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Abstract

In this thesis we prove statistical properties of dynamical systems on a lattice with
randomly occurring jumps. The original model of this type, called a hybrid system,
was introduced by E. Kobre and L. S. Young in 2007. We use different methods to
derive the drift rate and the averaged Central Limit Theorem. We generalize their
results to piecewise uniformly expanding maps with countable partitions. We obtain
an upper bound for the speed of convergence in the Central Limit Theorem and
prove that the convergence is with tight maxima. We prove Large Deviation results.
We also prove a quenched Central Limit Theorem, subject to a condition that can
be verified following existing techniques for maps that are sufficiently expanding.
Finally, we expand the drift rate results and averaged Central Limit Theorem to

certain non-uniformly expanding systems.
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CHAPTER 1

Introduction and Historical Remarks

1.1 Introduction

Statistical mechanics provides a framework for relating the microscopic properties of
individual atoms and molecules to the macroscopic bulk properties of materials that
can be observed in everyday life. The ability to make macroscopic predictions based

on microscopic properties is the main goal of statistical mechanics.

Particle systems, as they appear in statistical mechanics, have been an impor-

tant model motivating much development in the field of Dynamical Systems. While



1.1. INTRODUCTION

these are deterministic systems in the microscopic level, the evolution law is too

complicated. Instead one uses a stochastic approach to such systems.

More generally ideas from statistical mechanics have been brought to the setting
of dynamical systems by Y. Sinai [Sin68], D. Ruelle [Rue78] and R. Bowen [Bow70]
in the 1970s. The objects they introduced are called SRB measures and they play

an important role in the ergodic theory of dissipative dynamical systems.

On the other hand corresponding problems have been studied also in the context
of the theory of random maps which was much developed by Y. Kifer, [Kif98] and
L. Arnold, [Arn03]. The main idea of their approach is that evolution of many
physical systems can be better described by compositions of different maps rather
than by repeated application of exactly the same transformation. Y. Kifer proved
the existence of equilibrium states for random uniformly expanding systems. This
theory is applied to random networks, fractal dimensions of random sets and other

models.

In this dissertation we combine these two approaches with a model given by
E. Kobre and L. S. Young in [KY07]. Some other results in this direction can be
found in [CDO09], [Len06]. The common goal of their approach is closing the gap

between deterministic and stochastic dynamics.

The model in [KY07] has an extended phase space given by a lattice structure and
moving particles on that lattice. The dynamics of particles is defined by microscopic
rules. In particular, the local dynamics is given by iterating the same piecewise

uniformly expanding circle map. They introduce random jumps from one node of
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the lattice to another. The jumps give the macroscopic behavior of the particle
and depend on the state of the local dynamics. The main question is ”What can
we say about the global behavior of the particle on the lattice by looking at the
local behavior?”. In that sense the model is an attempt to understand the particle

systems.

One of the main goal of our work is generalizing the local dynamics of the model
given in [KY07]. We are able to prove the result for processes with local dynamics
that are given by piecewise uniformly expanding interval maps with countably many
partition. We prove the drift rate and Central Limit Theorem for these maps. This
extends the results to a more general class of maps. These maps may have non-
expanding parts, but they induce uniformly expanding interval maps (See Chapter

2 for the definition).

We are also interested in obtaining more information about the statistical be-
havior of these models. We show the speed of the convergence in the Central Limit
Theorem is 1/4/n. We prove that the convergence in the Central Limit Theorem has
a property called “tight maxima” which is stronger than only converging to a normal

distribution. We also give the Large Deviation estimate.

Our work uses a different method than [KY07]. We use Perturbation Theory
which is in general used for deterministic dynamical systems. We show that with
some modifications the traditional methods for deterministic dynamical systems can

be used in the stochastic set up.

In this work we also attempt to give the Central Limit Theorem in the quenched
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sense. The averaged approach is the first possibility to understand a hard problem.
The quenched result helps to understand more of the behaviour of the process. In
Chapter 7, we are able to prove the quenched Central Limit Theorem for piecewise
uniformly expanding random dynamical systems subject to a condition on the higher
dimensional dynamics. We expect that the condition to be satisfied for our random
maps by following the method of [KLO05]. The higher dimensional maps that we

consider are discussed at the end of Chapter 4.



CHAPTER 2

Setting and Results

In Chapter 2 we describe the model and state the results. This model was first
introduced by L. S. Young and E. Kobre in [KY07]. Kobre and Young consider
identical expanding circle maps as local dynamics of a lattice system. We describe
first the general model of [KY07]. Then we introduce special cases of this model

where our results apply. These special cases are more general than those considered

in [KY07].

Remark 2.0.1. The system that we consider lives on a lattice indezxed by, say, Z.
After describing it, in order to keep the notation simpler, we continue with a lattice

indexed by N. See Important Remark on page 7.
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2.1 The General Hybrid System

The general hybrid model is given on a lattice where we place a local dynamics
at each node. The local dynamics is given by a deterministic map and the global
dynamics is a result of random jumps from one node to another. During the iteration
of the deterministic map in one node, the point may jump to a neighbor node with

some probability, depending on its present state. Below is the formal description.

Let I := [0,1], X := I¢ and Z the set of integers. Consider a one dimensional
lattice indexed by Z where each node is a copy of X. We denote the i*" copy of X in
the lattice by X; for i € Z. For each i € Z the local (deterministic) dynamics is given
by a map 7; : X; — X;. For each i € Z we define four subsets L;; and R;; of X;, j =
1,2, with R;; and R; disjoint. The jump maps are ¢;; : Riy C X; = Liy11 C X
and ;o Rig C X; — Li—1o C X;—1. We call R;; and L;; the outgoing, respectively

mecoming, jump sets.
The jump probabilities are 0 < p;; <1, j =1, 2.

Here is how the system evolves. Let x¢ € X, @ € Z, be the initial state. One step
of the dynamics consists of the following: we apply the map 7; and check whether
Ti(xo) € X; is in the jump set R;; U R;s C X;. If not, then the evolution continues
from 7;(x¢). Otherwise, the point can jump to a neighboring site, according to the
following rule. If 7;(zg) € R;; then there are two possibilities: with probability p;
the point jumps to the right node to ¢;1 (7:(z0)) € Lit11 C X;41 and with probability
1 — py it stays at 7;(xg) € Ry C X;. If 73(xg) € Rz then with probability ps the

point jumps to the left to @(7i(z0)) € Li—12 C X;—1 and with probability 1 — p;s it
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stays at 7;(zo) € Rip C X;.

We keep iterating the system according to this rule. We study the statistical

properties of the system on U;c7.X;.

More generally, one can define the process with more than two jump intervals,

and the jump maps need not to be to the neighboring sites.

Important Remark (approach, notation from now on). Our approach is to
translate the hybrid dynamics into a random dynamical system, following [KY07].
For simplicity, we state the results and explain the method of proof below for dynamics
on UienX;, with only one jump interval, to the right. Here N = {0,1,2,...} is the
set of natural numbers. For this, one-sided case, the translation yields two maps,

applied randomly. If there are T jump intervals then one needs 27 maps.

The statements of the results presented below adjust, mutatis mutandis, to the
general case. The proofs are given already for arbitrary finite random systems, so

need no modification.

Therefore, from now on the jump maps are p; : R; C X; — L1 C X;11 with

Jump probabilities p;, where v € N.

The process can be seen as a Markov process on the state space X = Xy U X; U
X5 U . ... Since each point in X belongs to only one X; which is just a copy of X,
we identify X with N x X. Then each point on X" can be given as (i, z) where i € N
indicates the location in the lattice and x € X indicates the particular point in Xj;.

When the process is at a point of X; for some i € N, we say the system is at site i.
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The transition probabilities IP for the Markov process are given by

1
P((i, z), (i, 7i(x))) =

1 — Pi, if Tl(.flT) S RZ

y if TZ(SC) ¢ Ri,

0, ifnx)é¢ R,
P((3,2), (i + 1, pi(7:(2)))) =
pi, if1i(z) € R;.

and zero otherwise.

If a point (4, x) in site X; moves to a site X;,1 under this process we say the point
r € X; “jumped to the right”. Whenever a point x € X; ends up in R; we decide

whether the point jumps to the right or not.

Definition 2.1.1. Consider the Markov process on X defined above. For any point
(i,z) € X we introduce the random variable J,(i,x) which is the number of times

the point x € X; has jumped to the right in the first n iterates of the Markov process.

Definition 2.1.2 (drift rates). Let (i,z) € X be the initial state of the Markov

process. Define the pointwise drift rate of (i,z) to be a € R if

lim M =a a.s.
n—oo n

Remark 2.1.3. The almost surely in the above definition refers to the choices one

makes when entering the jump intervals.

