, let µ

be a stationary measure for the random dynamical system. Let F be the associated

skew product map. If (F , π×µ) has the Bernoulli property in the sense of Definition

3.4.1 then we say that the random dynamical system (T, µ) has the Bernoulli property.
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Let us review the notation for the T1(Y ) types of maps first. The map Ti ∈

T1(Y ) is piecewise with countably many partition say βi. For finitely many functions

{T1, . . . , TN} we refine the partitions β1, . . . , βN to get a common partition β on

which all the maps are piecewise expanding. Furthermore,
∨n
i=0 T

−i(β) represents

the refinement β∨T−1
ω1

(β)∨ (T−1
ω2
◦T−1

ω1
)(β)∨ . . .∨ (T−1

ωi
◦ . . .◦T−1

ω2
◦T−1

ω1
)(β) for every

i combination Tωi ◦ . . . ◦ Tω1 of constituent maps for i = 1, . . . , n.

Let T be a random map on Y with constituent functions {T1, . . . , TN} ⊂ T1(Y )

and β be the common countably many partition so that each Ti is piecewise expand-

ing. Let Fnm denote the σ-algebra generated by the partition βnm =
∨n
i=m T−i.

We give the criteria below for the random dynamical system (T, µ) to has the

Bernoulli property by using the criteria for a single map to have Bernoulli property,

see Definition 3.4.2 for the distance operation d used in the following Proposition.

Proposition 6.1.2. If the partition β for the random dynamical system (T, µ) sat-

isfies

sup
l,k≥1

d(βl0, β
l+k+n
l+n )→ 0 as n→∞

then the random dynamical system (T, µ) has the Bernoulli property in the sense of

Definition 6.1.1.

Proof. The proof is a result of Ornstein Theory, see 3.4, applied to the corresponding

skew product system.

Let F : Ω × Y → Ω × Y be the corresponding skew product realization of the

random dynamical system (T, µ) where Ω is the set of sequences with the the symbol
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space {, . . . , N} on each entry and F is defined by

F (ω, x) = (σ(ω), Tω1(x))

where σ is the left shift function. Let π be the product measure on Ω obtained

by the distribution (p1, . . . , pN) on constituent maps. Define the 1-cylinders Ci for

i = 1, . . . , N to be

Ci = {ω = (w1w2 . . .) ∈ Ω : Tω1 = Ti}.

Define a partition γ on Ω × Y such that for any G ∈ γ, G = Ci × B for some

i ∈ {1, . . . , N} and B ∈ β. Note that F−1(G) = F−1(Ci × B) = {(ω1ω2 . . . , x) ∈

Ω × Y : ω2 = Ti, x ∈ ω−1
1 (B)}, so for any other H ∈ γ, say H = Cj × D we have

H ∩F−1(G) = {(ω1ω2 . . . , x) ∈ Σ × Y : ω1 = Tj, ω2 = Ti, and x ∈ D ∩ T−1
j (B)} =

Cji ×E where Cji is a 2-cylinder and E ∈ β1
0 . If we apply the same argument to all

sets of the partition γ and all nth inverse images we see that the refined partition γn0

consists of elements in the form of C(i1...in+1)×B where C(i1...in+1) is an (n+1)-cylinder

and B ∈ βn0 .

Now it is enough to show that the deterministic system (F , π × µ) has the

Bernoulli property which is implied by

sup
l,k≥1

d(γl0, γ
l+k+n
l+n )→ 0 as n→∞ (6.1)

by Ornstein Theory , Corollary 3.4.4. Then we only need to show that the assumption

of the Proposition 6.1.2 implies the Equation 6.1. Let G ∈ γl0 and H ∈ γl+k+n
l+n for

some fixed n,m and k ∈ N. From the above argument we know that G = C(i1...in)×B
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where C(i1...in) is an n-cylinder for some fixed n sequence of maps (Ti1 . . . Tin) and

B ∈ βn0 , and H = C(il+n+1...il+k+n+1) ×D where

C(il+n+1...il+k+n+1) = {ω ∈ Ω : Tωl+n+1
= Til+n+1

, . . . , Tωl+k+n+1
= Til+k+n+1

}

for some fixed k-sequence of maps (Til+n+1
, . . . , Til+k+n+1

) and D ∈ βl+k+n
l+n . Then we

get the following

d(γl0, γ
l+k+n
l+n ) =

∑
G∈γl0,H∈γ

l+k+n
l+n

|π × µ(G ∩H)− π × µ(G)π × µ(H)|

=
∑
|π × µ(C(i1...in) ×B ∩ C(il+n+1...il+k+n+1) ×D)

− [π × µ(C(i1...in) ×B)][π × µ(C(il+n+1...il+k+n+1) ×D)]

where the sum is over B ∈ βn0 , D ∈ βl+k+n
l+n , C(i1...in) and C(il+n+1...il+k+n+1). Therefore

d(γl0, γ
l+k+n
l+n ) =

∑
|π × µ(C(i1...in;il+n+1...il+k+n+1) ×B ∩D)

−[π × µ(C(i1...in) ×B)][π × µ(C(il+n+1...il+k+n+1) ×D)]

=
∑
|pi1 . . . pinpil+n+1

. . . pil+k+n+1
µ(B ∩D)

−[pi1 . . . pinµ(B)][pil+n+1
. . . pil+k+n+1

µ(D)]

where pij is the probability of choosing the map Tij , and since we are summing over

all possible n and k sequences of maps the sum of probabilities is 1 and we get

d(γl0, γ
l+k+n
l+n ) =

∑
B∈βn0 ,D∈β

l+k+n
l+n

|µ(B ∩D)− µ(B)µ(D)|

= d(βl0, β
l+k+n
l+n )

which concludes the proof.

To show that the random dynamical system (T, µ) has the Bernoulli property we
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see that by Proposition 6.1.2 it is enough to show that

sup
l,k≥1

d(βl0, β
l+k+n
l+n )→ 0 as n→ 0 (6.2)

which we do by first defining an equal quantity to Equation (6.2) given in the fol-

lowing section and then we show that the new quantity converges to zero.

6.2 Decay of Correlation

Definition 6.2.1. Let (T, µ) be a random dynamical system with the common in-

finitely many partition β. We define the nth correlation of the system by

Corr(n) = sup
l≥1

Eµ

[
sup

A∈F∞l+n

∣∣µ(A|F l0)− µ(A)
∣∣] .

where F∞l+n is the σ-algebra generated by β∞l+n =
∨∞
i=l+n T

−i.

The following Lemma gives the equivalent quantity to Equation (6.2).

Lemma 6.2.2. Let d and Corr(n) be as above, and β be the common partition for

the random dynamical system (T, µ). Then we have

Corr(n) =
1

2
sup
l,k≥1

d(βl0, β
l+k+n
l+n ).
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Proof.

supl,k≥1 d(βl0, β
l+k+n
l+n ) = sup

l,k≥1

∑
A∈βl0,B∈β

l+k+n
l+n

|µ(A ∩B)− µ(A)µ(B)|

= sup
l≥1

∑
A∈βl0

sup
k≥1

∑
B∈βl+k+nl+n

|µ(B|A)− µ(B)|µ(A)

= sup
l≥1

∑
A∈βl0

sup
B∈F∞l+n

|µ(B|A)− µ(B)|µ(A)

= sup
l≥1

Eµ

[
sup

B∈F∞l+n
|µ(B|F l0)− µ(B)|

]
= Corr(n).

The following Theorem concludes that the equivalent quantity of Equation (6.2)

converges to zero so the Bernoulli property follows.

Theorem 6.2.3. There exists K ≥ 0 and ρ ∈ (0, 1) such that

Corr(n) ≤ Kρn for n = 1, 2, . . .

Proof. Let A ∈ Fl+n for l, n ≥ 1. There exists Bω ∈ F∞0 such that A = T−(l+n)(Bω)

where T represents the choice is random. Note that such Bω exists since we refine

the original partition by using the inverse images of every possible choice of the

constituent map but the set depends on the sequence we choose so we denote the

dependence with the subindex ω. Now we have

µ(A|F l0) =
1

µ(C)

ˆ
A

χCdµ for C ∈ βl

=
1

µ(C)

ˆ
Bω

Pωl+n . . .Pω1(χCh)dm
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If we take the integral of both sides with respect to the measure π we get

µ(A|F l0) =
1

µ(C)

ˆ
Ω

ˆ
Bω

Pωl+n . . .Pω1(χCh)dmdπ

where h ∈ BV is the invariant density so that dµ = hm.

Since π × µ is the invariant measure for the skew product realization of the random

dynamical system for F : Ω× Y → Ω× Y we have

π × µ(Ω× A) = µ(A) = π × µ(Ω, Bω)

=
∑
ω

π([ω]l+n)µ(Bω)

where [ω]l+n is an (l+n)-cylinder and Bω is the inverse image of A obtained by the

cylinder [ω]l+n so F ([ω]l+n, Bω) = Ω × A and the sum is over all possible (l+n)-

cylinders. Then we get∣∣µ(A|F l0)− µ(A)
∣∣ =

∣∣∣∣ 1

µ(C)

ˆ
Ω

ˆ
Bω

Pωl+n . . .Pω1(χCh)dm dπ −
ˆ

Ω

ˆ
Bω

h dm dπ

∣∣∣∣
≤
ˆ

Ω

ˆ
Bω

∣∣∣∣ 1

µ(C)
Pωl+n . . .Pω1(χCh)− h

∣∣∣∣ dm dπ

≤
ˆ

Ω

ˆ
Y

∣∣∣∣ 1

µ(C)
Pωl+n . . .Pω1(χCh)− h

∣∣∣∣ dm dπ

=

ˆ
Y

∣∣∣∣ 1

µ(C)
P l+nT (χCh)− h

∣∣∣∣ dm
=

∥∥∥∥P l+nT (χCh)

µ(C)
− h
∥∥∥∥

1

which implies

Corr(n) = sup
l≥1

Eµ

[
sup

A∈F∞l+n
|µ(A|F l0)− µ(A)|

]

≤ sup
l≥1

∑
C∈βl

µ(C) ·

[∥∥P l+nT (χCh)− hµ(C)
∥∥

1

µ(C)

]
= sup

l≥1

∑
C∈βl

∥∥P l+nT (χCh)− hµ(C)
∥∥

1
.
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We have PT = Q+R where inf ‖Rn‖1/n < ρ < 1 for some ρ ∈ R. Also note that

the projection of P lT(χCh) to the eigenspace corresponding to the eigenvalue 1 is(ˆ
Y

P lT(χCh)dm

)
h =

(ˆ
Y

χChU lT(1) dm

)
h =

(ˆ
Y

χCh 1 dm

)
h = µ(C)h.

So if we consider the above quantity as the following way

∥∥P l+nT (χCh)− hµ(C)
∥∥

1
=

∥∥PnT(P lT(χCh))− hµ(C)
∥∥

1

then by applying PnT = Q +Rn to the term P lT(χCh) and then by subtracting the

projection Q(P lT(χCh)) we end up with

∥∥P l+nT (χCh)− hµ(C)
∥∥

1
=
∥∥Rn(P lT(χCh))

∥∥
1
.

Therefore, ∥∥P l+nT (χCh)− hµ(C)
∥∥

1
≤ ‖Rn‖‖P lT(χCh)‖1

≤ K1ρ
n‖P lT(χCh)‖BV

implying

Corr(n) ≤ sup
l≥1

∑
C∈βl

∥∥P l+nT (χCh)− hµ(C)
∥∥

1

≤ K1ρ
n sup
l≥1

∑
C∈βl
‖P lT(χCh)‖BV

≤ K1ρ
n(2F + 1)‖h‖BV .

by using the proof of Lemma 5.1.3. We conclude the proof by setting K = K1(2F +

1)‖h‖BV .

Corollary 6.2.4. The random dynamical system (T, µ) is isomorphic to some Bernoulli

shift, so (T, µ) is mixing, so ergodic.
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CHAPTER 7

Limit Theorems for Random Dynamical Systems

By having the Bernoulli property in Chapter 6 we could conclude that the limit theo-

rems hold in the form proposed by Hofbauer and Keller [HK82] in the averaged sense

since the corresponding skew realization has the Bernoulli property. The averaged

Central Limit Theorem is also given by L. S. Young and E. Kobre for uniformly ex-

panding maps with finite partition in [KY07] where they use martingale arguments.

However we continue with perturbation methods to prove the averaged Central Limit

Theorem since we also need the speed of convergence to get the quenched Central

Limit Theorem. Our main reference for the Perturbation Theory results is [RE83]

where the Central Limit Theorem is given for a single uniformly expanding map with
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the speed of convergence.

7.1 Characteristic Function Operators

Let us introduce some notation before we start giving the limit theorems. In Chapter

7 we define P to be the conjugate random Perron-Frobenius operator of PT.

Let h ∈ BV be the eigenfunction corresponding to the unique eigenvalue 1 ∈ S1 so

PT(h) = h. We define Mh to be the multiplication operator so Mh(f) = fh. Then

the conjugate operator P is defined by

P(f) =M−1
h PTMh(f) = PT(fh)/h.

Note that 1 ∈ BV is the eigenfunction of P corresponding to the eigenvalue 1 since

P(1) = PT(1h)/h = PT(h)/h = h/h = 1

which implies that the stationary measure for the system is m. The choice P is good

for Chapter 7 since such terms
N∑
i=1

pi
∑

y:Ti(y)=x

1

|T ′i (y)|
= (P1)(x) is simply equal to 1

which makes the calculations easier.

Furthermore it is also a right choice to work with since if we consider the correspond-

ing skew product realization of the random process F : Ω × Y → Ω × Y then the

adjoint operator of the composition operator with F is denoted by PF and given by

PF (f) =
1

h
PT(fh) = P(f).

for f ∈ BV (Y ). See Lemma 16, page 75 in [Kob05] for the proof.
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For f ∈ C∞(Y,R), we denote Sωnf to be the sum of the evaluations of Tωk ◦ . . .◦Tω2 ◦

Tω1(x) under f , namely

Sωnf(x) = f(x) + f(Tω1(x)) + f(Tω2 ◦ Tω1(x)) + . . .+ f(Tωn−1 . . . Tω2 ◦ Tω1(x)).

The same process can also be given by using the corresponding skew product real-

ization that is

Sωnf(x) = f(x) + f ◦F (ω, x) + f ◦F 2(ω, x) + . . .+ f ◦F n(ω, x)

Therefore to prove the Central Limit Theorem for the process Sn(ω, x) we use the

operator P since f does not depend on the first coordinate ω ∈ Ω. Note that we use

the notation Sωnf(x) to denote that the sum depends on ω not the function f itself.

Definition 7.1.1. Define for f ∈ C∞(Y,R) the operators PT,t,f and Pt,f to be

PT,t,f (g) = PT(eitfg)

and

Pt,f (g) = P(eitfg)

respectively where PT is the random Perron-Frobenius operator and P is the conjugate

random Perron-Frobenious operator of the random dynamical system T, so

PT,t,f (g) =
N∑
j=1

pjPTj(eitfg) =
N∑
j=1

pjPTj ,t,f (g)

where PTj ,t,f is the characteristic operator of the single map Tj given by PTj ,t,f (g) =

PTj(eitfg) as in [RE83], Section 1.5. We call PT,t,f the random characteristic oper-

ator with respect to the observable f and Pt,f the characteristic operator of the skew

product system F with respect to the observable.
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The idea to prove the averaged Central Limit Theorem is to show that the char-

acteristic function of the process

Sωnf(x)− n
ˆ
fdµ

√
n

converges to the characteristic function of the normal distribution. We assume thatˆ
fdµ = 0 to make the calculations easier. Then the characteristic function of the

process
Sωnf(x)√

n
is given by

µ

(
EΩ

[
e
iθ
Sωnf(x)√

n

])
for θ ∈ R. (7.1)

where EΩ is the expected value with respect to the measure π. Let t = θ√
n
∈ R so

our main interest is the function Ψ(t) = µ(EΩ

[
eitS

ω
nf(x)

]
). The following lemma gives

how the characteristic function of the random process is related to the characteristic

operator Pnt,f . Later we take g = 1 to prove the result.