To start the process we give an initial probability distribution pg on the state

space X of the Markov process. The measure of the i** copy of the lattice under s,

8



2.2. SOME SPECIAL HYBRID SYSTEMS

to(X;), is called the weight of site i with respect to pg. We are also interested in how
the initial distribution pg evolves under the Markov process. Denote by p1, po, . .. the
probability distributions on X after the 15,27 . . iterates of the Markov process.

One can also describe the asymptotic behaviour of the center of mass:

Definition 2.1.4 (center of mass). Let u be a probability distribution on X. Define
the center of mass of u to be

) = i p(X;)

whenever the sum converges absolutely.
Definition 2.1.5 (absolutely continuous distribution). We say that p is an abso-
lutely continuous distribution on X if u|x, is absolutely continuous with respect to

the (normalized) Lebesgue measure on X; for each i.

Definition 2.1.6 (drift rate of the center of mass). Let py denote an initial prob-
ability distribution on X, and pq, fo, ... denote the distributions on X after the
1%, 27 . iterates of the Markov process. Then the drift rate of the center of mass

of po is the limit

n—00 n

whenever the limit exists.

2.2 Some Special Hybrid Systems

In this section we describe special cases of the general model given in the previous

section. We give the results for these special cases in the next section.

9
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We assume that the local dynamics is one-dimenensional and translation-invariant.
That is, X = I (so d = 1), and at each site ¢ the maps 7; are the same map 7, the
jump intervals R; = R and L; = L are the same, ¢ : R — L are the same jump map,

the jump probabilities are p; = p with 0 < p < 1.

The properties of the local maps and jump maps are given in more detail for each

model below.

2.2.1 Model I: Uniformly Expanding Maps, 7, and 7;

First we define a set of functions that we call 77 and then we give the definition for

Model 1.

Definition 2.2.1 (the class 71(Y)). Let Y be a finite union of closed bounded disjoint
intervals in R, m denote the normalized Lebesgue measure on'Y and 7 : U — Y be
a continuous map with U C'Y open and dense, and m(U) = 1. Let S=Y \U. By
taking the closure of each connected component of U we obtain a countable family
B of closed intervals with disjoint interiors such that U B DU and BN S consists

Bes
exactly of the endpoints of B for each B € 5. Fixz \ > 1.

The functions Ti(Y') are described by the following properties:

(i) the restriction g of T to an interval BNU, B € (3, admits an extension to a

homeomorphism of B, and g is differentiable with |t5| > X > 1;

10
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(ii) the function g(x) defined by

1/|7"(@)|, ifx €U,
g(x) = (2.1)
0, if x € S.

is of bounded variation on 'Y .

We give the above definition for a more general set Y since we define functions
in the following chapters on sets other than I. But the local dynamics is given by a

map defined on I as explained below.

Definition 2.2.2 (Model I). The Markov process given in the previous section is

called Model 1 if the followings are satisfied:

The local phase space is the 1-dimensional interval I.

The local dynamics is given by 7 : U — U at each node i € N where 7 € T1(I).

The outgoing jump interval R C U 1is arbitrary, but the same for each node

€ N.

The incoming jump interval L is U at each node i € N.

The jump map ¢ : R —'Y is differentiable with |7'| - |¢'| > A > 1 whenever 7’

exists, where X is given in Definition 2.2.1.

The assumption of having a countable partition is the first generalization of the
results in [KY07]. In their paper they use uniformly expanding maps with finite

partitions.

11
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Definition 2.2.3 (the class Ty). We denote by Ty the set of maps in Ty with finite (5.

For some of the theorems, we need the corresponding random system to be weak-

mixing. For the definition of weak-mixing, see Definition 6.0.3.

For the definition of the corresponding random dynamical system see Defini-

tion 9.1.1.

2.2.2 Model II: Non-uniformly Expanding Maps, 7

In this section first we define a more general set of maps that we call 75 and then
give a more general Markov process than the Model I where the local dynamics is

given by maps in 7s.

Definition 2.2.4 (the class T3(X)). Let X be a finite union of closed bounded disjoint

intervals in R and m denote the normalized Lebesque measure on X.

The class T2(X) consists of maps ¢ : X — X for which the induced map T on
Y C X isinTi(Y), for Y C X as in Definition 2.2.1.

We define next what it means for a map ¢ : X — X to induce a mapping 7
on Y C X. This class contains certain types of non-uniformly expanding maps like

Pomeau-Manneville maps and maps that have a Young Tower structure as introduced

in [You99].

Definition 2.2.5 (induced maps). Let U Y, CY C X be a disjoint union of open
i=1

intervals such that m (U Y;) =m(Y).

=1

12
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A dynamical system ¢ : X — X is said to induce the map

T G Y=Y if  7(x) =@ (g)

i=1

where R UK- — NT s the first return time to Y and SR is constant on each
i=1
partition element Y;.

o
We say that the induced system T : U Y; = Y has summable return times if
i=1

=1

where R; = R

Y'i .

Definition 2.2.6 (Model I1). The Markov process given in the general hybrid model
is called Model 11 if the following are satisfied:

e The local phase space is the 1-dimensional interval I.

e At each node the local map is the same map ¢ : I — I with ¢ € To(I). Let

T € Ti(Y) be the induced map of ¢ on'Y C X.

o At each node the outgoing jump interval is the same interval R C'Y and the

imcoming jump interval is L C Y.

e The jump map ¢ : R — Y 1is differentiable with |7'| - |¢'| > X\ > 1 whenever 7/

exists, where the value \ corresponding to T is from Definition 2.2.1.

o The return time of the induced system is summable.

13
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2.3 Results

For the special cases given in the previous sections note that the local maps 7; and
the jump probabilities p; do not depend on the site number 7. Then for Models I
and II the random variable that counts the number of jumps in the first n iterates
does not depend on the initial site. So we consider the random variable 7,(0,z)
and denote it by J,(x) for z € Xy. The results are given for the random variable
Jn(z). For simplicity we give the results for initial absolutely continuous probability
distributions pg with po(Xo) = 1 and we say pg is concentrated on Xy. The results

can be generalized to an absolutely continuous initial distribution py with €(ug) < 0.

Theorem 2.3.1 (Drift Rate). Let the Markov process on X = Nx I be as in Model 1

or Model II, with initial site X,.

Then there is a € R such that for m-almost every initial state xq € Xy we have

lim M = a.s.
n—oo n

Let po be the absolutely continuous initial probability distribution on X. We also

give the drift rate result for the center of mass.

Theorem 2.3.2. For the Markov process on X = N x I given in Model I or Model 11,
if po is an absolutely continuous initial probability distribution concentrated on X,

then
&(fin)

lim —fm,

n—00 n

where a € R s the value given in Theorem 2.3.1. The same is true for absolutely

continuous distributions py with finite center of mass.

14
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Given an initial probability distribution concentrated on X, there exists a unique
measure [P,, on sequences of observations {xg, 1,2, ...} where each z; € X, g is
chosen with respect to g and the sequence is given with respect to the transition
probability P of the Markov process. In the following theorem we state that the
random variable 7, satisfies the Central Limit Theorem with respect to the mea-

sure P, .

Theorem 2.3.3 (Central Limit Theorem). For a weak-mizing Markov process on
X = N x I given in Model I or Model II, if o ts an absolutely continuous initial

probability distribution concentrated on Xy, then for every interval J C R we have

' — 1
lim P, {M c J} — /€u2/2adu
n—oo \/ﬁ 271'0‘ J

for some o > 0, where P, is the measure associated to the transition probability P

of the Markov process.

The following results give more details about the convergence of the process to a
normal distribution for local maps in 77 (). The first theorem gives the rate of con-
vergence to the normal distribution. The second theorem states that the convergence
to a normal distribution is with tight maxima. And the last theorem is the Large
Deviation estimate which measures the probability of outliers in the convergence of

Theorem 2.3.1.

Theorem 2.3.4 (Speed for the Central Limit Theorem). For a weak-mizing Markov
process on X = N x I giwen in Model I and iy absolutely continuous, the convergence

to a normal distribution given by Theorem 2.3.3 has speed O(n~'/?): there exists

15
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C > 0 such that for every interval J C R we have

Y — 1
Py, {M € J} - /e_“2/2"du
NLD 2wo J

Theorem 2.3.5 (Tight Maxima). For the weak-mixing Markov process on X =

C
< —.
_\/ﬁ

N x I given in Model I and po absolutely continuous, the convergence to a normal
distribution given in Theorem 2.3.3 is with tight maxima: for every e > 0 there exists

¢ > 0 such that

| T — ka|
max —— > C

Pug {1<k<n NG

Theorem 2.3.6 (Large Deviation). For the weak-mizing Markov process on X =

} <€, for everyn > 1.