Lemma 7.1.2. For every n ≥ 1 and t ∈ R, we have

µ(Pnt,f (g)) = µ(EΩ

[
eitSnf(ω,x)g(x)

]
).

Proof. First we find how the random characteristic operator and the characteristic

operator are related. We have P(f) =
PT(fh)

h
which implies

Pt,f (g) = P(eitfg)

=
PT(eitfgh)

h

=
PT,t,f (gh)

h
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7.1. CHARACTERISTIC FUNCTION OPERATORS

and similarly

P2
t,f (g) = Pt,f (Pt,f (g))

= Pt,f
(
PT,t,f (gh)

h

)
=
P2

T,t,f (gh)

h

which generalizes to Pnt,f (g) =
PnT,t,f (gh)

h
. If we first find how the characteristic

function of the process is related to the random characteristic operator PnT,t,f then

we can use that

µ(Pnt,f (g)) = µ(
PnT,t,f (gh)

h
) = m(PnT,t,f (gh)).

Therefore we need to find the expression for PnT,t,f (g):

m(PnT,t,f (g)) = m(PT(eitfPT(eitfPT(eitf . . .PT(eitfg) . . .)))) with n many PTs,

= m(eitfPT(eitfPT(eitf . . .PT(eitfg) . . .))) with (n-1) many PTs

since m is invariant,

= m(UT(eitf )eitfPT(eitf . . .PT(eitfg) . . .)) with (n-2) many PTs

since UT is the adjoint operator,

= m(
N∑
j=1

pj(e
itf◦Tj)eitfPT(eitf . . .PT(eitfg) . . .)) by Definition of UT,

= m(
N∑
j=1

pje
it(f+f◦Tj)PT(eitf . . .P(eitfg) . . .))

= m(U(
N∑
j=1

pje
it(f+f◦Tj))eitf . . .P(eitfg) . . .) with (n-3) many Ps,

= m(
N∑

j,k=1

pkpje
it(f◦Tk+f◦Tj◦Tk)eitf . . .PT(eitfg) . . .)

= m(
N∑

j,k=1

pkpje
it(f+f◦Tk+f◦Tj◦Tk) . . .PT(eitfg) . . .)
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= m(

M2∑
j=1

q2
j e
itS

ω2j
3 f . . .PT(eitfg) . . .) where the sum is over all 2-cylinders

. . .

= m(

Mn−1∑
j=1

qn−1
j eitS

ωn−1
j

n fg) where the sum is over all (n-1)-cylinders, so

= m(EΩ

[
eitS

ω
nfg
]
)

Here Mi denotes the number of possible combinations of i-cylinders, ωij is one of

the i-cylinders and qij is the probability of the corresponding i-cylinder. The sum

S
ωij
i+1f is equal to f + f ◦ Tω1 + . . .+ f ◦ Tωi ◦ . . . Tω1 where [Tω1 , . . . , Tωi ] is the fixed

i-cylinder denoted by ωij.

Therefore, we get

µ(Pnt,f (g)) = m(PnT,t,f (gh))

= m(EΩ

[
eitS

ω
nfgh

]
)

= µ(EΩ

[
eitS

ω
nfg
]
).

Proposition 7.1.3. For every t ∈ R, the characteristic operator Pt,f is continuous

on (BV, ‖ · ‖BV ) and on (L1, ‖ · ‖1). Furthermore, the function t→ Pt,f is analytic.

Proof.

‖Pt,f (g)‖BV = ‖P(eitfg)‖BV ≤ 2‖P‖BV ‖eitf‖BV ‖g‖BV

since we have

‖fg‖BV =
∨

fg + ‖fg‖1 ≤ |f |∞
∨

g + |g|∞
∨

f + |f |∞|g|1 + |g|∞|f |1
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= |f |∞‖g‖BV + |g|∞‖f‖BV

≤ 2‖f‖BV ‖g‖BV

since |f |∞ ≤ inf |f |+
∨
f ≤ ‖f‖1 +

∨
f . Furthermore

‖eitf‖BV =
∨
eitf + ‖eitf‖1

=
∨

cos(tf) +
∨

sin(tf) + 1

= 2|t|
∨
f + 1.

So ‖Pt,f (g)‖BV ≤ C(t)‖g‖BV which implies the continuity on (BV, ‖ · ‖BV ).

Similarly

‖Pt,f (g)‖1 = ‖P(eitfg)‖1

≤ ‖eitfg‖1 ≤ ‖g‖1

which implies the continuity on (L1‖ · ‖1).

To check the analyticity consider

Pt,f (g) = P(eitfg)

= P

(
∞∑
n=0

(itf)n

n!
g

)
=

∞∑
n=0

(it)n

n!
P(fng).

For each term in the sum we have

|t|n

n!
‖P(fng)‖BV ≤

2|t|n

n!
‖P‖BV ‖f‖nBV ‖g‖BV .

which implies that t→ Pt,f is infinitely many differentiable with respect to t which

implies the analyticity.
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The following proposition is the main result that is used to prove the Central

Limit Theorem. The proof depends on the spectral properties of the operator P and

the proof for a Perron-Frobenius operator of a single map can be applied exactly the

same way to the random Perron-Frobenius operator. So we give only a sketch for

the proof and refer the reader to [RE83], Proposition 4 or to the book of Dunford

and Schwartz, Part I, see [DS09].

The notation is as in Chapter 5 but for the operator P that has only 1 as its

eigenvalue on S1 so P = Q+R.

Proposition 7.1.4. There exists a real number a > 0 such that whenever |t| < a we

have

(i) for every g ∈ BV and n ≥ 1,

Pnt,f (g) = λn(it)Nt(g) +Mn
t (g)

where λ(it) is the unique greatest eigenvalue of Pt,f and |λ(it)| > (2 + ρ(R)/3

where ρ(R) is the spectral radius of the operator R, and Nt is the projection

onto the eigenspace Et corresponding to the eigenvalue λ(it). Mt is an operator

on BV with spectral radius ρ(Mt) ≤ (1 + 2ρ(R))/3, and Mt(Et) = 0.

(ii) the functions t→ λ(it), t→ Nt and t→Mt are analytic,

(iii) ‖Mn
t (1)‖BV ≤ C|t|((1 + 2ρ(R))/3)n where C is a positive constant.

Proof. We start the proof by giving some definitions. Given the random Perron-

Frobenius operator P = Q+R we define the resolvent of P to be the operator S(z)
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on BV defined by

S(z) = 1/(zI − P) = Q/(z − 1) +
∞∑
n=0

Rn/zn−1

whenever |z| > ρ(R) and z 6= 1. Then we define the resolvent of Pt,f to be

St(z) = S(z)
∞∑
n=0

((Pt,f − P)S(z))n.

whenever ‖Pt,f − P‖BV < 1/‖S(z)‖BV so that the series above converges.

Let S1 and S2 be the circles with center 1 and 0, and with radii ρ1 = (1− ρ(R))/3

and ρ2 = (1 + 2ρ(R))/3 respectively. Let 0 < δ < ρ1, so

ρ(R) + δ < ρ2

since ρ2 − ρ1 = ρ(R). Let Mδ = sup ‖S(z)‖BV where the supremum is taken over

|z| > ρ(R) + δ and |z − 1| < δ. If ‖Pt,f −P‖BV < 1/Mδ then the circles S1 and S2

are in the resolvent set of Pt,f . Then the projection operators are

Nt =
1

2πi

ˆ
S1

St(z)dz

M′
t =

1

2πi

ˆ
S2

St(z)dz

For ‖Nt −Q‖BV < 1 the image of Nt, say Et is one dimensional. So for any gt that

generates Et we have

Pt,fNt(gt) = NtPt,f (gt) = λ(it)gt.

Then for any n ≥ 1,

Pnt,f = Pnt,fNt + Pnt,fM′
t = λn(it)Nt +Mn

t
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where

Mn
t =

1

2πi

ˆ
S2

znSt(z)dz.

There exists a ∈ R such that for |t| < a we have

St(z) = S(z) + itS(1)
t (z),

implying

Mn
t (1) =

1

2πi

ˆ
S2

znS(z)dz +
it

2πi

ˆ
S2

znS(1)
t (z)dz

=
t

2π

ˆ
S2

znS(1)
t (z)dz,

implying ‖Mn
t (1)‖BV ≤ C|t|ρn2 where

C =
1

2π
sup

|z|=ρ2,|t|<a
‖S(1)

t (z)‖BV .

Then again the spectral properties of the operator Pt,f for every real number t is

provided by Theorem 5.1.2:

Proposition 7.1.5. For t ∈ R with |t| small enough, the operator Pt,f has only

finitely many eigenvalues of modulo 1. For each such eigenvalue, say ζ ∈ σ(Pt,f )∩S1

the corresponding eigenspace Eζ is finite dimensional and contained in BV . We have

Pnt,f =
k∑
j=1

ζnj Q
(j)
t +Rn

t , for n ≥ 1

where Q(j)
t is the projection to the eigenspace Eζj . Furthermore

Q(j)
t Q

(i)
t = 0 for i 6= j, (Q(j)

t )2 = Q(j)
t , Q(j)

t Rt = RtQ(j)
t = 0.

And Rt(BV ) ⊂ BV with ρ(Rt) < 1.
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Proof. We only need to check if the operator Pt,f satisfies the Lasota-York inequality,

the rest is the result of Theorem 5.1.2. First note that we have

PnT,t,f (g) =
M∑
i=1

qiPT (i)
ωn
. . .P

T
(i)
ω1

(eit(f+f◦T (i)
ω1

+...+f◦T (i)
ωi−1

◦...◦T (i)
ω1

)g)

where qi is the probability of the ith n-cylinder given by T
(i)
ωn . . . T

(i)
ω1 and the sum is

over all possible n-cylinders which are M = Nn many. The equality is obtained by

applying the Equation 3.1 to maps eitf and eitfg so

eitfPT(eitfg) =
N∑
i=1

piPTi
(
eitfg · eitf◦Ti

)
=

N∑
i=1

piPTi
(
g · eit(f+f◦Ti)

)
implying for n = 2 that

P2
T,t,f (g) = PT(eitfPT(eitfg))

= PT

(∑N
i=1 piPTi

(
g · eit(f+f◦Ti)

))
=

∑N
i,j=1 pjpiPTjPTi

(
g · eit(f+f◦Ti)

)
=

∑N
i,j=1 pjpiPTj◦Ti

(
g · eit(f+f◦Ti)

)
We use the same rule above for any n ≥ 1. For ‖PnT,t,f (g)‖BV we use the inequality

4.7 in Remark 4.1.16 to get

‖PnT,t,f (g)‖BV =

∥∥∥∥∥
M∑
i=1

qiPT (i)
ωn
. . .P

T
(i)
ω1

(eit(f+f◦T (i)
ω1

+...+f◦T (i)
ωi−1

◦...◦T (i)
ω1

)g)

∥∥∥∥∥
BV

≤
M∑
i=1

qi

∥∥∥P
T

(i)
ωn
. . .P

T
(i)
ω1

(eit(f+f◦T (i)
ω1

+...+f◦T (i)
ωi−1

◦...◦T (i)
ω1

)g)
∥∥∥
BV

≤
M∑
i=1

qi

(
Crn

∥∥∥eit(f+f◦T (i)
ω1

+...+f◦T (i)
ωi−1

◦...◦T (i)
ω1

)g
∥∥∥
BV

+ R‖eit(f+f◦T (i)
ω1

+...+f◦T (i)
ωi−1

◦...◦T (i)
ω1

)g‖1

)
≤

M∑
i=1

qi

(
Crn2

∥∥∥eit(f+f◦T (i)
ω1

+...+f◦T (i)
ωi−1

◦...◦T (i)
ω1

)
∥∥∥
BV
‖g‖BV +R‖g‖1

)
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≤
M∑
i=1

qi(Cr
n2(
∨
Y

eit(f+f◦T (i)
ω1

+...+f◦T (i)
ωi−1

◦...◦T (i)
ω1

) + 1)‖g‖BV

+R‖g‖1)

≤
M∑
i=1

qi(Cr
n2(2|t|

∨
Y

(f + f ◦ T (i)
ω1

+ . . .+ f ◦ T (i)
ωi−1
◦ . . . ◦ T (i)

ω1
)

+ 1)‖g‖BV +R‖g‖1)

≤
M∑
i=1

qi

(
Crn2(2|t|n

∨
Y

f + 1)‖g‖BV +R‖g‖1

)

≤ Crn2

(
2|t|n

∨
Y

f + 1

)
‖g‖BV +R‖g‖1 since

M∑
i=1

qi = 1,

Now, for every t ∈ R there exists n0 such that Crn02(2|t|n0

∨
Y

f +1) < 1 which gives

the Lasota-York inequality for PT,t,f but then Pnt,f (g) =
PnT,t,f (gh)

h
implies

‖Pnt,f (g)‖BV ≤ 2

∥∥∥∥1

h

∥∥∥∥
BV

∥∥PnT,t,f (gh)
∥∥
BV

,

≤ 2

∥∥∥∥1

h

∥∥∥∥
BV

(
Crn2

(
2|t|n

∨
Y

f + 1

)
‖gh‖BV +R‖gh‖1

)

≤ 2

∥∥∥∥1

h

∥∥∥∥
BV

2

(
Crn2

(
2|t|n

∨
Y

f + 1

)
‖g‖BV ‖h‖BV +R‖g‖1‖h‖∞

)
where

∥∥ 1
h

∥∥
BV

, ‖h‖BV and ‖h‖∞ are all finite so the characteristic operator Pt,f

satisfies the Lasota-York inequality, too.

7.2 Central Limit Theorem

The condition on the function f ∈ BV is that the equation

f = k + ϕ ◦ Ti − ϕ for every i ∈ {1, . . . , L} (7.2)
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admits no solution for ϕ ∈ BV and k ∈ R.

Theorem 7.2.1. (Averaged Central Limit Theorem) The random dynamical system

(T,m) satisfies the averaged Central Limit Theorem for every f ∈ C∞(Y,R) with the

above condition (7.2), meaning

lim
n→∞

π × µ

(ω, x) :
Sωnf(x)− n

ˆ
fdµ

√
n

< c

 =
1√

2πσ2

ˆ c

−∞
e−t

2/2σ2

dt.

where the variance σ2 is given by

σ2 = µ(f 2) + 2
∞∑
n=1

µ(fPnf). (7.3)

We assume that

ˆ
fdµ = 0 to simplify the calculations. First, note that for

|t| < a as in Proposition 7.1.4 we haveˆ
Y

ˆ
Ω

eiS
ω
nfdπdµ =

ˆ
Y

EΩ

[
eitS

ω
nf
]
dµ

=

ˆ
Y

Pnt,f (1)dµ by Lemma 7.1.2,

= λn(it)

ˆ
Y

Nt(1)dµ+

ˆ
Y

Mn
t (1)dµ.

Lemma 7.2.2. For λ as in Proposition 7.1.4 we have

λ′(0) = µ(f).

Proof. We know that

ˆ
Y

EΩ

[
ei

t
n
Sωnf
]
dµ =

ˆ
Y

P t
n
,f (1)dµ,

and if we take the limit over n of the left-hand side we get

lim
n→∞

ˆ
Y

EΩ[ei
t
n
Sωnf ]dµ = eitµ(f)
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since lim
n→∞

EΩ[Sωnf ] = µ(f). Then the aim is to find the limit of right-hand side and

set it equal to eitµ(f). By Proposition 7.1.4 we know that the right-hand side is equal

to ˆ
Y

EΩ[ei
t
n
Sωnf ]dµ = λn(i

t

n
)

ˆ
Y

N t
n
(1)dµ+

ˆ
Y

Mn
t
n
(1)dµ.

Then we need to find the limit of each term as n→∞. First,∣∣∣∣ˆ
Y

Mn
t
n
(1)dµ

∣∣∣∣ ≤ ‖Mn
t
n
(1)‖BV ≤ C

|t|
n
ρn2

with ρ2 < 1 so lim
n→∞

∣∣∣∣ˆ
Y

Mn
t
n
(1)dµ

∣∣∣∣ = 0. On the other hand,

N t
n
(1) = Q+

it

n
N (1) − t2

n2
N (2) +

t2

n2
N t

n
(7.4)

where N (1),N (2) and N t
n

are operators on BV such that

lim
n→∞

‖N t
n
‖BV = 0.

Therefore

lim
n→∞

ˆ
Y

N t
n
(1)dµ =

ˆ
Y

Q(1)dµ = 1.

Similarly,

λ(i
t

n
) = λ(0) +

it

n
λ′(0) +

(it)2

n2
λ′′(0) +

t2

n2
λ(i

t

n
), (7.5)

with λ(0) = 1, lim
n→∞

λ(i
t

n
) = 0, and limn→∞ λ

n(i t
n
) = eitλ

′(0). Thus the limit of right-

hand side as n → ∞ is eitλ
′(0) which is equal to the left-hand side eitµ(f) implying

λ′(0) = µ(f).

We assume µ(f) = 0 so λ′(0) = 0.

83



7.2. CENTRAL LIMIT THEOREM

Lemma 7.2.3. For λ as in Proposition 7.1.4 we have

λ′′(0) = lim
n→∞

ˆ
Y

EΩ

[(
Sωnf√
n

)2
]
dµ.

Proof. The idea is similar to the previous proof: we give how lim
n→∞

ˆ
Y

EΩ[(
Sωnf√
n

)2]dµ

is related to the random characteristic operator and then use Proposition 7.1.4 and

calculate each term.

Note that
´
Y
EΩ[(S

ω
nf√
n

)2]dµ can be obtained by using the characteristic function
´
Y
EΩ[e(it/

√
n)Sωnf ]dµ by taking the derivative twice with respect to t and then evalu-

ating at t = 0:

∂2

∂t2

{ˆ
Y

EΩ[e(it/
√
n)Sωnf ]dµ

}
t=0

= −
ˆ
Y

EΩ[(
Sωnf√
n

)2]dµ.

Again we have that ˆ
Y

EΩ[e
i t√

n
Sωnf ]dµ =

ˆ
Y

Pnt√
n
,f (1)dµ,

implies together with Proposition 7.1.4 that

ˆ
Y

EΩ[e
i t√

n
Sωnf ]dµ = λn(i

t√
n

)

ˆ
Y

N t√
n
(1)dµ+

ˆ
Y

Mn
t√
n
(1)dµ

as in previous proof except that we have
√
n instead of n in the denominator of the

perturbation value. Therefore we need to find the second derivative of each term on

the right-hand side with respect to t and then evaluate at t = 0 and take the limit

as n→∞.

Now, we have

Mn
t√
n
(1) =

1

2πi

ˆ
S2

znSit/√n(z)(1)dz.
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For n sufficiently large and |z| = ρ2 for Sit/√n(z) we have

Sit/√n(z) = S(z) +
it√
n
S(1)(z)− t2

2n
S(2)(z) +

t2

n
S it/√n(z)

where S(1),S(2) and S it/√n are operators on BV and lim
n→∞

‖S it/√n|BV = 0. Therefore,

Mn
t√
n

(1) =
1

2πi

ˆ
S2

zn
(
S(z) +

it√
n
S(1)(z)− t2

2n
S(2)(z) +

t2

n
S it/√n(z)

)
(1)dz

=
t

2π
√
n

ˆ
S2

znS(1)

it/
√
n
(z)(1)dz − t2

4iπn

ˆ
S2

znS(2)(z)(1)dz

+
t2

2iπn

ˆ
S2

znS it/√n(z)(1)dz,

implying

lim
n→∞

∂2

∂t2

{ˆ
Y

Mn
t√
n
(1)dµ

}
t=0

= lim
n→∞

−1

2iπn

ˆ
S2

znS(2)(z)(1)dz = 0.

Now for the other term λn(i
t√
n

)

ˆ
Y

N t√
n
(1)dµ we use the results from the previ-

ous proof, namely the Equations (7.4) and (7.5), and replace
√
n with n. Then we

take the second derivative and evaluate at t = 0 and get

∂2

∂t2

{
λn(i

t√
n

)

ˆ
Y

N t√
n
(1)dµ

}
t=0

= −λ′′(0)− 1

n
N (2)(1),

and if we take the limit as n → ∞ the sequence −
ˆ
Y

EΩ[(
Sωnf√
n

)2]dµ converges to

−λ′′(0) so the result follows.

The following lemma gives the representation of the variance σ2 in terms of the

conjugate random Perron-Frobenius operator:

Lemma 7.2.4. If σ2 = lim
n→∞

ˆ
Y

EΩ

[(
Sωnf√
n

)2
]
dµ, then

σ2 =

ˆ
Y

P(g2)− (Pg)2dµ

where P is the random Perron-Frobenius operator and g = (I − P)−1f .

85



7.2. CENTRAL LIMIT THEOREM

Proof. Let us first give in detail how

ˆ
Y

EΩ

[(
Sωnf√
n

)2
]
dµ behaves for some fixed n

values:

For n = 2, Sω2 f = f+f ◦T1 with probability p1 and Sω2 f = f+f ◦T2 with probability

p2 and so on. So

ˆ
Y

EΩ

[(
Sω2 f√

2

)2
]
dµ =

ˆ
Y

(∑N
i=1 pi(f + f ◦ Ti)2

2

)
h dm

=

ˆ
Y

∑N
i=1 pi(f

2 + 2f · f ◦ Ti + (f ◦ Ti)2)

2
h dm

=
1

2

[ˆ
Y

f 2dµ+ 2

ˆ
Y

N∑
i=1

pif · (f ◦ Ti)h dm

+
N∑
i=1

pi

ˆ
Y

f ◦ Ti · (f ◦ Ti)h dm

]
=

1

2

[ˆ
Y

f 2dµ+ 2

ˆ
Y

PT(fh) · fdm

+
N∑
i=1

pi

ˆ
Y

PTi(h · f ◦ Ti) · f dm

]
=

1

2

[ˆ
Y

f 2dm + 2

ˆ
Y

PT(fh) · fdm +

ˆ
Y

fPT(h) · fdm
]

=
1

2

[ˆ
Y

f 2dm + 2

ˆ
Y

PT(fh)/h · fdµ+

ˆ
Y

f 2hdm

]
since we have

N∑
i=1

piPTi(f1 · f ◦ Ti) = fPT(f1)

so we take f1 = h for the above equality, see Equation 3.1. Thus,

ˆ
Y

EΩ

[(
Sω2 f√

2

)2
]
dµ =

ˆ
Y

f 2dµ+

ˆ
Y

P(f) · fdµ.

since PT(h) = h and PT(fh)/h = P(f).

For n = 3, Sω3 f = f+f ◦T1+f ◦T1◦T1 with probability p2
1, Sω3 f = f+f ◦T1+f ◦T2◦T1

with probability p1p2 and Sω3 f = f + f ◦ T2 + f ◦ T1 ◦ T2 with probability p2p1 and
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so on. Then we get

ˆ
Y

EΩ

[(
Sω3 f√

3

)2
]
dµ =

ˆ
Y

(∑N
i,j=1 pipj(f + f ◦ Ti + f ◦ Tj ◦ Ti)2

3

)
hdm

=

ˆ
Y

∑N
i,j=1 pipj(f

2 + (f ◦ Ti)2 + (f ◦ Tj ◦ Ti)2

3
h dm

+

ˆ
Y

∑N
i,j=1 pipj2((f · f ◦ Ti + (f · f ◦ Tj ◦ Ti + (f ◦ Ti · f ◦ Tj ◦ Ti))

3
h dm

=
1

3

[ˆ
Y

f 2h dm +

ˆ
Y

N∑
i=1

pi(f ◦ Ti)2hdm +

ˆ
Y

N∑
i,j=1

pipj(f ◦ Tj ◦ Ti)2hdm

]

+
2

3

[ˆ
Y

f
N∑
i=1

pi(f ◦ Ti)hdm +

ˆ
Y

f
N∑

i,j=1

pipj(f ◦ Tj ◦ Ti)hdm

+

ˆ
Y

N∑
i,j=1

pipj(f ◦ Ti)(f ◦ Tj ◦ Ti)hdm

]

=
1

3

[ˆ
Y

f 2dµ+

ˆ
Y

N∑
i=1

piPTi(h · f ◦ Ti) · f dm

+

ˆ
Y

N∑
i,j=1

pipjPTi(h · f ◦ Tj ◦ Ti)(f ◦ Tj)dm

]
+

2

3

[ˆ
Y

PT(fh) · fdm

+

ˆ
Y

PT(fh)
N∑
j=1

pj(f ◦ Tj)dm +

ˆ
Y

N∑
i,j=1

pjpiPTi(h · f ◦ Ti) · (f ◦ Tj)dm

]

=
1

3

[ˆ
Y

f 2dµ+

ˆ
Y

fh · fdm +

ˆ
Y

N∑
j=1

pj(h · f ◦ Tj)(f ◦ Tj)dm

]

+
2

3

[ˆ
Y

PT(fh) · fdm +

ˆ
Y

P2
T(fh) · fdm +

ˆ
Y

N∑
i,j=1

pjfh · f ◦ Tjdm

]

=
1

3

[ˆ
Y

f 2dµ+

ˆ
Y

f 2dµ+

ˆ
Y

N∑
i=1

piPTi(h · f ◦ Ti) · fdm

]

+
2

3

[ˆ
Y

PT(fh) · fdm +

ˆ
Y

P2
T(fh) · fdm +

ˆ
Y

PT(fh) · fdm
]

=
1

3

[
3

ˆ
Y

f 2dµ

]
+

2

3

[
2

ˆ
Y

P(f) · fdµ+

ˆ
Y

P2(f) · fdµ
]
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since P2
T(fh)/h = P2(fh)/h. Thus,

ˆ
Y

EΩ

[(
Sω3 f√

3

)2
]
dµ =

ˆ
Y

f 2dµ+
4

3

ˆ
Y

P(f) · fdµ+
2

3

ˆ
Y

P2(f) · fdµ.

Here the main step is when we multiply the two forms f ◦ Tj ◦ Ti and f ◦ Ti we get

ˆ
Y

N∑
i,j=1

pipj(f ◦ Ti)(f ◦ Tj ◦ Ti)h dm =

ˆ
Y

N∑
i,j=1

pjpiPTi(h · f ◦ Ti)(f ◦ Tj)dm

=

ˆ
Y

N∑
j=1

pjhf(f ◦ Tj)dm

=

ˆ
Y

PT(hf)fdm

=

ˆ
Y

P(f)fdµ.

And by using the same methods in more general combinations like the ones below,

we get the integral of a product of second iterates and fourth iterates of random

maps which is given by

ˆ
Y

N∑
i,j,k,l=1

pipjpkpl(f ◦ Tj ◦ Ti)(f ◦ Tl ◦ Tk ◦ Tj ◦ Ti)h dm

=

ˆ
Y

N∑
i,j,k,l=1

pipjpkplPTi(h · f ◦ Tj ◦ Ti)(f ◦ Tl ◦ Tk ◦ Tj)dm

=

ˆ
Y

N∑
j,k,l=1

pjpkpl(h · f ◦ Tj)(f ◦ Tl ◦ Tk ◦ Tj)dm

=

ˆ
Y

N∑
j,k,l=1

pjpkplPTj(h · f ◦ Tj)(f ◦ Tl ◦ Tk)dm

=

ˆ
Y

N∑
k,l=1

pkpl(h · f)(f ◦ Tl ◦ Tk)dm

=

ˆ
Y

N∑
l=1

plPT(fh)(f ◦ Tl)dm

=

ˆ
Y

P2
T(fh)fdm

=

ˆ
Y

P2(f)fdµ.
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For n = 4 we have
ˆ
Y

EΩ

[(
Sω4 f√

4

)2
]
h dm

=

ˆ
Y

(∑N
i,j,k=1 pipjpk(f + f ◦ Ti + f ◦ Tj ◦ Ti + f ◦ Tk ◦ Tj ◦ Ti)2

4

)
hdm

=
1

4

ˆ
Y

N∑
i,j=1

pipjpk(f
2 + (f ◦ Ti)2 + (f ◦ Tj ◦ Ti)2 + (f ◦ Tk ◦ Tj ◦ Ti)2hdm

+
2

4

ˆ
Y

N∑
i,j,k=1

pipjpk(f · f ◦ Ti) + (f · f ◦ Tj ◦ Ti) + (f · f ◦ Tk ◦ Tj ◦ Ti)hdm

+
2

4

ˆ
Y

N∑
i,j,k=1

pipjpk(f ◦ Ti · f ◦ Tj ◦ Ti) + (f ◦ Ti · f ◦ Tk ◦ Tj ◦ Ti)hdm

+
2

4

ˆ
Y

N∑
i,j,k=1

pipjpk(f ◦ Tj ◦ Ti · f ◦ Tk ◦ Tj ◦ Ti)hdm

=
1

4

ˆ
Y

4f 2dµ+
2

4

ˆ
Y

P(f)f + P2(f)f + P3(f)fdµ+
2

4

ˆ
Y

P(f)f

+P2(f)fdµ+ 2
4

´
Y
P(f)fdµ

=

ˆ
Y

f 2dµ+
6

4

ˆ
Y

P(f)fdµ+
4

4

ˆ
Y

P2(f)fdµ+
2

4

ˆ
Y

P3(f)fdµ.

By using the same idea above we can write for any n that

ˆ
Y

EΩ

[(
Sωnf√
n

)2
]
dµ =

ˆ
Y

f 2dµ+
2(n− 1)

n

ˆ
Y

P(f)fdµ

+
2(n− 2)

n

ˆ
Y

P2(f)fdµ

+
2(n− 3)

n

ˆ
Y

P3(f)fdµ+ . . .

+
2

n

ˆ
Y

Pn−1(f)fdµ

=

ˆ
Y

f 2dµ+ 2
n−1∑
k=1

n− k
n

ˆ
Y

Pk(f)fdµ

And if we take the limit as n→∞ we get

lim
n→∞

ˆ
Y

EΩ

[(
Sωnf√
n

)2
]
dµ = lim

n→∞

ˆ
Y

f 2dµ+ 2
n−1∑
k=1

n− k
n

ˆ
Y

Pk(f)fdµ
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=

ˆ
Y

f 2dµ+ 2

ˆ
Y

lim
n→∞

n−1∑
k=1

n− k
n
Pk(f)fdµ

=

ˆ
Y

f 2dµ+ 2

ˆ
Y

lim
n→∞

(
n−1∑
k=1

Pk(f)− 1

n

n−1∑
k=1

kPk(f)

)
fdµ

=

ˆ
Y

f 2dµ+ 2

ˆ
Y

∞∑
k=1

Pk(f)fdµ

since
∑∞

k=1Pk(f) =
∑∞

k=1Rk(f) and
∑∞

k=1 kPk(f) =
∑∞

k=1 kRk(f) with ρ(R) < 1

are finite. This gives the Equation 7.3.