N x I given in Model I and po absolutely continuous, there exists A > 0 such that

for all a € (0, A)

P {M > a} < Ce=Can for some C' > 0.
n

For the weak-mixing Markov process on X = N x I we also obtain the quenched
version of the Central Limit Theorem for Model I, if the local maps are in 7o(/).
Recall that these are the maps used in [KY07]. The quenched Central Limit Theorem
states that the Markov process satisfies the Central Limit Theorem for almost all
jump choices that is made during the evolution of the process. The formal statement
is given for the corresponding random dynamical system, see Theorem 7.4.6, and the

correspondence to the Markov process is explained in Section 9.2.

16



CHAPTER 3

Preliminaries

In Chapter 3 we review the material needed for the following sections including
functions of bounded variations in dimension one, the skew product realization of

random dynamical systems and uniform ergodic theory.

3.1 Functions of Bounded Variation in 1D

The definitions and the notations in this section follow the book by Gora and Bo-

yarski, see [KLO5].

17
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Definition 3.1.1. For a function f : I — I, the total variation of f is given by

V() =sup{d_1£(G) = F(G)l}

1

where supremum is taken over all finite partitions of I, 0 = (1, (o, ..., ¢, = 1. We
say that f is of bounded variation if \/(f) < 0o and denote the set of functions of

I
bounded variation on I by BV (I).

The set BV (I) is clearly a vector subspace of L'(I). The set of all functions

f € BV(I) with /fdm = 0 is also a vector space in BV (I). We denote the set of
I

such functions by BV, (I) and restrict ourselves to BV (1) to simplify the calculations

in most of the proofs in following chapters.

Definition 3.1.2. For each f € BV (I) define var(f) by

var(f) = inf {\/(f) :f=f for m—a.e}

I

and the BV-norm by || f|lsv := || fllx + var(f).

The space BV (I) equipped with BV-norm is a Banach space.

Definition 3.1.3. We say that a set of functions on I is strongly compact in L'-
norm if every sequence of functions has a convergent subsequence that converges in

L'-norm to an L*(I) function.

Proposition 3.1.4. If a set of functions of bounded variation is bounded with respect

to the BV -norm, then the set of functions is strongly compact in L'-norm.

Proof. See [BGI7], Chapter 2, Proposition 2.3.4. ]

18



3.2. UNIFORM ERGODIC THEORY

3.2 Uniform Ergodic Theory

The aim of the following section is to give the Uniform Ergodic Theorem which we
use in Chapter 5 to give the spectral properties of the random Perron-Frobenius
operator. First we fix the notation for the section and give the related definitions.
We follow the book of Krengel and Brunel, see Section 2.2 of [KB75]. More details on
spectral theory can be found in the Linear Operators, Part I by Dunford-Schwartz,
see [DS09].

Definition 3.2.1. The spectrum o(P) of a bounded linear operator P on a Banach
space X consists of all compler numbers \ such that \I — P is not invertible. The
complement of the spectrum is the resolvent set, o(P) = C \ o(P) and p(P) =

sup{|A| : A € o(P)} is called the spectral radius.

Note that if P is a bounded operator on a Banach space, then the inverse of

A — P is bounded whenever it exists, by the Open Mapping Theorem.

Definition 3.2.2. An isolated point Ny of o(P) is called a pole of order n if S(A\, P) =
(M — P)~! has a Laurent expansion around \g given by
S(AP)= > Bu(A=X)* with B_, #0,
k=—n

B_1 is called the residue of S(\,P) at \g.

Definition 3.2.3. A linear operator P is called power bounded if

sup [P < 1,

19



3.2. UNIFORM ERGODIC THEORY

and Cesaro bounded if
n—1
1 )
- > P <l
sup ||~ ;:0 |
where || - || is the operator norm.

Definition 3.2.4. A linear operator P on a Banach space X is called compact if
the tmage under P of the unit sphere of X s conditionally compact. P is called

quasi-compact if there exists a compact operator IC and m € N such that
|P™ — K] < 1.

Definition 3.2.5. The operator P is called uniformly ergodic if there exists a finite

dimensional projection KC such that

lim =0.
n—oo

1n—l
E;P - K

Set A, (P) = L 3" Pi. Now we can give the main theorem of the section which

is used in Chapter 5.

Theorem 3.2.6 (Uniform Ergodic Theorem). Let P be power bounded, quasi-compact

linear operator in a Banach space X. Then each power has a representation

k
Pr=> NP +R"'n=12...

i=1
where A1, ..., \g are the finitely many poles of S(.,P) with |\;| = 1 and finite multi-
plicity. P; is the projection given as the limit of A, (\;'P) and R is the quasi-compact
operator defined by

k

R=P-> AP

i=1
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3.3. RANDOM MAPS

satisfying

PP, =PP = NP,

P:="P;, PiP;=0,

PR=RP; =0, fori=1,2,... k,

IRI <1,
and

" M
IRl < ;
(1+e€)

where M and € are positive constants independent from n.

Proof. See [KBT75], Section 2.2, Theorem 2.8 for the proof. O

3.3 Random Maps

Let (Y, B, 1) be a measure space with a probability measure ppon Y. Let {T},..., Ty}
be a set of measurable functions on Y and let T represent the random map chosen ran-
domly from the set {T},...,Tx} with respect to the probability vector (p1,...,pn).
We can define a deterministic system that gives the same dynamics of the random
dynamical system on Y. Let {1,..., N} be the symbol set and 2 be the set of all
sequences on that symbol set. We first give the definition of a Bernoulli shift on (2.

Then we define the corresponding deterministic map % on Q x Y.

Definition 3.3.1. Let Q = {w = (wy,we,...) : w; € {1,2,...,N}} be the set of
one sided sequences of symbols {1,2,... . N}. Let o : Q — Q be the left shift map

defined by (o (w)); = wj+1. Let (p1,...,pn) be a probability vector on the symbol set
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3.3. RANDOM MAPS

{1,...,N}. Let m be the Bernoulli measure defined on Q2 and A be the o-algebra
defined by the infinite product of the o-algebras of the finite set {1,..., N}. We call

the measure preserving dynamical system (2, A, m, o) a Bernoulli shift.

For the set of constituent functions {77,..., T}, let Q@ = {1,..., N} be the set
of corresponding sequences of the symbol set. Let m be the Bernoulli measure on 2
where (p1,...,pn) is the probability vector on the random maps. The corresponding
deterministic system of the random dynamical system (T, u,Y) is given by (F#, 7 x
i, 2 X Y') where

F(w,z) = (0(w), T, (2))
where o is the left shift map on €2 and w; is the first symbol of the sequence w.

Definition 3.3.2. Let ¥ be a random map on 'Y with the set of constituent functions
{T1,...,Tn} and probability vector (p1,...,pn). We say that a probability measure
1 on'Y is stationary for the random map X if for every measurable set B C'Y we

have

W(B) = 3 plT, ()

Note that p is stationary for the random map ¥ if and only if 7 x p is an invariant
measure for the corresponding skew product realization .7, see [Kob05] page 17 for

the proof or [Arn03], Example 1.4.7 to see when the product measure is invariant.

Definition 3.3.3. Let T be a random map on'Y with constituent functions {T1, ..., Ty},
B be the Borel o-algebra on'Y. We call a measurable set J € B an invariant set

under the random map T if m(JAUY, Ti(J)) = 0.
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3.3. RANDOM MAPS

Definition 3.3.4. Let ¥ be a random map on Y, let B be the Borel o-algebra on
Y and let p be a stationary measure for the random system. We call the random

system (¥, B, u) ergodic if for any invariant measurable set J € B we have pu(J) =0

or u(J) = 1.

Again the stationary measure pu is ergodic for T in the sense of Definition 3.3.4
if and only if u x 7 is ergodic for the deterministic map %, see [Kob05] page 18 for

the proof.

Definition 3.3.5. Let T be a random map on'Y with constituent functions {T1,...,Tn}

and probability vector (p1,...,pn). The operator Pz : L'(Y) — LY(Y) defined by

N
Pz = Z piPr,
i=1

15 called the random Perron-Frobenius operator of the random map T where Py, is

the Perron-Frobenious operator of the single map T; given by

f(y)
Pafl)= 2 e

y:Tiy=c

Note that for functions f,g € L'(Y) and for arbitrary h € L'(Y') we have

/Pg(f)ghdm :/ (ZpghoT)dm

- /f(szgoT hoT)dm
= Zpi/(f-goT%)hoT%dm
= ZPZ/PT (f - goT;) hdm.
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3.4. ORNSTEIN THEORY

Since h is arbitrary we get

gP:(f) = meﬂ (f-goT). (3.1)

where Pr, is the Perron-Frobenius operator of the single map 7;.