Note that S(z) = 1/(zI −P) = Q/(z − 1) +
∑∞

n=0Rn/zn and we have Q(f) = 0

so S(z)(f) = (zI − P)−1(f) =
∑∞

n=0Rn/zn(f) and if we evaluate at z = 1 we get

(I −P)−1(f) =
∑∞

n=0Rn(f) <∞ since ρ(R) < 1. Therefore, g = (I −P)−1f is well

defined and

σ2 = lim
n→∞

ˆ
Y

EΩ

[(
Sωnf√
n

)2
]
dµ =

∞∑
k=−∞

ˆ
Y

P |k|(f)fdµ

= 2

ˆ
Y

(
∞∑
k=0

Pk(f)fdµ

)
−
ˆ
Y

f 2dµ

= 2

ˆ
Y

(I − P)−1(f) · fdµ−
ˆ
Y

f 2dµ

=

ˆ
Y

2gf − f 2dµ

=

ˆ
Y

(2g − f)fdµ

=

ˆ
Y

(g + Pg)(g − Pg)dµ

=

ˆ
Y

g2 − (Pg)2dµ

=

ˆ
Y

P(g2)− (Pg)2dµ.

since g = (I − P)−1(f) =
∑∞

k=0Pk(f), so we have g + Pg =
∑∞

k=0Pk(f) +∑∞
k=1Pk(f) = 2

∑∞
k=0Pk(f)−f = 2g−f and g−Pg =

∑∞
k=0Pk(f)−

∑∞
k=1Pk(f) =
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f with the fact that
ˆ
Y

g2dµ =

ˆ
Y

g2hdm

=

ˆ
Y

g2h

N∑
i=1

pi1 ◦ Tidm

=

ˆ
Y

PT(g2h)dm

=

ˆ
Y

P(g2)dµ.

Note that P(g2)− (Pg)2 ≥ 0 since we have for every i = 1, . . . , N

(PTi(gh))2 =

( ∑
y:Tiy=x

gh(y)

|T ′i (y)|

)2

=

( ∑
y:Tiy=x

(h(y))1/2

|T ′i (y)|1/2
· (h(y))1/2g(y)

|T ′i (y)|1/2

)2

≤

( ∑
y:Tiy=x

h(y)

|T ′i (y)|

)( ∑
y:Tiy=x

hg2(y)

|T ′i (y)|

)
by Cauchy’s inequality,

= PTi(h)PTi(hg2)x,

then for i 6= j we get

(PTi(gh))2(PTj(gh))2 ≤ PTi(h)PT1(hg2) · PTj(h)PTj(hg2)

implying

(PTi(gh))(PTj(gh)) ≤
√
PTi(h)PTj(hg2) · PTj(h)PTi(hg2)

≤
PTi(h)PTj(hg2) + PTj(h)PTi(hg2)

2
.

(7.6)

Therefore we have

(Pg)2 =
1

h2

N∑
i,j=1

pipj(PTi(gh))(PTj(gh))
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≤ 1

h2

N∑
i,j=1

pipj
PTi(h)PTj(hg2) + PTj(h)PTi(g2)

2
by Equation (7.6),

=
1

2h2

N∑
j=1

pj

(∑
i=1

piPTi(h)

)
PTj(hg2) +

1

2h2

N∑
i=1

pi

(
N∑
j=1

pjPTj(h)

)
PTi(hg2)

=
1

2h

N∑
j=1

pjPTj(hg2) +
1

2h

N∑
i=1

piPTi(hg2)

=
1

2h
PT(hg2) +

1

2h
PT(hg2) = P(g2)

since
∑
i=1

piPTi(h) = PT(h) = h

Lemma 7.2.5.

lim
n→∞

ˆ
Y

Pnt√
n
,f (1)dµ = e−t

2σ2/2

Proof. From the proof of Lemma 7.2.2 we have that

ˆ
Y

P t
n
,f (1)dµ = λn(i

t

n
)

ˆ
Y

N t
n
(1)dµ+

ˆ
Y

Mn
t
n
(1)dµ

where lim
n→∞

∣∣∣∣ˆ
Y

Mn
t
n
(1)dµ

∣∣∣∣ = 0 and

N t
n
(1) = Q+

it

n
N (1) − t2

n2
N (2) +

t2

n2
N t

n

and

λ(i
t

n
) = λ(0) +

it

n
λ′(0) +

(it)2

n2
λ′′(0) +

t2

n2
λ(i

t

n
).

We replace
t

n
with

t√
n

in the equations and proceed in a same way. If we take

n→∞ together with the assumption that λ′(0) = 0 we get

lim
n→∞

ˆ
Y

N t√
n
(1)dµ = lim

n→∞
Qdµ = 1

92



7.2. CENTRAL LIMIT THEOREM

and

lim
n→∞

λn(i
t√
n

) = λ(0) +
it√
n
λ′(0) +

(it)2

n2
λ′′(0) +

t2

n
λ(i

t√
n

) = e−λ
′′(0)t2/2

which is obtained by taking the logarithm of the equation above so we get

lim
n→∞

n ln(λ(i
t√
n

)) = lim
n→∞

n ln(1− λ′′(0)
t2

2n
)

= lim
n→∞

ln(1− λ′′(0) t
2

2n
)

1/n

= lim
n→∞

(λ′′(0)t2/2n2) / (1− λ′′(0)t2/2n)

−1/n2
by L’hopitals rule,

= −λ′′(0)t2/2

since lim
n→∞

λ(i
t√
n

) = 0. Then the result follows from

ˆ
Y

P t√
n
,f (1)dµ = λn(i

t√
n

)

ˆ
Y

N t√
n
(1)dµ+

ˆ
Y

Mn
t√
n
(1)dµ

Lemma 7.2.6. σ2 > 0 if and only if f is not of the form f = k+ϕ◦T−ϕ for some

function ϕ and number k for the random map T.

Proof. We have µ(f) = k and we also assume that µ(f) = 0 so we have k = 0. If

σ2 = 0 then in the proof of Lemma 7.2.4 the inequality (Pg)2 ≤ P(g2) is an equality.

So we have

1

h2

N∑
i,j=1

pipj(PTi(gh))(PTj(gh)) =
1

2h2

N∑
i,j=1

pipj
(
PTi(h)PTj(hg2) + PTj(h)PTi(hg2)

)
=

1

h2

N∑
i,j=1

pipjPTi(h)PTj(hg2),

in other words(
N∑
i=1

pi
∑

y:Tiy=x

(h(y))1/2

|T ′i (y)|1/2
(h(y))1/2g(y)

|T ′i (y)|1/2

)2

=

(
N∑
i=1

pi
∑

y:Tiy=x

h(y)

|T ′i (y)|

)(
N∑
i=1

pi
∑

y:Tiy=x

hg2(y)

|T ′i (y)|

)
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implying that for every i = 1, . . . , N and for every y ∈ Y with Ti(y) = x

c(h(y))1/2

|T ′i (y)|1/2
=

(h(y))1/2g(y)

|T ′i (y)|1/2

for some constant c ∈ R by Cauchy’s inequality given in Proposition A.0.1 in an

averaged version, see Example A.0.2. That means for some fixed x ∈ Y for every

i = 1, . . . , N and for every y with Ti(y) = x the value g(y) is constant and does not

depend on i and y. Therefore,

Pg(x) =
PT(gh)

h
(x)

=
1

h(x)

N∑
i=1

pi
∑

y:Tiy=x

gh(y)

|T ′i (y)|

=
g(yi)

h(x)

N∑
i=1

pi
∑

y:Tiy=x

h(y)

|T ′i (y)|

=
g(yi)

h(x)
PTh(x) = g(yi)

for some i ∈ {1, . . . , N} and for some yi ∈ Y with Ti(yi) = x since PTh = h. And

since f = g − Pg we get

f(x) = g(x)− (Pg)x = g(x)− g(yi)

f(Ti(yi)) = g(Ti(yi))− g(yi)

f(yi) = g(Ti(yi))− f(Ti(yi))− g(yi) + f(yi), by adding f(yi)

f(yi) = (g − f) ◦ Ti(yi)− (g − f)(yi)

= ϕ ◦ Ti(yi)− ϕ(yi).

Since the choice of the map is not important we write

f(y) = ϕ(T(y))− ϕ(y)

where T is the random map.
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Proposition 7.2.7. If we have f = χA for some borel subset A of Y with 0 <

µ(A) < 1 then σ2 > 0 .

Proof. Assume for a contradiction that σ2 = 0. Then χA ◦T(x) = µ(A) +ϕ ◦T(x)−

ϕ(x) for some function ϕ, implying

e2πiχA◦T(x) = e2πi(µ(A)+ϕ◦T(x)−ϕ(x))

The left-hand side can have 0 or 2π as its exponent that is independent from the

choice of T so it is 1 implying

e2πiϕ◦T(x) = e−2πiµ(A)e2πiϕ(x).

We can consider T(x) as F (ω, x) = (σ(ω), Tω1(x)) since ϕ only depends on the second

coordinate. Here F is the corresponding skew product realization of the random

dynamical system which is mixing by Corollary 6.2.4. So for G(ω, x) = e2πiϕ(π2(ω,x))

where π2 is the projection function to the second coordinate we have G ◦F n = λG

with λ = e−2πiµ(A) implying that G is constant since F is mixing, so λ = e−2πiµ(A) = 1

implying µ(A) is 0 or 1 which contradicts the assumption.

7.3 Speed of Convergence

One of the advantages of using Perturbation Theory is that it allows us to calculate

the speed of convergence of the limit in the Central Limit Theorem. In probability

theory the result for independent identically distributed random variables is known

as the Berry-Essen’s Theorem. The proof depends on the Essen’s inequality given in

Theorem A.0.3.
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Theorem 7.3.1. For the random dynamical system (T, µ) defined before there exists

a constant C > 0 such that for every v ∈ R we have∣∣∣∣µ× π{(x, ω) :
Sωn (f)x− nµ(f)

σ
√
n

}
− 1

2π

ˆ v

−∞
e−u

2/2du

∣∣∣∣ ≤ C√
n

By the proof of Essen’s inequality A.0.3 for every U > 0 and for every n ≥ 1 we have

sup
v∈R

∣∣∣∣µ× π{Sωn (f)− nµ(f)

σ
√
n

}
− 1

2π

ˆ v

−∞
e−u

2/2du

∣∣∣∣
≤ K

U
+

1

π

ˆ U

−U

1

|u|

∣∣∣∣ˆ
Ω

ˆ
Y

e
iu
Sωn (f)

σ
√
n − e−u2/2dµdπ

∣∣∣∣ du.
To prove Theorem 7.3.1 first we need to estimate the following term∣∣∣∣ˆ

Ω

ˆ
Y

e
iu
Sωn (f)

σ
√
n − e−u2/2dµdπ

∣∣∣∣
which is given by the lemma below.

The lemma below is the corresponding version of Lemma 1 in [Pet85], page 109 for

the process
Sωn (f)

σ
√
n

.

Lemma 7.3.2. There exists a real number a > 0 such that for every |u| < a
√
n we

have ∣∣∣∣ˆ
Ω

ˆ
Y

e
iu
Sωn (f)

σ
√
n − e−u2/2dµdπ

∣∣∣∣ ≤ e−u
2/4(2A

|u|3

σ3
√
n

+B
|u|
σ
√
n

) + (C
|u|
σ
√
n

)ρn2

where ρ2 = (1 + 2ρ(R))/3, for some positive constants A,B and C.

Proof. Clearly by Lemma 7.1.2 we have∣∣∣∣ˆ
Ω

ˆ
Y

e
iu
Sωn (f)

σ
√
n − e−u2/2dµdπ

∣∣∣∣ =

∣∣∣∣ˆ
Ω

ˆ
Y

Pnuσ√
n
,f (1)− e−u2/2dµdπ

∣∣∣∣
≤
ˆ

Ω

ˆ
Y

∣∣∣Pnuσ√
n
,f (1)− e−u2/2

∣∣∣ dµdπ.
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Again by using Proposition 7.1.4 with θ =
uσ√
n

we get

Pnf,θ = λn(iθ)Nθ +Mn
θ

=
(

1 + iθλ′(0)− θ2

2
λ′′(0)− iθ3

6
λ(3) + θ3λ(iθ)

)n
·
(
µ+ iθN (1) − θ2

2
N (2) + θ2N f,θ

)
+Mn

θ

= e
n(−

θ2

2
σ2 + iA1θ

3 + θ3ε(θ))
(
µ+ iθN (1) − θ2

2
N (2) + θ2N f,θ

)
+Mn

θ

for some constant A1 and lim
θ→0

ε(θ) = 0. Then if we go back to the integration we

want to approximate and replace θ = u/σ
√
n we get

ˆ
Ω

ˆ
Y

∣∣∣Pnuσ√
n
,f (1)− e−u2/2

∣∣∣ dµdπ ≤ An(u) +Bn(u) + (C|u|σ/
√
n)ρn2

where

An(u) = e−u
2/2
∣∣∣eiA1u3/σ3√n+(u3/σ3√n)ε(u/σ

√
n) − 1

∣∣∣ ,
Bn(u) = e−u

2/2eiA1u3/σ3√n+(u3/σ3√n)ε(u/σ
√
n)

·
ˆ

Ω

ˆ
Y

(
|u|
σ
√
n

∣∣∣∣iN (1)(1)− u

2σ
√
n
N (2)(1) +

u

2σ
√
n
N u

σ
√
n
(1)

∣∣∣∣ dµdπ.
For the first term An(u) we use the fact that |ez − 1| ≤ |z|e|z| and approximate the

corresponding z term that is∣∣iA1u
3/σ3
√
n+ (u3/σ3

√
n)ε(u/σ

√
n)
∣∣ ≤ |u|2Au2/σ3

√
n

where A = |A1|. We choose the real number a > 0 that satisfies 2Aa/σ3 < 1/4 so

for every |u| < a
√
n we have∣∣iA1u

3/σ3
√
n+ (u3/σ3

√
n)ε(u/σ

√
n)
∣∣ ≤ u2/4.

Also let B be a BV bound for the terms in the intergral of the term Bn(u) that is∥∥∥∥iN (1)(1)− u

2σ
√
n
N (2)(1) +

u

2σ
√
n
N u

σ
√
n
(1)

∥∥∥∥
BV

≤ B.
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With the bounds above the result follows.

Proof of Theorem 7.3.1 . By using the result of Lemma 7.3.2 with U = a
√
n we get

sup
v∈R

∣∣∣∣µ× π{Sωn (f)− nµ(f)

σ
√
n

}
− 1

2π

ˆ v

−∞
e−u

2/2du

∣∣∣∣
≤ K

a
√
n

+
1√
n

ˆ a
√
n

−a
√
n

e−u
2/2(2Au2 +

B

σ
) + C

ρn2
σ
√
n
du.

7.4 More Limit Theorems

The main goal of this section is the quenched Central Limit Theorem. To prove the

quenched Central Limit Theorem first we need to prove two more limit theorems.

The first one is the Averaged Large Deviation Estimate which is a very standard

step if one is working on statistical properties of some dynamical systems. And the

next limit theorem gives that the process as in Theorem 7.2.1 not only converges

to the normal distribution but it also converges with tight maxima. The necessary

definitions are given below.

Theorem 7.4.1. (Averaged Large Deviation Estimate) Let Sωnf/n be the random

process as before. There exists a real number A > 0 such that for all a ∈ (0, A) we

have the following estimate

π × µ
{

(ω, x) :

∣∣∣∣ 1nSωnf(x)

∣∣∣∣ ≥ a

}
≤ Ce−Ca

2n (7.7)
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Proof. To prove the averaged large deviation result again we use the perturbation

theory, specifically the same result we used to prove the averaged Central Limit

Theorem which is mainly the Lemma 7.1.2 and Proposition 7.1.4.

For any random variable X with a probability distribution P for any θ > 0 we

have

P {X ≥ a} ≤ EP
[
χ{X≥a} e

θ(X−a)
]

≤ e−θaEP
[
eθX
]

Since

P {|X| ≥ a} = P {X ≥ a}+ P {X ≤ −a}

it is enough to give the result only for P {X ≥ a}.

If we consider the random variable X being the random process Sωnf(x)/n for

each n, then the inequality becomes

π × µ
{

1

n
Sωnf(x) ≥ a

}
≤ e−at/n µ

(
EΩ

[
etS

ω
nf(x)/n

])
for θ = t/n, for every t > 0.

This is by Lemma 7.1.2 equivalent to the quantity below

π × µ
{

1

n
Sωnf(x) ≥ a

}
≤ e−at/n µ

{
Pnt
n
,f (1)

}
.

Again we can use Proposition 7.1.4 so that

Pnt
n
,f (1) = λn(i

t

n
)N t

n
(1) +Mn

t
n
(1)

and by using the approximations of each term in the proof of Lemma 7.2.2 we can

deduce that

Pnt
n
,f (1) = λn

(
i
t

n

)(
1 + O

(
|t|
n

))
+ O (ρn2 ) .
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We define A (a) = sup
|θ|≤C

aθ− ln(λ (iθ)) for some C > 0. Let θ0 be the value at which

A attains its maximum so we have

ln(λ (iθ0)) = aθ0 − sup{A (a)} ≤ aθ0 −A (a).

By considering λn
(
i
t

n

)
= en ln(λ(i tn)) if we choose t to be nθ0 then we have

π × µ
{

1
n
Sωnf(x) ≥ a

}
≤ e−a(θ0n)/nen(aθ0−A (a))(1 + C|θ0|) + O (ρn2 )

= e−nA (a)(1 + C|θ0|) + O (ρn2 ) .

Now we need to analyze A (a). So by using the Equation 7.5 we have

λ(iθ) = 1 + iθλ′(0) +
(iθ)2

2
λ′′(0) + θ2λ(iθ),

with λ′(0) = µ(f) = 0 because of the assumption on f . This implies

aθ − ln (λ (iθ)) = aθ − θ2

2
λ′′(0) + O(θ3). (7.8)

To find the point θ0 where the maximum is taken we take the derivative and set it

equal to zero. So we get a−θλ′′(0) = 0 implying θ0 = a/λ′′(0). Note that λ′′(0) = σ2

by Lemma 7.2.4. Thus we have

π × µ
{

1

n
Sωnf(x) ≥ a

}
≤ 2e−a

2n(1−ε)/2σ2

for a ≤ Cε where Cε is small enough.

First we give the general definition of convergence to a distribution with tight

maxima. Then we show that the random dynamical system Sωnf given before con-

verges to normal distribution with tight maxima by showing that the random dy-

namical system is a reverse martingale difference.
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Definition 7.4.2. Let Sn be a sequence of random variables on a probability space

and Bn be a renormalizing sequence, meaning Bn = B(n) as a function B(x) : R+ →

R+ is of the form B(x) = xdL(x) where d > 0 and the function L : R+ → R+ is

L1, slowly varying that is, for every α > 0 lim
x→∞

L(αx)

L(x)
= 1 and normalized that is,

L′(x) = (L(x)/x). Then we say that (Sn/Bn, Bn) converges with tight maxima to a

random variable X if Sn/Bn converges in law to X and if the sequence

Mn =

(
max

1≤k≤n
|Sk|

)
/Bn

is tight, that is for every ε > 0 there exists c > 0 such that for every n ≥ 1 we have

P
{

max
1≤k≤n

|Sk|
Bn

> c

}
≤ ε.

Now the process Sn in our case is Sωnf(x) on probability space Ω × Y with dis-

tribution π × µ. The corresponding renormalizing sequence Bn is
√
n. We already

know that the process Sωnf(x)/
√
n converges in distribution to the normal distribu-

tion N (0, σ) for
´
fdµ = 0. We show below that the convergence is in fact with

tight maxima.

Theorem 7.4.3. (Convergence with Tight Maxima) Let Sωnf(x)/
√
n be the random

process as defined before with constituent maps in T1(Y ). Then for every ε > 0 there

exists c > 0 such that for every n ≥ 1 we have

π × µ
{

max
1≤k≤n

|Sωk f(x)|√
n

> c

}
≤ ε.

Note that this property is not only about the process Sωnf(x)/
√
n, the choice

of the sequence
√
n is also very important. Before giving the proof of Theorem
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7.4.3 first we give a tight maxima result for reverse martingale differences. Then to

prove Theorem 7.4.3 we only need to show that the process is a reverse martingale

difference.

Proposition 7.4.4. Let Z0, Z1, . . . be a sequence of reverse martingale differences.

Let Sn =
∑n−1

k=0 Zn . If Sn/
√
n converges to normal distribution N (0, σ) and if

Sn/
√
n is L1-bounded then Sn/

√
n converges to N (0, σ) with tight maxima.

Proof. By using the Martingale Maximal Inequality A.0.5 we have for every α > 0

and n ∈ N that

P
{

max
1≤k≤n

|Sk| ≥ α

}
≤ C

α
E[|Sn|]

for some constant C > 0. By choosing α = c
√
n we get

P
{

max
1≤k≤n

|Sk|√
n
≥ α

}
≤ C

c
√
n
E[|Sn|] ≤

C1

c

since
|Sk|√
n

is bounded in L1. Thus for every ε > 0 choose c > 0 to be
C1

c
< ε.

Proof of Theorem 7.4.3. Let f ∈ BV with
´
fdµ = 0. We consider all maps on BV

as maps on the product space Ω × Y that only depends on the second coordinate

so f(ω, x) = f(x). Let UF be the composition operator with F and let PF be the

adjoint operator of UF . Therefore the process can be given by

Sn(f) =
n−1∑
i=0

f ◦F i =
n−1∑
i=0

UnF (f).

To show that the process Sn/
√
n has a tight maxima we first show that the process

defined by

Zi = U iF (f)− U iF (g) + U i−1
F (g)
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is a reverse martingale difference, so
(∑n−1

i=0 Zi
)
/
√
n has a tight maxima. And then

we show that the sequence (g−UnF (g))/
√
n also has a tight maxima which concludes

the result.

Here the function g =
∞∑
n=0

PT(f) is as in Lemma 7.2.4 which is convergent by the

spectral gap. Also note that we have

PF (f) =
1

h
PT(fh)

where h is the stationary density so
∑∞

n=0PnF (f) is also convergent. For i = 1 in the

above equation we have

Z1 = UF (f)− UF (g) + g

implying

PF (Z1) = f − g + PF (g) = f − g + P(g) = 0.

Thus for the filtration F−1(B) we have

(π × µ)[Z1|F−1(B)] = 0

implying that Zi is a reverse martingale difference. Then by summing the random

variable Zi over all i values, we conclude that the process we get below has a tight

maxima. ∑n−1
i=0 Zi√
n

=
Sn(f)√

n
+
g − UnF (g)√

n
.

Finally we need to show that (g−UnF (g))/
√
n has a tight maxima to finish the proof.

But this is easy since the function g is bounded so we have

lim
n→∞

g − UnF (g)√
n

= 0.

That concludes the proof.
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We use the fact that the averaged Central Limit Theorem on the induced system

also satisfies the averaged Large Deviation result by Theorem 7.4.1 to show the

quenched Central Limit Theorem. The proof is based on the paper of Ayyer, Liverani

and Stenlund [ALS09] where the constituent functions are toral automorphisms. Here

we use the Borel-Cantelli argument they have in their proof for quenched Central

Limit Theorem.

Again we have the averaged Central Limit Theorem by Theorem 7.2.1. Let σ2

be the variance of the process that satisfies the Central Limit Theorem. We show

that for π almost every sequence ω we have the CLT with variance σ2. For that first

we show that the previous limit theorems can also be given by using the Lebesgue

measure m.

Theorem 7.4.5. (Averaged CLT for non-stationary measures) The random dynam-

ical system (T,m) satisfies the averaged CLT for every f ∈ C∞(Y,R) with respect to

the normalized Lebesgue measure m, that is

lim
n→∞

(π ×m)

{
(ω, x) :

fωn (x)− n
´
fdm√

n
< c

}
=

1√
2πσ2

ˆ c

−∞
e−t

2/2σ2

dt.

Proof. We give a lower and an upper bound for the process

π ×m

{
1√
n

n−1∑
i=0

Sωnf(x) ∈ J

}
for some J ∈ R. Let ε > 0 be small. We know that the process satisfies the Central

Limit Theorem with respect to µ so there exists J0, J1 with J0 ⊂ J ⊂ J1 such that

for n large enough say n ≥ N1 we have

π × µ

{
1√
n

n−1∑
i=0

Sωnf(x) ∈ J0

}
>

1√
2πσ

ˆ
J0

e−t
2/2σdt− ε

2
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and similarly

π × µ

{
1√
n

n−1∑
i=0

Sωnf(x) ∈ J1

}
<

1√
2πσ

ˆ
J1

e−t
2/2σdt− ε

2

And if we take both integrals over the set J as given above we get

π × µ

{
1√
n

n−1∑
i=0

Sωnf(x) ∈ J0

}
>

1√
2πσ

ˆ
J

e−t
2/2σdt− ε

2

and similarly

π × µ

{
1√
n

n−1∑
i=0

Sωnf(x) ∈ J1

}
<

1√
2πσ

ˆ
J

e−t
2/2σdt− ε

2
.

We have an expanding system so we want to find a suitable number of iterates say M

that expands the process from J0 to J or from J to J1 and the probability difference

caused by that many number of iterates is less than
ε

2
. For that first choose M1 ∈ N

so that for every n > M1 we have

ˆ
|PnT(1)− h|dm| < ε

2
(7.9)

where h is the stationary density for µ.

Then if we choose M > N1,M1 large enough so that

1√
M

M1+M−1∑
i=M1

Sωi f(x) ∈ J0 implies
1√

M +M1

M1+M−1∑
i=0

Sωi f(x) ∈ J, and

1√
M +M1

M1+M−1∑
i=0

Sωi f(x) ∈ J implies
1√
M

M1+M−1∑
i=M2

Sωi f(x) ∈ J1

then we have for every n > M that

π[ω]n+M1
×m

{
1√

n+M1

M1+n−1∑
i=0

Sωi f(x) ∈ J

}
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≥π[ω]n ×m(M1)

{
1√
n

n−1∑
i=0

Sωi f(x) ∈ J0

}

≥π[ω]n × µ

{
1√
n

n−1∑
i=0

Sωi f(x) ∈ J0

}
+
ε

2
by Equation (7.9),

>
1√
2πσ

ˆ
J

e−t
2/2σdt− ε

2
, and

π[ω]n+M1
×m

{
1√

n+M1

M1+n−1∑
i=0

Sωi f(x) ∈ J

}

≤π[ω]n ×m(n)

{
1√
n

n−1∑
i=0

Sωi f(x) ∈ J1

}

≤π[ω]n × µ

{
1√
n

n−1∑
i=0

Sωi f(x) ∈ J1

}
+
ε

2
by Equation (7.9),

<
1√
2πσ

ˆ
J

e−t
2/2σdt− ε

2

where M(M1) is the measure with density PM1
T (1) and π[ω]n denotes that π only

changes with n-cylinders. And that concludes the proof.

Large Deviations and speed of the convergence results can also be given in m

with the same argument.

Theorem 7.4.6. (Quenched CLT) The random dynamical system (T,m) with maps

in T0 satisfies the quenched Central Limit Theorem for every f ∈ C∞(Y,R), that is

for π-almost every sequence ω

lim
n→∞

m

x ∈ Y :
Sωnf(x)− n

ˆ
fdµ

√
n

< c

 =
1√

2πσ2

ˆ c

−∞
e−t

2/2σ2

dt.

if the corresponding random dynamical system on a torus satisfies the averaged Cen-

tral Limit Theorem.
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Proof. To simplify the proof assume that
´
fdm = 0 since we can generalize the

result by plugging in f = f1 −
´
f1dm for a general function f1. We know that

the random dynamical system (T,m) satisfies the averaged Central Limit Theorem

for every f ∈ C∞(Y,R) with
´
fdm = 0, so the mean of the process m

(
Sωnf(x)√

n

)
with respect to the Bernoulli distribution π converges to the normal distribution

N (0, σ2), so the characteristic functions:

lim
n→∞

ˆ
ω∈ΩN

m

(
e
it
Sωnf(x)√

n

)
dπ = e−

1
2
t2σ2

.

To simplify the notation let Zn = m

(
e
it
Sωnf(x)√

n

)
and Zσ be the characteristic

function of the centered normal distribution with variance σ2. If lim
n→∞

Eπ[Zn] = Zσ

where EΩ is the expectation with respect to the Bernoulli measure π on the random

sequences in Ω, then we can compute an L2 estimate:

EΩ(|Zn − Zσ|2) = EΩ(|Zn|2 + Z2
σ − 2Zσ|Zn|)

= EΩ(|Zn|2 − Z2
σ + 2Z2

σ − 2Zσ|Zn|)

= EΩ(|Zn|2 − Z2
σ + 2Zσ(Zσ − |Zn|))

= EΩ(|Zn|2)− Z2
σ + 2Zσ(Zσ − EΩ(|Zn|))

Now, we give a bound for the right-hand side, first for Zσ −Eπ(|Zn|) and second

for EΩ(|Zn|2)− Z2
σ.

First bound: For Zσ −EΩ(|Zn|) we already know that the process |Zn| satisfies

the averaged Central Limit Theorem with a speed given in Theorem 7.3.1. The

Lemma 7.3.2 used in the proof gives the order of the convergence of the characteristic

functions. Thus we get

Zσ − Eπ(|Zn|) = O

(
1 + |t|3√

n

)
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Second bound: Since Y is a finite union of intervals in R we can consider it as

[0, 1] for now to easily calculate the numbers. Consider |Zn|2 as a random variable

itself of a Cartesian product system since

|Zn|2 =

[
m

(
e
it
Sωnf(x)√

n

)]2

=

(ˆ 1

0

e
it
Sωnf(x)√

n dx

)(ˆ 1

0

e
it
Sωnf(y)√

n dy

)
=

ˆ 1

0

ˆ 1

0

e
it
Sωnf(x)√

n e
it
Sωnf(y)√

n dxdy

=

ˆ 1

0

ˆ 1

0

e
it
Sωnf(x)+S

ω
nf(y)√

n dxdy

where

Sωnf(x)+Sωnf(y) = f(x)+f(y)+f ◦T1(x)+f ◦T1(y) . . . f ◦Tn−1◦T1(x)+f ◦Tn−1◦T1(y)

so can be considered as

F ω
n (x, y) = F (x, y) + F (T1(x), T1(y)) + . . .+ F (Tn−1 ◦ . . . T1(x), Tn−1 ◦ . . . T1(y))

where F (x, y) = f(x) + f(y). Furthermore, we can define (T1(x), T1(y)) by (T1 ×

T1)(x, y), and (T2 ◦ T1(x), T2 ◦ T1(y)) by (T2 × T2) ◦ (T1 × T1)(x, y) and so on.

Now we iterate the space [0, 1]×[0, 1] with maps Ti×Ti which can be considered as

maps on a torus by Ai =

 Ti 0

0 Ti

. Therefore, |Zn|2 is the characteristic function

of the process SωnF (x, y) on a torus. Such maps are defined in Chapter 4 and we

discuss in Theorem 4.2.3 that they satisfy the averaged Central Limit Theorem, too.

Since we have not gone over each step to give the proof we prefer to give it as a claim

in the theorem. So by the assumption given in the statement of the theorem we have

lim
n→∞

EΩ(|Zn|2) = lim
n→∞

EΩ

[
m2

(
e
it
SωnF (x,y)√

n

)]
= e−

1
2
t2σ2

T
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where m2 is the Lebesgue measure on a torus and σ2
T is the variation of the normal

distribution that the process on a torus converges. Now we need to calculate how it

is related to the variance of the process Zn. We know again from the straightforward

computation in Theorem 7.2.1 that

σ2 = m(f 2) + 2
∞∑
n=1

m(fPnf).