3.4 Ornstein Theory

Ornstein Theory is about Bernoulli processes and their entropy. What we are inter-
ested in is a criteria for a dynamical system to be a Bernoulli process. First we give
the definition of a Bernoulli process and then give the criteria we use in Chapter 6
to show that the dynamical system we are interested in is Bernoulli. For proofs of
the results we refer the reader to Section 7 of the book by Donald S. Ornstein, see

[Orn74].

Definition 3.4.1. A dynamical system (X, B, u,T) is said to be Bernoulli if it is
isomorphic to a Bernoulli shift (Q, A, m, o), that is there exist measurable, measure

preserving functions ® : X — Q and ¥ : Q — X such that

o for p-almost all x € X, ®(Tx) = o(Px) and x = ¥(dx),
o for m-almost allw € Q, w = ¢(Yw).

Definition 3.4.2. Let a and B be two measurable partitions. We define a binary
operation 0 on partitions with respect to a measure |t by
o, f) = Y |u(ANB) = p(A)u(B)|
Aca,Bep
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3.4. ORNSTEIN THEORY

=3 " |u(AIB) — u(A)|u(B).

Aea Bep
Notation 3.4.3. Let T : X — X with a measurable partition B of X. We denote

the refined partition by

Br=\/T(B)=T"(B) VT (B)V...vT™(B)
forn < m.
Here is the criteria we use later in Chapter 6 to show that the system we work
on is Bernoulli. See [Orn74], Section 7 for the proof.

Theorem 3.4.4. Let T : X — X with partition 5 of X and measure p on X. If the

partition 3 satisfies

zS;lp 2By, BIHET™) — 0, asn —
k>1

then the dynamical system (T, ) has the Bernoulli property in the sense of Definition
3.4.1.
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CHAPTER 4

Stationary Measures For Random Dynamical Systems

In Chapter 4 we assume that Y is a finite union of closed intervals in R. Let m be the
normalized Lebesgue measure on Y. We prove the existence of absolutely continuous
stationary measure for the random map % when each of the constituent functions

Ty, T, ..., Ty belongs to the class 7;(Y') given in Model I, Section 2.2.

4.1 Existence of Stationary Measures

The aim of this section is to prove the existence of an absolutely continuous stationary

measure of ¥. We use the method that is used by Rychlik to show the existence of
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4.1. EXISTENCE OF STATIONARY MEASURES

an absolutely continuous invariant measure for a single map in 7;(Y) on the unit
interval. See [Ryc83]. First we derive an inequality of the form of Equation (4.1)
below for the random Perron-Frobenius operator associated to the random map <.
The inequality is called the Lasota-York inequality for a single expanding maps. Then
we use the standard compactness arguments of the fundamental paper of Lasota and
Yorke [LY73] to show the existence of a stationary density. Here is the main result

of Chapter 4.

Proposition 4.1.1. Let ¥ be a random map defined on Y with constituent functions
11,15, ..., Ty and with probability vector (p1,p2,...,pn). If each T; belongs to the

class Ti(Y) then ¥ has an absolutely continuous stationary measure .

First we recall the Lasota-York inequality for a single map in 7;(Y’) which arises

from the paper of Rychlik [Ryc83].

Proposition 4.1.2. Let T : Y — Y be a map in T1(Y). Let Pr be the Perron-
Frobenius operator of T. Then there exist constants C,R > 0 and r € (0,1) such

that for all f € BV(Y) and for every n > 1 we have

IP2(Hllsv < Cr|[flsv + R f]lx (4.1)

where BV (Y') is the space of bounded variation functions on'Y and where ||.||py

denotes the BV-norm as in Definition 3.1.2.

Before we prove Proposition 4.1.1 we give some notations for the random dy-

namical system. The constituent functions belong to the class 71(Y). For each T;
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4.1. EXISTENCE OF STATIONARY MEASURES

with i € {1,2,..., N}, let A; = {a;1, aiz, ...} with a;; < a; j+1 denote the countably
many discontinuities of the map T;. Let §; denote the partition of Y with respect to
the map T; consisting of the closed intervals I;; = [a;j, a; j+1]. For our purposes, a
partition will mean a countable family of closed intervals such that each two of them
can have only endpoint in common and exhausting Y up to a set of measure zero.
Let U; = U2, int(/;;) where “int” is for interior and S; = Y\ U; with m(S;) = 0.

The restriction of T; to I;;, namely Tj; satisfies [T};| > A; > 1 for some ;.

First we show that any composition of the 7;(Y)-maps is still a 7;(Y")-map. For

¢ € N the ¢ composition of the maps 11,75, ..., TN has
(T, 0... Th,oTy,) | > X >1

where (wy,wa, ... ,wy) is an arbitrary ¢ sequence with wy, € {1,2,..., N} for every k €
{1,2,...,¢}. The derivative of the ¢ composition is defined in each partition element
of the composition which is obtained by refining the partition after each iterate
according to which function is applied at that iterate. Note that we have N* many
different compositions. Let {¢;} with 1 < j < N ¢ represent the enumeration of all
possible £ compositions of constituent maps for T, and let {q,} be the corresponding
probabilities of occurrence. The partition for ¢, = T, o...0T,, o T, is precisely

given as follows:

Let A,, = {ai*,a3",...} be the countably many discontinuity points of T,
Ay, ={a?,a3?, ...} be the discontinuity points of T,,,, and so on. Let S,, = A, U
T (A U(T o T (AU U(T o 0T )(Ay,) and let Uy, = Y\ S,,,. The

w1 w1 w2 We—1

map ¢, is defined on U, . Now we define the partition for ¢, to be the refinement
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4.1. EXISTENCE OF STATIONARY MEASURES

B, which consists of all the sets of the form By N T, (Bs) N (T, o T1)(Bs)N...N

w1

(T; o...0oT ' )(By) where By € 83,,, By € Bu, ... Bi € Bu,-

w1 We—1
We choose A > 1 to be Ay, - Ay, - ... - Ay, > 1 so the £ composition is uniformly

expanding on partition f3,. To conclude that T}, o...0T,, o T, € Ti(Y) the last

information we need is given by the following lemma.

Lemma 4.1.3. For any ¢ composition of constituent T (Y )-maps, namely for o, the

map g,(x) defined by

/¢’ ()], if v € U,
9o(x) =
0, if v € S,

is of bounded variation where U, S,, is given as above so U, is of the form | Jr—,(zx, Tr11)

where {xg, z1,...} are the discontinuity points of p and S, =Y \ U,,.

Proof. Let ¢ = T, 0...01T,, oT,, be fixed with T,,, € {T1,T5,..., Ty} and let

B = {1 }72, be the partition of Y where the endpoints are in S,.

\/gw = Z \/g@ since g, = 0 at the endpoins of Ij,
Y k=0 Iy

o0 1
- Z\/’(Tjgo...OTjQOTqu

k=0 I,

S 1
= Z\/ ’(Tj{z(Tﬂfl o... OT]-I))(T{Fl(T.ﬁ2 o...oTj)... (TJ/1)‘

k=0 I J J

The first equality follows from an elementary result on functions of bounded

variation given below, see [BG97], Chapter 2.
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4.1. EXISTENCE OF STATIONARY MEASURES

(*) Given a countable partition | J;=, I; of I and given f € BV([) with f(z) =
constant for all x € I\ |J;2, int(Z;) we have

Vi=2 Vs

L;el I;

By using (*) we see that it is enough to work on each partition element I sepa-
rately to show the inequality. At this point we assume ¢ = 2 to make the calculations
easier and give the rest of the proof for the case ¢ = 2. The general case can be ob-

tained by induction on ¢. Note that each map T, | = 1,2 satisfies [T], | > A\, > 1,

1 1
so 0 < — < — < 1 for any x € Y. Therefore we have
T2, (2)] — Ay
1 1 1
— =sup——- < — < 1. 4.2
| 0 L AT W 42

On each [ the properties of functions of bounded variation yield the following
inequality, see [BGI7]:

Vi T < (\/\ >'|X1k‘ e |H (\/| )
V) (V) Ll (Vi)

IN

IA
VR
<~ <
3| =




4.1. EXISTENCE OF STATIONARY MEASURES

Note that the restriction of 7},, to I is uniformly expanding, therefore it is continu-
ous, monotonic with a continuous inverse 7, |I’k1 Thus it is a homeomorphism and
has a finite variation on ;. Then to get the first term in the second inequality above

we use the following result on functions of bounded variation, see [BG97]:

(**) If f1, fo € BV(I;) and if f; : Iy — I3 is a homeomorphism for I, C I;, then

we have
\/fz = \/fz o fi
I n

We can continue by summing the variation over all partition elements {I}.