Similarly on a torus we have

σ2
T = m2(F 2) + 2

∞∑
n=1

m2(FPnTF )

=

ˆ 1

0

ˆ 1

0

F (x, y)2dxdy + 2
∞∑
n=1

ˆ 1

0

ˆ 1

0

F (x, y)PnT(F (x, y))dxdy

=

ˆ 1

0

ˆ 1

0

(f(y) + f(x))2dxdy

+ 2
∞∑
n=1

ˆ 1

0

ˆ 1

0

∑
ω

(F ) ◦ Tωn ◦ . . . Tω1(x, y)F (x, y)dxdy

=

ˆ 1

0

ˆ 1

0

(f 2(y) + 2f(y)f(x) + f 2(x))dxdy

+2
∞∑
n=1

ˆ 1

0

ˆ 1

0

(f ◦ Tn ◦ . . . T1(y) + f ◦ Tn ◦ . . . T1(x))(f(y) + f(x))dxdy

=

ˆ 1

0

f 2(y)dy + 0 +

ˆ 1

0

f 2(x)dx

+2
∞∑
n=1

ˆ 1

0

f ◦ Tn ◦ . . . T1(y)f(y)dy +

ˆ 1

0

f ◦ Tn ◦ . . . T1(x)f(x)dx

since

ˆ 1

0

ˆ 1

0

f ◦ Tn ◦ . . . T1(x)f(y)dxdy

=

ˆ 1

0

f ◦ Tn ◦ . . . T1(x)

ˆ 1

0

f(y)dydx = 0 by assumption that m(f) = 0,

= 2m(f 2) + 4
∞∑
n=1

m(f ◦ Tn ◦ . . . T1 · f)

= 2

(
m(f 2) + 2

∞∑
n=1

m(fPnf)

)
= 2σ2.
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where σ2 is the variance of the random process on [0, 1]. Therefore we have the first

term to be

EΩ(|Zn|2)− Z2
σ = EΩ

[
m2

(
exp(it

F ω
n (x, y)√
n

)

)]
−
[
exp(−1

2
t2σ2)

]2

= EΩ

[
m2

(
exp(it

F ω
n (x, y)√
n

)

)]
− exp(−1

2
t2(2σ2))

= EΩ

[
m2

(
exp(it

F ω
n (x, y)√
n

)

)]
− exp(−1

2
t2σ2

T)

which converges to zero for each t as n→∞ with again a speed of O

(
1 + |t|3√

n

)
by

Theorem 7.3.1. Therefore we have

EΩ

[∣∣∣∣m(eitSωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣2
]
≤ C

1 + |t|3√
n

which implies by Chebyshev’s Inequality A.0.4 that

π

{∣∣∣∣m(eitSωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣ ≥ ε

}
≤ Cε−2 1 + |t|3√

n
. (7.10)

The infinite sum of the probabilities on the left-hand side of the Equation (7.10) is

bounded by
∞∑
i=1

Cε−2 1 + |t|3√
n

which is not finite and also depends on t ∈ R. If it was

finite and existed for every t ∈ R then we could apply the Borel-Cantelli Lemma

A.0.6 to deduce that

π

{
lim
n→∞

∣∣∣∣m(eitSωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣ ≥ ε

}
= 0

which means the sequences for which we do not have the Central Limit Theorem has

zero π-measure which would conclude the quenched Central Limit Theorem.

Let En(t) denote the sequence of events

En(t) =

{
lim
n→∞

∣∣∣∣m(eitSωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣ ≥ ε

}
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Now we define subsequences of events En(t) say Enk(tk) and first show that Borel-

Cantelli argument can be applied to each subsequence and if we sum over these

subsequences to get back the original sequence we show that the sum is finite which

finishes the proof.

The subsequences are defined the following way: Define the set Jk ⊂ N×R to be

Jk = {(n, t) : 2k ≤ n ≤ 2k+1, |t| ≤ k}

Then Enk(tk) is equal to the terms of En(t) where (n, t) belongs to Jk. Then we have

∞∑
n=1

π(En(t)) =
∞∑
k=1

∑
(n,t)∈Jk

π(En(t)) ≤
∞∑
k=1

sup
(n,t)∈Jk

π(En(t)).

Thus we reduced the problem to showing that if the terms

sup
(n,t)∈Jk

π(En(t)) = π

{
sup

(n,t)∈Jk

{∣∣∣∣m(eitSωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣ ≥ ε

}}
(7.11)

are summable over k. The rest of the proof looks for a suitable upper bound for the

term in Equation (7.11).

First we define new sets that cover the Jks. We choose reference points first then

define smaller sets around these reference points so that the union of these small sets

cover Jk. Now fix the Jk so we have points (n, t) with 2k ≤ n ≤ 2k+1 and |t| ≤ k.

Denote these points by Ak = {2k, 2k + 1, . . . , 2k+1} and Bk = [−k, k]. We divide Ak

and Bk into smaller sets as follows. First we choose reference points to be

R(Ak) = {2k, 2k + [23k/4], 2k + [2 · 23k/4], 2k + [3 · 23k/4], . . . , 2k + [2k/423k/4] = 2k+1}

Similarly we choose reference points for Bk that are finitely many which are

R(Bk) = {−k,−k +
1

k
,−k +

2

k
, . . . ,−k +

k2

k
= k}
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Now according to these reference points we can define the small sets that each lie in

Ak and Bk accordingly. For each fixed n ∈ R(Ak) and t ∈ R(Bk) we define

Ak(n) = {m ∈ N : |n−m| ≤ 2k/4 + 1}

and

Bk(t) = {u ∈ R : |u− t| ≤ 1/k}.

We can consider the reference points as the centers of the small sets we define. If

we can consider all the sets with the given centers we cover all possibilities for n

and t. Here we use that for every n if |t| < log2 n then (n, t) ∈ Jk for k = blog2 nc

to define the reference points. As one can notice the union of these small sets

contains more than the original sets so we have for R(Jk) = R(Ak) × R(Bk) and

Jk(n, t) = Ak(n)×Bk(t) that

Jk = Ak ×Bk ⊂
⋃

(n,t)∈R(Jk)

Jk(n, t).

Therefore the quantity in Equation 7.11 is less then∑
(n,t)∈R(Jk)

π

{
sup

(n0,t0)∈Jk(n,t)

{∣∣∣∣m(eit0 Sωn0f(x)√
n0

)
− e−

1
2
t20σ

2

∣∣∣∣ ≥ ε

}}
Now we work on each term inside the sum and apply triangle inequality to the terms

obtained by adding and subtracting the terms that have n instead of n0 and t instead

of t0 and combine them suitably so we get

π

{
sup

(n0,t0)∈Jk(n,t)

∣∣∣∣m(eit0 Sωn0f(x)√
n0

)
− e−

1
2
t20σ

2

∣∣∣∣ ≥ ε

}

≤ π

{
sup

(n0,t0)∈Jk(n,t)

∣∣∣∣m(eit0 Sωn0f(x)√
n0

)
−m

(
e
it0

Sωnf(x)√
n

)∣∣∣∣ ≥ ε/4

}

+ π

{
sup

(n0,t0)∈Jk(n,t)

∣∣∣∣m(eit0 Sωnf(x)√
n

)
−m

(
e
it
Sωnf(x)√

n

)∣∣∣∣ ≥ ε/4

}
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+ π

{
sup

(n0,t0)∈Jk(n,t)

∣∣∣∣m(eitSωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣ ≥ ε/4

}
+ π

{
sup(n0,t0)∈Jk(n,t)

∣∣∣e− 1
2
t2σ2 − e− 1

2
t20σ

2
∣∣∣ ≥ ε/4

}
Now we work on each term. Note that the third term does not include (n0, t0) so the

supremum is simply

π

{∣∣∣∣m(eit0 Sωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣ ≥ ε/4

}
and by using the bound on such terms we have from Equation 7.10 we get

π

{∣∣∣∣m(eit0 Sωnf(x)√
n

)
− e−

1
2
t2σ2

∣∣∣∣ ≥ ε/4

}
≤ C(ε/4)−2 1 + |t|3√

n
.

The last term is independent from n and n0 so from the measure π. For k large

enough we have σ/k ≤ ε/4 and the terms t0 varies with |t − t0| ≤ 1/k so we have∣∣∣e− 1
2
t2σ2 − e− 1

2
t20σ

2
∣∣∣ ≤ ε/4 which gives an empty set so the term vanishes.

The first term has t0 fixed so we check the how the process itself differs with a

change in n:

π ×m

{∣∣∣∣ 1√
n
Sωnf(x)− 1√

n+m
Sωn+mf(x)

∣∣∣∣ ≥ ε/4

}
= π ×m

{∣∣∣∣∣
√

1 +m/n− 1√
n+m

Sωn+mf(x)− 1√
n
Sωn,n+mf(x)

∣∣∣∣∣ ≥ ε/4

}

≤ π ×m

{∣∣∣∣ 1

n+m
Sωn+mf(x)

∣∣∣∣ ≥ ε

2
√
n+m(

√
1 +m/n− 1)

}
+ π ×m

{∣∣∣∣ 1

m
Sωmf(x)

∣∣∣∣ ≥ ε
√
n

2m

}
≤ Ce−Cε

2n/m

by averaged Large Deviation result, Theorem 7.4.1 where Sωn,n+m represents the sum

is from n to n+m. Furthermore we can estimate the term

π

{
sup

(n0,t0)∈Jk(n,t)

{∣∣∣∣m(eit0 Sωn0f(x)√
n0

)
−m

(
e
it0

Sωnf(x)√
n

)∣∣∣∣ ≥ ε/4

}}
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with

1

ε
(π ×m)

{
sup

(n0,t0)∈Jk(n,t)

∣∣∣∣(eit0 Sωn0f(x)√
n0

)
−
(
e
it0

Sωnf(x)√
n

)∣∣∣∣2 ≥ ε/8

}

≤ 1

ε
(π ×m)

{
sup

(n0,t0)∈Jk(n,t)

|t0|
∣∣∣∣Sωn0

f(x)
√
n0

− Sωnf(x)√
n

∣∣∣∣2 ≥ ε/8

}

≤ 1

ε

∑
|n−n0|≤23k/4+1

(π ×m)

{∣∣∣∣Sωn0
f(x)
√
n0

− Sωnf(x)√
n

∣∣∣∣2 ≥ ε/16k

}

≤ C
∑

|n−n0|≤23k/4+1

e
−C n
|n−n0|

ε2/k2
.

The second term has n fixed while there is both t and t0 terms in exponents so we

can easily estimate that∣∣∣∣eit0 Sωnf(x)√
n − eit

Sωnf(x)√
n

∣∣∣∣ ≤ |t− t0|√
n
|Sωnf(x)|.

And by using the above estimation we get

π

{
sup

(n0,t0)∈Jk(n,t)

∣∣∣∣m(eit0 Sωnf(x)√
n

)
−m

(
e
it
Sωnf(x)√

n

)∣∣∣∣ ≥ ε/4

}

≤ 1

ε
(π ×m)

{
sup

(n0,t0)∈Jk(n,t)

∣∣∣∣eit0 Sωnf(x)√
n − eit

Sωnf(x)√
n

∣∣∣∣ ≥ ε/8

}

≤ 1

ε
(π ×m)

{
sup

(n0,t0)∈Jk(n,t)

|t− t0|√
n
|Sωnf(x)| ≥ ε/8

}
≤ 1

ε
(π ×m)

{
1√
n
|Sωnf(x)| ≥ kε/8

}
≤ Ce−Ck

2ε2/ε.

Now if we add all the terms over all reference points we get∑
(n,t)∈R(Jk)

π

{
sup

(n0,t0)∈Jk(n,t)

{∣∣∣∣m(eit0 Sωn0f(x)√
n0

)
− e−

1
2
t20σ

2

∣∣∣∣ ≥ ε

}}

≤ C
∑

(n,t)∈R(Jk)

(
(ε/4)−2 1 + |t|3√

n
+ e

−C n
|n−n0|

ε2/k2
+
e−Ck

2ε2

ε

)
≤ Ck22k/4/ε

(
k32−k/2/ε+ 23k/4e−C2k/4ε2/k2 + e−Ck

2ε2
)
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where n ∈ R(Ak) and t ∈ R(Bk). The sum over k is finite which makes it possible

to apply the Borel-Cantelli argument.
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CHAPTER 8

Random Induced Maps

The main goal of Chapter 8 is proving the Central Limit Theorem that induces T1

maps if the induced random dynamical system satisfies the Central Limit Theorem.

We use the method of [CG07] which they prove the result for a single map. We

generalize the method and the result to random dynamical systems.

8.1 Induced Maps of Deterministic Systems

Before introducing the system induced by random dynamical system first we review

the induced map of a dynamical system given by a single map and we give the
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Induced Map Theorem. The definition below is already given before for a single map

in Definition 2.2.5 to introduce the class T2(Y ) but here we define it again with a

more suitable notation so when we switch to the random dynamical system we can

use the same notation, that is T for the induced maps and S for the maps that

induces the map T .

Definition 8.1.1. A one-dimensional dynamical system given by the map S : X →

X is said to induce a map

T : Y → Y

such that Y ⊂ X where Y =
⋃∞
i=1 Yi is a disjoint union of intervals, and there exists

a function R : Y → N+ such that R|Yi = R(i) is constant and gives the number of

iterations of S that must be applied to x ∈ Yi to get T (x), so for all i ∈ N and for

all x ∈ Yi we have

T (x) = SR(i)(x)

The function R is the return time and the induced map T is the return map on

Y. We say S : Y → Y has summable return times if

ˆ
Y

Rdm =
∞∑
i=1

R(i)m(Yi) <∞

where R is the return time.

If a map S : X → X induces T : Y → Y then an abstract tower model can be

constructed on T : Y → Y which gives the same dynamics of S : X → X. Here Y is

called the base of the tower. Now we give the notation for an abstract tower model

as introduced in [You99].
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Let F be a map defined on a space ∆ where

∆ := {(x, `) ∈ Y × {0, 1, 2, . . .} : ` < R(x)}.

together with a reference measure m. Here Y is as above, the domain of the induced

system partitioned into {Y0,i = Yi}i=1,2,... and R : Y → N+ is the return time function

that is constant on each Y0,i.

The function F takes (x, `) simply to (x, `+ 1) if `+ 1 < R(x) and it maps each

YRi−1,i which is the top level of the tower directly above Y0,i bijectively onto Y , where

Ri = R(x) for x ∈ Y0,i. We define the correspondence of two systems F : ∆ → ∆

and S : X → X by the map π : ∆→ X defined by

π(x, `) = S`(x)

and it is easy to see that the picture below commutes:

F : ∆ −→ ∆

↓ π ↓ π

S : X −→ X

8.2 Induced Maps of Random Dynamical Systems

In the previous section, we see that for some systems we have the corresponding

abstract tower model that gives the same dynamics so it is enough to work on

the tower model to explain the dynamics of the original map S : X → X. Here

we introduce a random dynamical system S : X → X with some conditions on

the constituent maps {S1, . . . , SN} so that similarly we can introduce the induced
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random dynamical system of S : X → X, namely T : Y → Y and then define the

corresponding abstract tower model for the random dynamical system T : Y → Y

with constituent maps {T1, . . . , TN}.

Definition 8.2.1. Let S : X → X be a random dynamical system with constituent

maps {S1, . . . , SN} and with probability density (p1, . . . , pN). The random map S :

X → X is said to induce a random map

T :
∞⋃
i=1

Yi → Y

such that
⋃∞
i=1 Yi ⊂ Y ⊂ X where

⋃∞
i=1 Yi is a disjoint union of intervals such that

m(
⋃∞
i=1 Yi) = m(Y ), and there exists a function R : N → N+ such that R(i) gives

the number of iterations of S that must be applied to x ∈ Yi to get T(x) which is

independent from the first R(i)−1 choices of S meaning if Si(x) /∈ Y then Sj(x) /∈ Y

and Si(x) = Sj(x) for every j = 1, . . . , N , so for all i ∈ N and for all x ∈ Yi we have

T(x) = SR(i)(x)

which means in particular

Tj(x) = S
R(i)
j (x) for every j ∈ {1, . . . , N}

so the random dynamical system T has constituent functions {T1 = SR1 , . . . , TN =

SRN} with probability density (p1, . . . , pN) where SR is defined by SR(x)(x) = SR(i)(x)

for x ∈ Yi.

From now on we call S : X → X a hybrid system since it is deterministic as long

as it does not end up in Y and the number of iterations that is needed to come back
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to Y does not depend on which constituent map is applied, it is only given by the

partition {Yi}. Now assume that the hybrid system S : X → X induces the random

dynamical system T : Y → Y . We denote the sequences of symbols on X to be Ω

and on Y to be Ω0 to emphasize the maps they represent although they are the same

sequences.

We define the corresponding hybrid maps F1, F2, . . . , FN on an abstract tower ∆,

∆ := {(x, `) ∈ Y × {0, 1, 2, . . .} : ` < R(x)}.

which is defined to be exactly the same way of a tower of a single map since the

return map R : Y → N+ does not depend on which constituent map is applied.

We define each Fi to be identical on (x, `) if ` + 1 < R(x) which simply maps

(x, `) to (x, ` + 1). If ` + 1 = R(x), then we define Fi on (x,R(x) − 1) to be

Fi(x, `) = (Ti(x), 0). Let {F1, F2, . . . , Fn} be the set of constituent maps and F

denote the hybrid map on ∆ with the set of sequences of sumbols Ω∆. We assign

probability density (p1, p2, . . . , pN) to each symbol which gives the probability of

choosing each map respectively when we are iterating the system.

We claim that the hybrid maps system F on the tower ∆ gives the same dynamics

of S on X. For that we define π : Ω∆ ×∆→ Ω×X by

π(ω, x, `) = (ω, Sω′` ◦ . . . ◦ Sω′1(x)) ∈ Ω×X

for any finite ` sequence [ω′] of functions S since ` < R(x) so we have

F : (ω, x, `) −→ (σ(ω), Fω1(x, `))

↓ π ↓ π

S : (ω, Sω′` ◦ . . . ◦ Sω′1(x)) −→ (σ(ω), Sω1Sω′` ◦ . . . ◦ Sω′1(x))
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which commutes since if `+1 < R(x) then the right upper corner is simply (σ(ω), x, `+

1) which maps to (σ(ω), Sω1Sω′` ◦ . . . ◦ Sω′1(x)) under π where ω1ω
′
` . . . ω

′
1 is an arbi-

traty `+1 sequence, and if `+1 = R(x) then the right upper corner is (σ(ω), Tω1x, 0)

which maps to (σ(ω), Sω1Sω′` ◦ . . . ◦Sω′1(x)) = (σ(ω), S`+1
ω1

(x)) = (σ(ω), Tω1(x)) since

the S functions are identical if the process is not returning to Y so we can use Sω1

for every step before the return which is decided by the sequence ω.

Theorem 8.2.2. Assume
´
Rdm <∞. If the random dynamical system T on ∆0 has

a finite stationary measure µ0 whose density is uniformly bounded then the random

dynamical system F on ∆ has a finite stationary measure.

Proof. We simply push forward the measure defined on ∆0 to the tower. Let µ0 be

the stationary measure for the system {T1, T2, . . . , TN} on ∆0 with probability vector

(p1, p2, . . . , pn). Define µ′i =
∞∑
`=0

(Fi)
`
∗(µ0|{R > `}) where (Fi)

`
∗µ0(E) = µ0(Fi

−`E).

Since
dµ0

dm
is uniformly bounded, and

ˆ
Rdm < ∞ we have µ′i(∆) < ∞ for every

i = 1, 2, . . . , n. Then define µ′ =
N∑
i=1

piµ
′
i. We normalize µ′ to give the desired

stationary measure µ to the system with functions {F1, F2, . . . , Fn} on ∆.

We need the following theorem for the initial model we define in Chapter 2. The

connection of the theorem to the initial model is given in Chapter 9 . It is mainly

expanding the averaged Central Limit Theorem from the induced system to the

original system and is the main theorem of the section.

Theorem 8.2.3. Let T : ∆0 → ∆0 be a random dynamical system with constituent

maps T1, T2, . . . , TN , a probability vector (p1, p2, . . . , pN) and a stationary measure
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µ0. Let ∆ be the tower defined as above with respect to the return time function R

with
´
Rdm <∞.

Define f̂ : ∆→ {0, 1} to be a function on ∆ and set Sωn f̂ =
n−1∑
j=0

f̂ ◦Fj where F is

randomly chosen from {F1, F2, . . . , FN} and FR
i = Ti for i = 1, 2, . . . , N . We define

f : ∆0 → {0, 1} to be the function on ∆0 given by

f(y) =

R(y)−1∑
k=0

f̂ ◦ Fk

where F is randomly chosen but does not affect the value of f(y) since every con-

stituent map just takes the point to one level up for 0 ≤ k ≤ R(y) − 1. Set

Sωnf =
n−1∑
j=0

f ◦ Tj where T is randomly chosen according to the constituent maps

sequence ω. For almost every realization of constituent maps T on ∆0 if we have

lim
n→∞

(π × µ0)

{
fn − n

´
fdµ0√

n
< c

}
=

1√
2πσ2

0

ˆ c

−∞
e−x

2/2σ2
0dx,

then on ∆ we have

lim
n→∞

(π × µ)

{
f̂n − n

´
f̂dµ√

n
< c

}
=

1√
2πσ2

ˆ c

−∞
e−x

2/2σ2

dx.

The proof has two main steps. First we give how the process on the tower is

related to its induced process. Then by using the fact that the convergence to

normal distribution is in fact tight as given in Theorem 7.4.3 we expand the result

to the tower model.

First, let us give the drift of the original system in terms of the drift of the induced

system.
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Lemma 8.2.4. If the functions f̂ on ∆, f on ∆0 and measures µ, µ0 and return

time R as above in Theorem 8.2.3 then

ˆ
f̂dµ =

´
fdµ0´
Rdµ0

.

Proof. Let us give the proof for the characteristic functions on A ⊂ ∆0 since it is

easier to calculate but the general idea is similar for any map f on ∆0.

ˆ
χ̂Adµ = µ(A)

=
µ′(A)

µ′(∆)

=

(
N∑
i=1

piµ0(A)

)
/

(
N∑
i=1

pi

∞∑
`=0

(Fi)
`
∗µ0|R>`(∆)

)

= µ0(A)/

(
N∑
i=1

pi

∞∑
`=1

∞∑
j=`

µ0(∆0,j)

)

= µ0(A)/

(
∞∑
`=1

∞∑
j=`

µ0(∆0,j)

)

= µ0(A)/

(
∞∑
j=0

j∑
`=1

µ0(∆0,j)

)

= µ0(A)/

(
∞∑
j=0

jµ0(∆0,j)

)
= µ0(A)/

(ˆ
Rdµ0

)
=

ˆ
χAdµ0/

(ˆ
Rdµ0

)
.

Therefore we have

ˆ
χ̂Adµ =

´
χAdµ0´
Rdµ0

(8.1)
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Here is how two processes are related:

Theorem 8.2.5. For each f̂ on ∆ and for every sequence of maps , say F on ∆

and for µ-almost every point (x, `) ∈ ∆, there exists a function f on ∆0, a sequence

of maps, say T on ∆0 such that for every n ∈ N there exists m = m(x,F) ∈ N such

that

SFn f̂(x, `) = STmf(x)

where SFn f̂ is the sum of the first n iterations of F evaluated under f̂ on ∆ while

STmf is the sum of the first m iterations of T evaluated under f on ∆0, that is

STmf =
m−1∑
j=0

f ◦ Tω′j ◦ . . . ◦ Tω′1

and

SFn f̂ =
n−1∑
j=0

f̂ ◦ Fωj ◦ . . . ◦ Fω1

if T = (Tω′1 , Tω′2 , . . .) and F = (Fω1 , Fω2 , . . .).

Proof. Fix one realization of the constituent maps sayF = (Fω1 , Fω2 , Fω3 , . . .) . The

sum of the first n iteration of f̂ with respect to the fixed sequence F is denoted by

SFn f̂ and given by

SFn f̂(x, 0) = f̂(x, 0)+ f̂ ◦Fω1(x, 0)+ f̂ ◦Fω2 ◦Fω1(x, 0)+ · · ·+ f̂ ◦Fωn−1 ◦ . . .◦Fω1(x, 0).

Here we choose the special point (x, 0) ∈ ∆ instead of (x, `) to show the result. It is

enough to do that since for (x, `) with ` > 0 we can add `-many of the first map of the

sequence F to itself and define F ′ = (Fω1 , Fω1 , . . . , Fω1 , Fω2 , . . .) and start iterating

at (x, 0). Since this modification adds finitely many iterations and since it does not

change the point x, it is enough to show the result by starting at point (x, 0).
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We can also choose to iterate with the same function we start iterating from the

base when the image is on the levels of tower since the functions are identical as long

as the image is not in ∆0. Therefore we can write

Fωj ◦ . . . ◦ Fω2 ◦ Fω1(x, 0) = Fω1 ◦ . . . ◦ Fω1 ◦ Fω1(x, 0)

where Fω1 is iterated j times on the right-hand side of the above equation as long as

Fωk ◦ . . . ◦ Fω1(x, 0) /∈ ∆0 for k = 1, . . . , j, that is R(x) < j.

To simplify the notation let x0 = (x, 0), x1 = F
R(x0)
ωR(x0)

(x0), x2 = F
R(x1)
ωR(x1)+R(x0)

(x1)

and so on, where R(xi) is the return time of xi ∈ ∆0 and does not depend on F .

When we write F
R(x1)
ωR(x1)+R(x0)

(x1) the subindex gives the position of the map F on

the sequence F so it decides which constituent map is used to iterate the system

while the upper index gives how many times the function is iterated. Then the sum

becomes

SFn f̂(x0) = f̂(x0) + . . .+ f̂ ◦ FR(x0)−1
ω1 (x0)

+ f̂ ◦ FR(x0)
ωR(x0)

(x0) + . . .+ f̂ ◦ FR(x1)−1
ωR(x0)

(x1)

+ f̂ ◦ FR(x1)
ωR(x1)+R(x0)

(x1) + . . .+ f̂ ◦ FR(x2)−1
ωR(x1)+R(x0)

(x2)

+ . . .

+ f̂ ◦ FR(xm)
ωR(xm)+···+R(x0)

(xm),

= f̂(x0) + . . .+ f̂ ◦ FR(x0)−1
ω1 (x0) + f̂(x1) + . . .+ f̂ ◦ FR(x1)−1

ωR(x0)
(x1)

+ f̂(x2) + . . .+ f̂ ◦ FR(x2)−1
ωR(x1)+R(x0)

(x2) + · · ·+ f̂(xm+1).

where m = m(n, x0,F) is the number of returns to the base in first n iterations of

the constituent maps sequence F starting at x0 ∈ ∆0. For now let us assume that

we choose n so that the process ends up in the base after the n iterations of F . It
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is easy to show that the difference between a process with any n and a process with

such n that end up in the base converges to zero in π × µ.

In the sum above note that the functions are of the form

f̂(xi) + . . .+ f̂ ◦ FR(xi)−1
ωR(xi−1)

(xi) = f(xi)

for some 1 ≤ i ≤ m which is a function on ∆0 since the sum only depends on xi ∈ ∆0.

Also the functions of the form FR can be considered as follows:

FR
ωR(x0)

= Tω′0 , FR
ωR(x1)+R(x0)

= Tω′1 , FR
ωR(x2)+R(x1)+R(x0)

= Tω′2 , . . .

so we have

x1 = Tω′0(x0), x2 = Tω′1(x1), x3 = Tω′2(x2) . . .

Then we define the sequence T = (Tω′0 , Tω′1 , Tω′2 , . . .) that depends on F and x0.

Therefore for each F and for each x0 ∈ ∆0 there exists a sequence ω′ in Ω0 so that

there exists a corresponding sequence T of functions T such that for every n ∈ N there

exists m = m(n, x0,F) with SFn f̂(x0) = STmf(x0) where T = (Tω′0 , Tω′1 , Tω′2 , . . .)

.

Now after analyzing how the original and the induced systems are related let us

go back to what we want to show. We want to prove the system on the tower satisfies

the Central Limit Theorem so we fix a sequence ω ∈ Ω∆ and denote the sequence of

maps obtained by the fixed ω by F so F = (Fω1 , Fω2 . . .). We rewrite the process on

the tower obtained by the sequence F by using the corresponding process T on ∆0.

Again assume that
´
f̂dµ = 0 to simplify the calculations. Therefore the process

SFn f̂√
n

(x, 0)
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can be approximated by

STmf√
n

(x)

where m is the largest integer such that RTm(x) ≤ n where Rm is the sum of the

return times of first n iterates of T .

Since µ0 is ergodic we also have by Birkhoff’s Ergodic Theorem that

1

m
RTm(x) =

1

m
R ◦Fm(T , x)→

ˆ
R(x)d(π × µ0) =

ˆ
Rdµ0

and since the system is ergodic this is equal to µ(∆0) by Kač’s Lemma A.0.7. Then

we can approximate n = RTm(x) with µ(∆0)m. Therefore it is enough to show that

the process

STmf√
n

(x)

is converging to the normal distribution N (0, σ) with the measure µ′ given by dµ′ =

χ∆0Rdµ. We prove it in the following theorem which concludes also the Theorem

8.2.3. Note that the sequence mn given in the following theorem corresponds to

m(x,F , n) defined above and is approximated by bn/µ(∆0)c for our case so mn/n

converges to one.

Theorem 8.2.6. Let (Y, µ0,T) be an ergodic probability preserving random dynam-

ical system, and let f : Y → R. Assume the process Sωnf/
√
n converges to normal

distribution N with tight maxima in average. Let m1,m2, . . . be a sequence of inte-

ger valued functions on Ω × X such that mn/n converges to 1 in probability. Then

Sωmnf/
√
n also converges to N for any absolutely continuous measure µ′ with respect

to µ0.
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Proof. We show that for any ε > 0, δ > 0 we have

(π × µ)

{
(ω, x) :

∣∣∣∣Sωmnf(x)− Sωnf(x)
√
n

∣∣∣∣ ≥ ε

}
≤ 2δ

Then convergence to the normal distribution N with respect to π × µ′ follows from

Eagleson’s Theorem [Eag76].

We have that the convergence of Sωnf/
√
n to normal distribution is with tight

maxima so there exists c > 0 such that for all n ∈ N we have

(π × µ0)

{
max

1≤k≤n
|Sωnf | ≥ c

√
n

}
≤ δ.

Let r ∈ (0, 1) be small enough so that d
√

2rne ≤ ε
√
n

2c
for all large enough n and

define a sequence sn to be sn = d(1− r)ne. Since mn/n converges to 1 in probability

we have for large n that (π × µ0){(ω, x) : |mn(ω, x)− n| > rn} ≤ δ. Then we get

(π × µ0)

{∣∣∣∣Sωmnf(x)− Sωnf(x)
√
n

∣∣∣∣ ≥ ε

}
≤ δ + (π × µ0)

{∣∣∣∣Sωmnf(x)− Sωnf(x)
√
n

∣∣∣∣ ≥ ε with mn ∈ [(1− r)n, (1 + r)n]

}
.