SV < (Vi) (Vi)

= Vi) (Vi) <

Note that if {I; 1 } is the partition corresponding to T,,, where the end points of I, =

(4.3)

(@, ks Quykr1] consists of the discontinuity points of Ti,,, then I, x = [aw,k, Tk, | U
[Ty, Try|U- U2k, 2, ]U. . . for some partition elements of {1} where xy,, 74, . ..
are discontinuities only for 7,,. Let [z o1 Tk f] be denoted by I,. Therefore, we

have

1
\Y/ T2,

which gives the very last equality in Equation (4.3). By induction we can write
1 1 1 1
< 4t .
Z\/| T oTo)] = <\/ i |> (V iy |> (\/ . |>
k=0 Iy Y 1 Y 2 Y ¢
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4.1. EXISTENCE OF STATIONARY MEASURES

[]

We give the last inequality we obtain in the proof of Lemma 4.1.3 as a corollary

since it is needed later.

Corollary 4.1.4.

1 1 1 1
< 41 _— — .. _—
\/|(Two...oTw oTu)| = \/|T’| \/|T’| \/|T’|
Y 4 2 1 Y w1 Y w2 Y wp

Lemma 4.1.5. If v is a fixed { combination of the constituent maps and if (3 is the

partition for ¢ then for B € 5 we have

m(B) < llgelloe < gz, lloo - llgm,lloo)’

Proof. We know that the Perron-Frobenious operator for ¢ € 71(Y) is defined by

(Po)x)= > 9. f) (4.4)

yip(y)=z

where g, is as in Definition 2.2.1. P, preserves the Lebesgue measure m, see [Bal00],

page 73. So
m(B) = wm(xp) =m(P,xB)
= m( > (u)xsy))
o(y)=z
< m(p(B))]|gylloo
< l9plloo
The rest follows from chain rule. ]

Lemma 4.1.3 concludes that any ¢ iterates of the random map T € T;(Y), say
¢ is still a 7;(Y)-map. Therefore for every § > 0 there exists an ¢ such that for

every x and for every ¢ composition of the constituent maps,
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4.1. EXISTENCE OF STATIONARY MEASURES

1
9o = (T, 0. 0T, 0T,

<9

since (T, 0...0T, 0Ty )| > A, - Awy - Ay —> 00 as £ — co. Hence for all ¢ > 0

there exists an ¢ such that for every ¢ composition of the constituent maps
2Hg‘p(Z)HOO+8 < 1. (4.5)

We give four lemmas for a single map 7 € 71(Y’). We omit most of their proofs
since they can be found in any paper or book where they prove the existence of

invariant measures for uniformly expanding maps. We refer the reader to [Lit08],

Rychlik Lemma 2-5.

Lemma 4.1.6. Let 7 € Ty(Y), 7: Y — Y with countably many partition {I.}. Then

for the Perron-Frobenius operator P, we have

where g, is defined as in Model I, Fquation 2.1 for T.

Lemma 4.1.7. Given a finite partition Q of Y and any f € BV(Y) we have for

7€ Ti(Y) that
Y

Y

> | Iflam

Ken
where

A =
T HQTHOOJF%%{\K/QT}’

Vi gr
B, =
Kea m(K)
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The following lemma is the key point to generalize the result of expanding maps
on a finitely many partition to a countably many partition, so we also include the

proof.

Lemma 4.1.8. For any ¢ > 0 there exists a finite partition Q for T € Ti(Y) such

that

rggg\}{gf < lgello + &

Proof. The points of discontinuity of V(z) = \/ g is same as those of ¢ : [a,b] — R,
[a,x]

see [BGI7]. Since 0 < g < 1/A < 1 the magnitude of the discontinuity of g never

exceeds ||g]|s and decays to zero sufficiently fast, so we have
\/g§M<oo, for some M € R.
Y

Then for every x € Y there exists an open interval I, containing z such that

Vg<lgle+e
Iy

m

Since U I, covers the compact set Y there exists a finite subcover U I,.. Therefore,
€Y i=1

if we choose a finite partition Q which is finer than the subcover U, I,, we get the

result. O

Lemma 4.1.9. Let g¢(x) = KTTl’(iUH where T° is continuous and zero on the points of
discontinuities of 7°. For ¢ > 0 and L € N where L is the smallest integer among
¢ € N that satisfies

2|lgelloc +€ <1

34



4.1. EXISTENCE OF STATIONARY MEASURES

there exists a finite partition Qp such that

< .
max \Y/QL < lglloo +

If we define A, and By, to be

A = oo ,
L lgell +Ir<rgt)>§\y/9L

\/Y gL
By =
LT R, m(K)

)

then Ap, < 1.

Now we return back to the random dynamical system. We fix ¢ > 0 and denote
by L the smallest integer ¢ such that Equation 4.5 holds for every L composition
of the constituent maps. Note that this is different from iterating the same map
for L times, but still possible since each T; for i« = 1,..., N is expanding. Then we
continue applying the previous lemmas to maps ¢ which are L compositions of

the constituent maps.

Lemma 4.1.10. For L satisfying Equation 4.5 there exists a finite partition Q )

for each possible L composition of the constituent maps o) so that

max \/g@(L) < Hg@(L)Hoo + €.

JGQW(L) 7
We define
AW(L) = ||g(p(L)||oo + max \/g@(L),
Ke (L)
L ¢
Vi 9o
B.) = max YK I
f = B TAK)
then
AW(L) < 1.
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Proof. Proof is a result of Lemma 4.1.9 where the single map 7 = ¢ and ¢ = 1. O

We define
Ap = 1&%?;{14%,@)} and B = I&%({B@(m}
where maximum is taken over all possible L compositions of the constituent maps,

so Ap < 1.

Remark 4.1.11. For the fized € > 0, for each i = 1,2,..., L — 1 we know that we
can find a finite partition Q. for each i composition of the constituent maps by

Lemma 4.1.8 such that

max \/9<p<z'> < gy [loo + €

JEQW(i) J
Thus we define

A(pm = ||9<p<i>||oo + Klglgx \/g@m,

ORI

\/K G

B, = max —Zf%_

#0T ked 1y AMK)
©
and
A; =max{A_ i} and B; = max{B_i
; w_){ 200 } ; s0(1_){ o) }

fori=1,..., L —1 where mazximum is taken over all possible i compositions of the

constituent maps, and then we define
Cl = maX{Al,Ag, ce ,ALfl} and CQ = maX{Bl, BQ, . ,BLfl}.

Since each o € Ti(Y), we have Cy, Cy < 0o0.
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Remark 4.1.12.

(Pr., Pr, @) = P, (Pr, f) ()

B (Pr,, )y
_y:%;:z T2,y

f(2)

Z:Twzlgy T, 2|

— Z ’—

YTy y=2a wal |

> Z|z||

yTwyy=z 2:T0w, 2=y

_ )
B Z (T, 0 Toy )'2|

z:Tw2 oTU.,1 Z=x

= (Pr,om,, f)(7).

17yl

Let U,u) be the partition of the i composition of the constituent maps 0. The map
0 is piecewise uniformly expanding on Uy . Therefore fori=1,2,..., L —1ifw
run over all possible i compositions of the constituent maps which are N* many and

if qff) is the probability of having such i composition 9053') then we have
7DT%. PTWi—l - ’]DT“,1 = ,PT%oTwi_lo---oTw1 = P%(Ui)

by using the above argument. Then we get

N’L
\/Pé(f) = \/qupwy(f)
Y
<Zq \/73 @ (
Squf) > \/P@g)(fXJ)
w JGULN) Y
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—Zq \/fg @) by Lemma 4.1.6,
w Y

Ni
<2 WAV I+ By
Y

<Zq (A \/f+BHfH ) by Remark 4.1.11,

fllh) by Lemma 4.1.7,

< (Ai\/f + Bill fll1)
Y

Nt
since quf) =1

Note that for any fixed © composition we have the same inequality as of the aver-

aged i compositions by following the same steps. For fived o) =T, ... T,,,

\/77<> < Y VPaolfx)

JeUu (z) Y

= \/(f%(i))

Y

< A@(i)\/f"i_B i
Y

< A\ f+Billflh
Y
where A;, B; as in Remark 4.1.11.

Lemma 4.1.13. For all f € BV(Y) and for alln € N

7—1

\/ Pa(f) < C1A], \/f+ (Co+ Y AD)BL|f]ly
Y

k=0
wheren:Lj+z'wz’thizl,Q,...,L—l.

Proof.
\/ sz \/ <L (P‘Df)
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< AL\ PLH P )] + Bellf I
Y

< ALLALLN PP f)] + Bl f ] + Bel f

Y

= A3 \/ P (Pxf) + (AL + 1By f]1
Y

J—1
<AL\ (Psif) + O ADBLllfIh
Y k=0
. ] 1
<AL\ F+Call )+ O ADBLf I
Y k=0

i—1
. C . .
<AC\/ f+ —Af 1£11) + () AP Bl 1 since A7 < 1,

Y L k=0

<.

j—1
= AL\ F+(Co+ ) AD)BL|fr-
Y k=0
]

Remark 4.1.14. Again note that we have the above equality for any fized n sequence

of constituent maps, say for w =T, o...oT, withn = Lj+ 1 we have
\/PTwn - Pr, (f \/73 ProPra-n - Prg-n . Pr (Pr., - Pr,, f)
Y
< A \/77 G- - T(a 1) - PTSJ (Pr., - Pr., f)]

+ Bl flh

< AL [AL[\/ 'PTu()ijg) .. .PTU(JJYQ) .. ',PT&) (’PT%. .. .'PTW1 f)]
Y

+ Bl flli] + Bel[ fll1

— A2 \/'P <J 2) . T(] 2 . ,PT&) (PT‘% .. .PTw1 f)
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+ (AL + 1B fllx

j—1

<AL\ (Pr,, ... Pr, )+ O AN BLlflh
Y k=0
i—1

< A\ £+ Callfl) + (3 AD B
Y

k=0

<

J—1

: C :
SAJL<01\/f+A—foH1)+( AD B fll by Af <1,
Y L k=0
j—1

= AN\ F+(Co+ ) ADBN|I
Y k=0
The Lemma 4.1.15 below is the version for random dynamical system of the
Lasota-York inequality for a single map given in Proposition 4.1.2. After proving

Lemma 4.1.15 we proceed precisely as in the proof of Lasota-York inequality for a

single map, see [LY73].
Lemma 4.1.15. There exists constants C,R > 0 and r € (0,1) such that for all
feBV(Y)

1Pz (Nllsv < Cr*|[fllsv + BRIl (4.6)

Proof.
1Ps(Nllsv = Pzl + vary (P£(f))

= HP%‘(f)Hﬁir}f\/(P%(f))

Since Pr,(f) is a contraction for each map 7T;, we have

N N
[P=(f)ll < Zpillpn(f)lll < Zpi\lle =[£Il
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which implies by induction that

P2 (NIl < [If]h-

Together with Lemma 4.1.13, we have for n = Lj + ¢ that
j—1
IP(Dllov < 11l +nf(CodL N/ F+ (Cot > ADBLl )
Y k=0

7j—1
= |If|l. + CLA% ir}f\/f +(Co+ > ANBL|fl
Y

k=0
7j—1

< £l + Cr AL fllsv + (Co + > AT Bl £

k=0
We choose R =1+ (Cy+ 31—} A%) By, and to have Cy A, = Cr™ we choose r = AlL/L

so we can choose C' = Cyr~F*! which implies

1Pz ()llsv < Cro||fllv + BRIl
O

Remark 4.1.16. Note that we have the inequality in Equation (4.6) also for any

fized n-sequence of maps again by Remark 4.1.14, so say for w =T, ...T1 we have

Pz, - Pr,(f)llsv < Cr"(|fllsv + Rl fllx (4.7)

since the coefficients are chosen to be the maximum of all coefficients that works for

all L possible compositions of constituent maps.

The above inequality in Equation 4.7 is not needed for this chapter but is used

in Chapter 6 to prove a result for a fixed sequence of maps.
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Proof of Proposition 4.1.1. For the given random dynamical system, let 1 = xy be
the characteristic function on Y. We have 1 € BV(Y). Then by Lemma 4.1.15 we
have

|PL(1)||sv < Cr"*|1||sy + R||1]|i =Cr"+ R < C + R.

Therefore the sequence {PZ(1)}22, is bounded by a constant in BV (Y’) so the time

averages, namely
n—1 o0
1 :
- J
{}Z%m}'
J=0 n=1
Then by Proposition 3.1.4 we conclude that the set of time averages is strongly

compact in L'-norm as in Definition 3.1.3. Therefore there exists a subsequence of

the set of time averages, say {f,, }7>, for
1 n—1 '
fo= 5 2 PE1),
=0

and an L' function A so that
| fr, = Rl = 0. (4.8)

as k — 0.

Now we show that the measure p defined by u(A) = / hdm is a stationary
A

measure for the random dynamical system so satisfies Pz(h) = h.

[Px(h) = bl < 1P<(h) = Pe(fu)lls + IPx(fur) = Fuiclls + [ = Rl

where the first and the third term on the right hand side are converging to zero by
Equation 4.8 since Px is a contraction. For the second term we have

Tbk—l nk—l
1 ; 1 ;
P =S Pl | -=S Pl
¢Q%253<0 )P

J=0

[Ps(foi) = Fully =

1
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DYNAMICAL SYSTEM

1 ng ' 1 ne—1
— I P - — > Pl
Nk ng <

1 on
< — 1Pz (1) — 1],
N

IA

Lo

— [P (D)l + 11l
Nk

2

ng

IA

since P is a contraction. Therefore second term also converges to zero as k — oo

which concludes the result. O

4.2 Expanding the Stationary Measure to a 2D

Random Dynamical System

In this section we introduce a random dynamical system where the constituent maps
are defined on a torus. This section is not aiming to generalize the 1D results to the
maps on a torus but needed to prove some limit theorems for 1D random dynamical
system and the results apply only to some special type of maps on a torus. First we

introduce these special maps.

Definition 4.2.1. Let T be a piecewise expanding map on I = [0,1]. We define the

corresponding torus map of T to be Ay : T — T given by

Ar(z,y) = = (T(2),T(y))
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4.2. EXPANDING THE STATIONARY MEASURE TO A 2D RANDOM
DYNAMICAL SYSTEM

The random dynamical system on a torus is defined in a similar way. Let {Aq,,..., Ap, }
be the constituent maps of the system on a torus where each Ay, is the correspond-
ing torus map of a piecewise expanding map T; on [0, 1], and let (p1,...,py) be the
probability distribution on maps Az,. Let A; denote the map Ar, to simplify the

notation.

The Perron-Frobenius operator of each map A; is defined in the usual way.

Pt = 3 LW

Ai
WA= 1TA1)
for f: T — R. Here |JA,| is the Jacobian of A; and given by
oT;
3 0
|JAi| = 1 :
3.71:2

so [JA;|(y) = |T!(y1)||T!(y2)|. Note that if A;(y1,y2) = (21, x2) then we simply have
Ti(y1) = x1 and T;(y2) = (x2). Thus, the Perron-Frobenius operator of A; is given
by

- [y, v2)
Paflonm)= Y )T

Similarly, the random Perron-Frobenius operator is given by

N
Pa=> piPa,.

i=1

y1,y2: T (y;)=(x

For any fixed sequence of constituent maps on a torus, say A,, A,, A, ... there is
a unique sequence of constituent maps on I, namely 7., 7,7, . .. so we keep using
the same sequences with a symbol space {1,..., N} so wr = w and denote the

corresponding skew product system as follows

Fr(wr, (x,y)) = (6™ (w), (T, o... T, (x),T,, o... T, (y))), for (z,y) €T,
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4.2. EXPANDING THE STATIONARY MEASURE TO A 2D RANDOM
DYNAMICAL SYSTEM

where o is the shift map defined on sequences w € ().

To prove that such systems also have absolutely continuous stationary measures
and satisfies the limit theorems one can follow the methods of the paper by P. Gora
and A. Boyarski, see [GB89]. All the arguments can be generalized to random dy-
namical systems on a torus given by the special maps by applying the same methods
we use for maps on [ like taking maximum or minimum of the coefficients over all
possible combinations of the maps. The idea for higher dimensional maps is refining
the partitions according to the finitely many constituent maps so the proofs work as

in the deterministic system.

In our case we define the partition ag for a map A; on a torus to be {B x B :
B € } where f3 is the partition for the corresponding map 7; on I. The restriction

of each A; to a partition element is C?, one to one and expanding that is
[JAi(y) = [T ()| T3 (y2)| > Aa > 1since [T} > A > 1.