Let (ω, x) belong to that last set. Then there exists m ∈ [(1− r)n, (1 + r)n] so that

|Sωmf(x)− Sωnf(x)| ≥ ε
√
n. Since sn = d(1 − r)ne ≥ (1 − r)n and it is the smallest

integer in that set so sn ≤ m so we should have
∣∣Sωmf(x)− Sωsnf(x)

∣∣ ≥ ε
√
n/2 or∣∣Sωnf(x)− Sωsnf(x)

∣∣ ≥ ε
√
n/2. Then we choose the maximum over all possibilities so

we get

(π × µ0)

{∣∣∣∣Sωmnf(x)− Sωnf(x)
√
n

∣∣∣∣ ≥ ε

}
≤ δ + (π × µ0)

{
max

0≤k≤d2rne

∣∣Sωsn+kf(x)− Sωsnf(x)
∣∣ ≥ ε

√
n/2

}
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and then by the choice of r we have ε
√
n/2 ≥ c

√
2rn so

(π × µ0)

{∣∣∣∣Sωmnf(x)− Sωnf(x)
√
n

∣∣∣∣ ≥ ε

}
≤ δ + (π × µ0)

{
max

0≤k≤d2rne

∣∣∣Sω′k f(y)
∣∣∣ ≥ ε

√
n/2

}
which is less than 2δ since c is the constant that satisfies the tight maxima property.
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CHAPTER 9

Corresponding Models

9.1 The Corresponding Random Dynamical Sys-

tem for the Hybrid Model

In Chapter 9 we show that the Markov process defined in Chapter 2 can be realized

as a random dynamical system. The idea is to append the jump interval to [0, 1] and

on this new space define two maps, one which simulates the situation when there

is a jump and the other map which simulates the no jump situation. We assign

probability p to the jump map and probability 1− p to the no jump map. Then to
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study the drift of the system to the right on the lattice we simply study the number

of visits to the jump interval.

Definition 9.1.1. For I = [0, 1], let τ : I → I be the local map that belongs to

T1(I), U be the jump interval and ϕ : U → [0, 1] be the jump map and p is the jump

probability for the Markov process as defined in Chapter 2. Let Y = [0, 1] ∪ Ũ where

Ũ is simply the copy of the jump interval so m(Ũ) = m(U). Define id : U → Ũ to

be the identification and ϕ̃ : Ũ → [0, 1] so that ϕ = ϕ̃ ◦ id, m denotes the Lebesgue

measure on Y . We define the constituent maps T0, T1 first on [0, 1] as follows

T0(x) = τ(x) for x ∈ [0, 1],

T1(x) =


τ(x) if τ(x) 6∈ U,

id ◦ τ(x) if τ(x) ∈ U.

And for x ∈ Ũ we define both of the maps by first moving the point to [0, 1] with

ϕ̃ and define the same way as they are defined in [0, 1], namely Ti(x) = ϕ̃ ◦ Ti(x)

for i = 0, 1 if x ∈ Ũ . Here T1 is the jump map and T0 is the no jump map with

probabilities p and 1− p respectively. We call the random dynamical system given by

constituent maps T0 and T1 with Bernoulli measure obtained by the probability vector

(1−p, p) the corresponding random dynamical system of the Markov process defined

in Chapter 2.

Now we are ready to show that the new maps system consists of maps in T1(Y )

with respect to a common partition β. For that assume α is the partition for the

original map τ with the properties given in Model I. We define a new partition

on [0, 1] by using the partition element of α and refining it if a partition element
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intersects the jump interval U and on Ũ again by using the partition α since Ũ is

only an identification of U and refining it with the map ϕ̃. Since τ ∈ T1(I) both

of the maps T0 and T1 are piecewise uniformly expanding because we assume that

|τ ′| · |ϕ̃′| > λ > 1.

The random dynamical system on Y given by the constituent maps {T0, T1}

represents the Markov process Jn(x) on N× [0, 1] given in Model I. The transitions

can simply be given by

(i, x)→


(i,T(x)) if x ∈ [0, 1]

(i+ 1,T(x)) if x ∈ Ũ

where T is chosen from {T0, T1} with probability distribution (1− p, p).

9.2 The Drift Rates and Limit Theorems of the

Hybrid Models

Assume for simplicity that we start at site 0. Note that the Markov process can be

given by iterating the corresponding random dynamical system and by counting how

many times the system ends up in the jump interval, so we have

Jn(x) =
n−1∑
k=0

χŨ ◦ T
i(x).

Two random variables Jn and
∑n−1

k=0 χŨ ◦ Ti are in fact same as functions of x.

Furthermore, the sample space of Jn consists of the jump sequences. Note that the

jump sequences do not depend on x, we can first fix a jump sequence and then start
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iterating the process. We check the next entry of a jump sequence only if the process

ends up in the jump interval R. Let ω ∈ Σ be a fixed jump sequence and x ∈ I be

fixed. Let nk be the subsequence of n so that the nk iterates of the process is in R,

so k is the index of the jump sequence. Since x and ω are fixed the subsequence is

well-defined. Then there exists a sequence of random maps ω′ that depends on both

ω and x such that Tnk = T0 if k = 0, and Tnk = T1 if k = 1. The other entries of the

random maps sequence can be chosen to be T0 or T1. Note that the ρ measure of any

fixed cylinder of jump sequences is same as the π measure of the set of corresponding

random map sequences. Therefore, for any fixed jump sequence ω ∈ Σ if we consider

J ω
n (x) also as a function of ω we have

J ω
n (x) =

n−1∑
k=0

χŨ ◦ Tω′k ◦ . . . ◦ Tω′1(x)

where ω′ ∈ Ω is the corresponding random maps sequence of ω ∈ Σ. Thus, whenever

we prove a result for almost every jump choices of the process Jn(x) we can prove

the same result for the process
∑n−1

k=0 χŨ ◦ Ti(x) for π almost every random maps

sequence.

First we prove the drift rate. By using Theorem 4.1.1 together with Corollary

6.2.4 we know that we have an ergodic stationary measure µ for the random dynam-

ical system. By Ergodic Theorem we conclude that for µ-almost every x ∈ Y and

for π-almost every sequence of maps T we have

1

n

n−1∑
k=0

χŨ ◦ T
i(x)→ µ(Ũ)

so α = µ(Ũ) is the Drift Rate. Since µ has the positive density h(x) and T is mixing

the drift rate result also holds for m-almost every x. This proves Theorem 2.3.1 for
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Model I. To give the drift rate result for the center of mass

lim
n→∞

C(µn)

n
= lim

n→∞

1

n

n∑
i=0

i µn(Xi)

again we consider the corresponding random dynamical system. Here
∑n

i=0 i µn(Xi)

is the expected number of jumps in the first n iteration which can be easily given for

the corresponding random dynamical system by

ˆ
Ω

ˆ
Y

n∑
i=0

χŨ ◦F i(ω, x)dπdµ = nµ(Ũ)

since π × µ is F -invariant. Then in fact
C(µn)

n
= α for every n.

The Central Limit Theorem for Model I follows from Theorem 7.4.5 which is

given for m-almost every x ∈ Y together with the equality of the Markov process

and the random dynamical system given above. Note that we need the Central Limit

Theorem for non-stationary measures since the process Jn is not restricted to the

stationary measure of the random dynamical system. However, the initial distribu-

tion is absolutely continuous so it is enough to give the results for the corresponding

random dynamical system with respect to Lebesgue.

The maps given in Model II have induced maps that lie in T1(I), so say ς ∈ T2(I)

with ς : I → I and let τ : Y → Y be the map induced by ς with return time

map R : Y → N, for some measurable set Y ⊂ I. The only extra condition for

such Markov processes is that the jump interval is placed to the base Y and the

jump map is ϕ : U → Y so it is mapped to the base Y . This condition is not that

restrictive since we know that most of the maps that are modeled with such induced

systems can have the whole set I as their base, see [You99] for an example. Then
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we can consider the Markov process only on the base so with local dynamics given

by τ : Y → Y . We define the constituent maps T0, T1 in a similar way. If we define

S0, S1 to be TR0 , T
R
1 respectively then the new set of constituent maps {S0, S1} on I

satisfies the properties of maps given in Chapter 8, Definition 8.2.1. Therefore we

can continue with the results given for such maps.

First the stationary measure µ is given as the pushforward measure of the sta-

tionary measure of the base µ0 and the jump set is in the base Y therefore the drift

rate of the random dynamical system S given by the constituent maps S0, S1 is

1

n

n−1∑
k=0

χŨ ◦S
i(x)→ µ(Ũ) = µ0(Ũ)/

ˆ
Rdµ0 = µ0(Ũ)/µ(Y ) = α/µ(Y )

where α is the drift rate of the induced system. The drift rate for the center of mass

can be given as before and the Central Limit Theorem for the random dynamical

system S is a result of Theorem 8.2.3.

The other limit theorems for the random variable Jn(x) can be given with the

same idea, including the rate of convergence to the normal distribution, tight maxima

and large deviation estimate. For the quenched Central Limit Theorem again recall

the correspondence of jump sequences and the random maps sequences, then the

result follows.

9.3 Example: Pomeau-Manneville Maps

Lastly we give a concrete example for a hybrid system and give the corresponding

random dynamical system. We have a Pomeau-Manneville map as the local dynamics
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defined by

ς(x) =


x+ 2αxα+1 if x ∈ [0, 1

2
)

2x− 1, if x ∈ [1
2
, 1]

where x0 = 0 is the only neutral point with f ′(0) = 1. Let Z = [0, 1
2
) be the

neighborhood of x0 = 0, and divide Y = [1
2
, 1] into partitions:

Y1 = [q1, 1] where ς(q1) = p1 with p1 =
1

2
, so q1 =

3

4

Y2 = [q2, q1) where ς(q2) = p2 with p1 = ς(p2), so p2 ≈ 0.2850 and q2 ≈ 0.6425

Y3 = [q3, q2) where ς(q3) = p3 with p2 = ς(p3), so p3 ≈ 0.1784 and q3 ≈ 0.5892

...

The return map corresponding to the above partition is τ = ςR where R|Yj = j

and the graph of τ is given below. Let U = [13
16
, 14

16
] and V = [10

16
, 11

16
] be the jump

Figure 9.1: Return function τ with α = 0.5 with respect to the partition {Yj}

intervals to right and left respectively. In previous chapters we define the hybrid

models only with a jump to right but it can be generalized to systems with jumps

to a finite distance sites as long as the jump intervals do not intersect. Here we have

U ∩ V = ∅. Let φ : U → [1
2
, 1] defined by φ(x) = x3 and ψ : V → [1

2
, 1] defined by

ψ(x) = x3 + 1
2
. The isometries are given by iU(x) = x + 3

16
and iV (x) = x − 3

16
so

Û = [1, 17
16

] and V̂ = [ 7
16
, 1

2
] and Y = [ 7

16
, 17

16
].
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We define the random maps. The map TUV simulates the situation of jumps for

both intervals U and V and is given on [1
2
, 1] by

TUV (x) =



τ(x) + 3
16
, if x ∈ [1

2
, 1] and τ(x) ∈ U ,

τ(x)− 3
16
, if x ∈ [1

2
, 1] and τ(x) ∈ V ,

τ(x), if x ∈ [1
2
, 1], but τ(x) /∈ U ∪ V ,

and TUV (x) = TUV (x3) for x ∈ Û and TUV (x) = TUV (x3 + 1
2
) for x ∈ V̂ . The graph

of TUV on [ 7
16
, 17

16
] is given below.

Figure 9.2: The corresponding TUV : [ 7
16
, 17

16
] 	 of the return map τ

If we look at the graphs of the map TUV restricted to the right jump interval Û

and restricted to the left jump interval V̂ respectively below we see the same graph

that we have on the set [1
2
, 1] but with a different scaling.

Figure 9.3: TUV map restricted to Û = [1, 17
16

]
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Figure 9.4: TUV map restricted to V̂ = [ 7
16
, 1

2
]

The map TU simulates the situation when there is jump on U to right but no

jump on V to left. Similarly TV is a jump on V and no jump on U map. The map

T∗ is the no jump map for both intervals U and V . It is more clear with the pictures

that the new maps we define for the random dynamical system {TU , TV , TUV , T∗} are

countably piecewise expanding. Here are the explicit definitions of the other maps:

TU(x) =


τ(x) + 3

16
, if x ∈ [1

2
, 1] and τR(x) ∈ U ,

τ(x), if x ∈ [1
2
, 1], but τ(x) /∈ U ,

and TU(x) = TU(x3) for x ∈ Û , and TU(x) = TU(x3 + 1
2
) for x ∈ V̂ .

TV (x) =


τ(x)− 3

16
, if x ∈ [1

2
, 1] and τ(x) ∈ V ,

τ(x), if x ∈ [1
2
, 1], but τ(x) /∈ V ,

and TV (x) = TV (x3) for x ∈ Û , and TV (x) = TV (x3 + 1
2
) for x ∈ V̂ . As one can notice

that on Û ∪ V̂ each constituent map first takes the point back to [1
2
, 1] by jump maps

then acts on the point as defined on [1
2
, 1].

T∗(x) =

{
τ(x)− 3

16
, if x ∈ [1

2
, 1] ,

and T∗(x) = T∗(x
3) for x ∈ Û , and T∗(x) = T∗(x

3 + 1
2
) for x ∈ V̂ .
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If the probability of jumping right is given to be p ∈ (0, 1) and probability of

jumping to left is q ∈ (0, 1) then the probability distribution on the constituent

maps {TU , TV , TUV , T∗} is given by p(1− q), q(1− p), pq, (1− p)(1− q) respectively.
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Some Equations and Calculations

Proposition A.0.1 (Cauchy’s Inequality). For vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn) we have (
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)

where the equality holds if x = cy for some constant c ∈ R.

Example A.0.2. We give an averaged version of Cauchy’s Inequality. Our main

interest is in fact the equality. So let x, y be a tuple of vector with probability p1 and

a, b be another tuple of vector with probability p2 where p1 + p2 = 1. It is easy to

140



APPENDIX A

show that(
p1

n∑
i=1

xiyi + p2

n∑
i=1

aibi

)2

≤

(
p1

n∑
i=1

x2
i + p2

n∑
i=1

a2
i

)(
p1

n∑
i=1

y2
i + p2

n∑
i=1

b2
i

)

by using the original Cauchy’s Inequality. If we distribute the terms and combine in

a suitable way to check the condition for an equality we see that there exists c ∈ R

such that
x

y
=
a

b
= c.

The Berry-Essen’s Theorem is stated in different ways, as it is proved indepen-

dently by two mathematicians, Andrew C. Berry (in 1941) and Carl-Gustav Esseen

(1942). We use the notation given in the book of V. V. Petrov, see [Pet85] and give

only one inequality which is used to prove the Berry-Essen’s Theorem.

Theorem A.0.3 (Essen’s Inequality). Let X1, . . . , Xn be independent random vari-

ables such that E[Xj] = 0, E|Xj|3 < ∞ for j = 1, . . . , n. If σ2
j = E[X2

j ], Bn =∑n
j=1 σ

2
j , and Fn(x) = P

{
B
−1/2
n

∑n
j=1 Xj < x

}
, Ln = B

−3/2
n

∑n
j=1E|Xj|3 then

sup
x
|Fn(x)− Φ(x)| ≤ ALn (A.1)

for some constant A, where Φ(x) =
1

2π

ˆ x

−∞
e−t

2/2dt.

Now we give some inequalities from probability theory.

Theorem A.0.4 (Chebychev’s Inequality). Let X be a random variable in some

probability space. Then for any real number λ ∈ R,

P(|X| ≥ λ) ≤ E(X2)

λ2
.
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Theorem A.0.5. Let {Xn} be a nonnegative submartingale and λ > 0. Then for

any n ≥ 0

P( max
0≤k≤n

≥ λ) ≤ E(Xn)

λ

Lemma A.0.6 (Borel-Cantelli I). Let (En) be a sequence of events in some proba-

bility space. If the sum of the probabilities of the events En is finite

∞∑
n=1

P(En) <∞

then the probability that infinitely many of them occur is zero, that is

P
(

lim sup
n→∞

En

)
= 0.

Lemma A.0.7 (Kač’s Lemma). Let (Ω,B, µ) be a probability space and A ∈ B be of

positive measure. Let µA be the conditional probability measure defined by

µA(B) :=
µ(A ∩B)

µ(A)
, ∀B ∈ B.

Let T : Ω→ Ω be a measure preserving map and let τA(x) be the first return time of

x to A Then we have

E(τA) :=

ˆ
A

τA dµ = µ({τA < +∞}).

In particular, when the system is ergodic we have

EA(τA) :=

ˆ
A

τA dµA =
1

µ(A)
.
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