Now by defining the partition « notice that we have squares and rectangles inside the
torus where each corner is a singular point. The condition given by Gora and Boyarski
in [GB89] for the existence of invariant measure is a lower bound on the expansion
rate that depends on the nature of the partition, specifically on the minimal angle
on the boundaries of the regions in the partition. Particularly if x € T is a singular
point of one of the partition element say a € « then let #(x) be the angle of the corner
of the possible biggest cone that can be drawn in the partition with the corner x
and define v(a) = | cos(6(xo) + 7/2)| where z is a singular point in a that gives the

minimum angle #(x). In our case if we use the partition « then for every x we have

45
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0(z) = 7/4, see example in page 282 in [GB89]. Furthermore for a fixed partition

a € a, O(x) is the same angle for every singular point € a. Then we define v to be

v = inf{| cos(0(z) + 7/2)| : = is a singular point in a} = —
aco

V2

We use the following result to prove the quenched Central Limit Theorem for random

dynamical systems given by maps in 7, in Chapter 7.

Claim 4.2.2. Let each A; : T — T be a piecewise C* expanding maps with a mazi-
mum expanding rate X. If )\_1(1+\/§) < 1 then the random dynamical system admits

an absolutely continuous stationary measure.

One can also choose to follow the methods of the paper by Keller, G. and Liv-
erani, C., see [KL05] to prove that such systems have absolutely continuous stationary
measures and satisfy the limit theorems. In their paper they give the Lasota-York
inequality for a single map that is exactly in the form of our maps on a torus de-
fined above with only constraint that they have finite partition. They use bounded
variation arguments as we do for a 1D case, so one can generalize their arguments
to random dynamical systems. Again we give the quenched Central Limit Theorem
for random dynamical systems given by maps in 7y, so the following assumption is

enough.

Claim 4.2.3. Let each A; : T — T be the corresponding torus map of a map T; in
Ti(I) with finite partition. Then the random dynamical system on torus admits an

absolutely continuous stationary measure.

In the following chapters we study the spectral properties of the random Perron-

Frobenius operator and give the statistical results only for one dimensional random
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dynamical systems. However the random dynamical system on a torus given by the
special maps A; corresponding to T; € 7T satisfies the same spectral properties and
therefore the limit theorems. In the derivation of quenched Central Limit Theorem
we use these results without proof. The proof should follow from the approach of

[KLO5] or [GB89], for spectral properties of certain maps in higher dimension.
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CHAPTER 5

Spectral Properties of the Random Perron-Frobenius Operator

In Chapter 5 we give the spectral properties of Pz. For maps in 7y, E. Kobre and
L. S. Young gives the spectral properties in [Kob05]. Their method relies on the
theorem of Ionescu-Tulcea-Marinescu, see [ITM50]. We apply the uniform ergodic

theory and follow the steps of Rychlik in [Ryc83] to reproduce the same results.

5.1 Spectral Properties of Ps

We first show that the random Perron-Frobenius operator is quasi-compact as in

Definition 3.2.4.
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5.1. SPECTRAL PROPERTIES OF Pz

Proposition 5.1.1. There exists L > 1 and a finite dimensional operator K on

BV(Y) such that ||PE — K||zy < 1.

Proof. Choose L and a partition Q) for each possible L composition of constituent
maps ¢ such that Lemma 4.1.7 holds with each A@(L) < 1/4. Let 9Q be the
refined partition of partitions Q) for each map o) and A = max{A,w }. Let
E(f) = E[f|Q] where E[f]Q] is the conditional expectation of f with respect to Q

and K = PEE. We prove that the choice for K is good.

Let f € BV(Y) be fixed and take f; = f —E[f|Q] = (I — £)(f). To prove that
|PL — KC|| < 1 it is enough to show that |PL(f1)||py < 24| f| By since
1Pz(f)llsv = [1P(I = E)(f)lsv
= |P£(f) = (P£E) )y
= Pz(f) = K(H)llsv
< 24|/f|lpv for an arbitrary f,

implies ||PL — K|| < 2A with A < 1/4 where the last norm is the operator norm.
For every K € Q, [, fidm = 0 by definition of conditional expectation, so

\/PzL(fl) < A\/f1 + Br|lfi]l1 by Remark 4.1.12
Y Y

< A\/fl
=A\/ (f - E[f]Q))
<A\ f+A\E[fQ)

<24\/ f <24||f|pv.
Y
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5.1. SPECTRAL PROPERTIES OF Pz

since for any finite partition £, we have \/, E[f|Q] <V, f.
We also have ||PLfi|l; < ||fi]l1 by the contractive property of Ps. Furthermore,

by Lemma 4.1.5, we get

m(B) < [[gm [l £ Apy <A (5.1)

since A = maX{ASO(m} and since for each (,p(L) the constant Aso(L> is chosen to be

Ay = 19, [loo + e \ g,
o) f¢
Also

Ifixsllse = [I(f = E[f|Q)x5ll
< [l xslls + IELf[Q]x5lw (5.2)

< 2|l fxslle < 2| fxslBv

Then Equation 5.1 and Equation 5.2 together imply that

il = X [ 1Alam where B € 5,0,

B B

= Z/ [ fixsllscdm
B B

= Z | fixBllem(B)
B

< ZQHfXBHBVA = 2A[f| v
B

Thus, [|P£ fillsv = [P£ fills + Vy Pefi < 4A[fllsv < || fllsv since A < 1/4. O

Theorem 5.1.2. The operator Pz on bounded variations has the following properties:

(1) o(Ps) NSt consists of a finite number of simple poles of the resolvent of Ps.

Moreover, o(P<) NSt is a union of full cyclic groups.
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5.1. SPECTRAL PROPERTIES OF Pz

(ii) Other points of o(Pz) are contained within a circle of radius p € (0,1).

(iii) If o(Pz) N SY = {¢1, (o, - .., Gk}, we denote the projection to the corresponding
eigenspace for 7 =1,2,... k by Qé; then Pz admits the representation
k .
Pr=Y O+ Rs,
j=1

where Ry : BV — BV and spectral radius of Rs is p(Rs) = inf, || Rz||Y/™ < p.
Operators Q% and Rz commute, and Q5 Qk = Q%, QLQL = 0 and QLRz =0

fori#ij,i,j=1,2 ...k

The facts given above are all implied by Proposition 5.1.1 and a lemma we give
below which shows that Ps is power bounded. Then the rest is a consequence of
theory of operators. However we still show the steps to prove the fact since they are

used to prove one of the main results of the models.
Lemma 5.1.3. There exists F' > 0 such that the operator Ps satisfies
sup [|Pg|| < 2F +1,

therefore Ps is power bounded.

Proof. We show that for every n > 1 and f € BV we have

S TP xa)lsv < 2F + 1)||fllsv

Beﬁn

which implies the result. So we can consider each term P"(f - yp) separately. Now

for such By € " that satisfies

IP™(f - x)ll < \/ P"(f - x5)
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5.1. SPECTRAL PROPERTIES OF Pz

we have

Yopean IPH(f-xB)llBv < Yopesm 2V P (fxB)
< 2F(\V f+Iflly) = 2F| fllsv

where F' is greater than the coefficients of variation and L!'-norm in Lemma 4.1.13,
the Lasota-York type inequality for the variation that we show before giving the

inequality for BV-norm. The other type of sets are By € 5™ so that

\/ P"(f - x8) < IP"(f - xe)lh < IIf - xaslln

so simply all terms can give at most

£l < ([ fllBv-
Therefore we get

SNPf x)lsy = D> NP xs)llav+ Y. IP(f xs)lsv

Bepn Biepn Baepn
< 2F|fllsv + I fllzv
= Q2F+1)|fllsv-

The proof of Theorem 5.1.2 is mainly the result of the Uniform Ergodic Theorem
proved by Yosida-Kakutani, see [YK41] for power bounded quasi-compact operators
P. The proof depends on spectral theory. We give the Uniform Ergodic Theorem in

Chapter 3 and here we use the theorem to give the proof of the Theorem 5.1.2.

Proof of Theorem 5.1.2 . By using the Uniform Ergodic Theorem, we get all the

facts of Theorem 5.1.2 except that o(Pg) NSt is a union of full cyclic groups.
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To show that an eigenvalue ¢ € o(Ps) NSt generates a cyclic group we have to
show that there exists ng € N such that (" = (. Assume the contrary and asuume
¢ # 1. Note that if ( € o(Px) then there exists h € BV (Y) such that Pz(h) = Ch
where h is the eigenfunction of Q, the projection operator to the eigenspace of zeta
so Q%(h) = Re(h) = 0 where Q% and Rx as in Theorem 5.1.2 for any ¢; # ¢. We
also have PZ(h) = ¢"h which implies 1}1_)1{)10 Pz(h) = nh_)rglo ("h, so lim,,_,o, Q"(h) =
Q(h) = Ch since Q is idempotent. It is not possible on S! for a point ¢ to have the
property lim,,~ (" = ¢ which gives the contradiction. Then (™ = (¢ implies that

¢rot =1, =

Theorem 5.1.4. Operators Q?{ and Rz have unique expansions as operators to L'
and Q% is bounded as an operator from L' to BV, ||QL|l, < 1 and sup,, Rz < oco.

For every f € L', lim, .o, R<(f) = 0.

Proof. The proof depends on noticing that for ¢ € S*,

S o G
[E DY S
i=0 L, if ¢ = ¢

Also note that BV is dense in L' and Q% can be defined in L' since |Ps/C||; = 1. O

5.2 ‘Pz with only Eigenvalue 1

In this section we analyze the situation when o(Ps) N S' consists of only 1. This
situation is enough to consider for such random dynamical systems because the

random Perron-Frobenius operator has only finitely many eigenvalues on S! and
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each is a root of unity. Then if M € N is a common multiple of orders of eigenvalues

then the operator P has the only eigenvalue 1. From Theorem 5.1.2, we have

Pz = Oz + Ra.

Notation 5.2.1.

1 n—1
An(P) = > P
=1

Theorem 5.2.2. There exists nonnegative functions o1, ...,ps € BV and iy, ..., 10s €

L such that

(i) For every f € L',

N
(”) Peyi = i, ij(l/JiOTj) = fori=1,...,s.
j=1

(ZZZ) /QOde = 1, /gpﬂﬂ]dm = 51']', mm{gpl,gp]} = mm{wl,%} =0 fOT’i = 1, ., S

(iv) There exists measurable sets C,...,Cs C Y such that ¥; = x; a.e. fori =

1,....s andY:UCi a.e.
i=1

(v) Let Uz denote P¥, so m UL(LY) = ﬂ UL (L) = span{i)y, ... s}

n=1 n=1

(vi) Forevery f € L' (or L>), U2 f — Q%(f) ino(L*, BV) topology (or o(L>, BV)

topology) as n — oo and

Qi)=Y ( [ foutm) .

i=1
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Proof. Operator Qg is a positive operator since it is given as the limit of A,(¢™'P)
for ( = 1, see Theorem 5.1.4. Let Z = ker(I — Ps) be the projection of Ps onto
the eigenspace corresponding to the eigenvalue 1. Then for f,g € Z we have

Qz(min{f,¢g}) < min{QO<f, Ozg} = min{f,¢g}. On the other hand, P preserves
the Lebesgue measure m as given in Equation 4.4, so the limit of the average A, (P)

which is Q<. Then we have

[ Qstmin{f.ghyim = [ min{ 7, g)dm

Therefore
0 <min{f, g} — Qc(min{f, g})
and
[ min{.g) - Qstin{f,g})dm = 0

implies that
min{f? g} - QT(min{f7 g}) =0

m-a.e., so min{ f, g} = Qz(min{f, g}) m-a.e.

Let

A:{gOEZ:/wdmzlandQOZO}

which is a convex and a compact set. Such a set has extreme points so let 1,
be two different extreme points of A. We have min{¢;, 2} = 0 so they are linearly
independent and there are finitely many extreme points of A, say {1, ..., ¢s} with
s < dim Z. By Krein-Milman theorem we know that A is the closed convex hull of

its extreme points so dim(A) = s. Furthermore, A spans Z so we have dim Z = s.
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Now, we have the basis for Z, namely {¢1,...,ps}. Therefore, for every f € Z

we have
f=cpr+ ...+ csps

for some combinations ¢;. If {¢}, ..., ¢} is the dual basis defined by ¢} (¢;) =1 for

i = j, and ¢} (p;) = 0 otherwise, then we have

o= ai(ener+.. 4 cpies)es
= gilap)er + ..+ ©icsps)ps
= oilapr+ ... Fesps)pr+ . F @i + . F Cs9s) s
since ¢} (¢;) =0 for i # j
= ¢i(Ner+ ... +oi(fes.
If we write Qz(f) as a linear combination of the basis by using the dual basis as

above we get

Q(f) = »i(Qz(f))pr+ ...+ ¢i(Qx(f))es
= (QseD)(f)er + -+ (Q5)(f)es by the definition of Q%

= i (f)er + ...+ us(f)es by defining Q%! = 1,

where y; is a functional in L'. So we can find v); € L™ for each i so that

wi(f) Z/fdmsz%dm-

Therefore, we get

Qs(f) = (/ f@bldm) p1+...+ (/ f@bsdm) Ps

which proves the first part of the theorem.
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Now, for the second part it is clear that for ¢; € Z we have Pzyp; = ¢; since 7 is

the eigenspace corresponding to the eigenvalue 1. Also we observe that Pf = Uz is

given by
N
Us(f) =) pifoT;
j=1
where T7,...,Ty are the constituent functions for the random dynamical system
since

P<f(x) = Z;-V:lePij(x)
= Zjvzl pj ZyeT]._l(z) gr; () f(y)
implies for any f1, fo € L' that
< f1,Psfo> = Zj'\]:1pj < f1,Pr; fo >
= YLp <Ppfifo>
= SLip<foTyfe>
= <Us(fi),f2>.

We have Q<(f) = OQ<P<f since f € Z where

0:(Psf) - ; ( / %(fm-dm) o

by the first part of the proof. If we set it equal to Q<(f) = >_i_, ([ fvudm) ¢;
together with Pg = Uz, we get

[ ttsvyin = [ (Pspyvim = [ isam

for every f € L', so Uz; = 1); for i = 1,...,s which proves second part of the

theorem.

For the third part we already know that min{¢;, ¢;} = 0 because of the way they

are defined. We leave the proof of min{y, 1;} = 0 after proving part (vi). To show,
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[ pith;dm = 6;; we use the fact that the projection operator Qg is idempotent, in
S

other words Q% = Q¢. Then Q<(f) = Z ( / f@dm) ©; implies
i=1

Q:(f) = Q= (g (/ f%dm) %’)

- Z ( / 223 (/ fom) wj) o
- S (o)

1,7=1

And by setting equal to Qz(f) = >0, ([ fiudm)p; we get [ pihjdm = §;;.

We can also prove (vi) easily by using O<(f) = >.;_,([ fyudm)p;. For every

g € L', we have

[(@upgim ~ [ 1(Qzg) im

= / f ; ( / gwidm) pidm
() )
-/ (g ([ roam) wi) gdm

which implies Q7 f = Z ( / fapidm) 1p;. Furthermore, for every g € L*
1

/ Uz f) gdm = / f (P2g) dm — / £ (Qsg) dm = / (Q%f)gdm
which implies Uz f — Qx f.

Now we can prove the part we left in (iii) which is min{v;,¢;} = 0: We have
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ULf — Oz f = Z (/ fgoidm) ; by part (iv). Choose f to be ¢;, so we get
i=1

Uip; — Qzp; = Z (/ %’%dm) Py = (/ SOJQ-dm) (05

=1

since pjp; = 0 for 7 # j. Then

Nn
min{y;,Uzp;} = min{e, Z qpjo T, o...0T,, } where T, o...0T,,

is one of the N" many n-combinations of the

constituent maps with probability g,

N
= Zpk min{v;, ¢;} o T, o...0T,,

= 0 since /mgojdm =0 for i # j.

And / UR ;) idm — / ( / gpj?dmwj) Pydm = ( / gp?dm) ( / @Div,bjdm) implies

J¥ibjdm = 0 since [ @idm > 0. Thus, min{t;,¢;} = 0 for i # j so part (iii) is

completed.

To prove part (iv) we use part (vi), that is UZf — Q% f by choosing f to be 1,

soUgl=1— Qxl,s0 Qx1 =1. And Q% f = Z(/ foidm)y; with f = 1 implies
i=1

that 1 = Q%1 =7 ([ widm)y; = >;_, 1. Thus each ¢); is of the form ¢, with

Ui, Ci =Y.

Now only part (v) is left. It is clear that span{¢y, ..., s} C (oo, UZ(L') since
each ¢; € L' and Us(;) = ¢;. To show span{iy, ..., s} = (oo, UZ(LY) let [ €
Moo, UZ(LY). Since f € UR(L") for every n € N, choose f,, € L' for every n € N such

that f = Ug(fn). Note that || fllec = [[Uz (fu)lloo = [[fnllec- The sequence {Q%fn}iZ,
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is bounded in span{ty, ..., s}, so there exists a subsequence { Q% f,, }72, such that
Q% fn — fo where fy € span{y, ..., 9} as k — oo. If we show that f, = f we are

done.
Let g € L! be arbitrary. For any k € N we have

Janam = [ @ g,)am
G

= [Pz~ @0 fum + (@) fucim
= [y - 0appim+ [ g(Qzf)im
— 0+/gf0dmask%oo.

Since g € L' is arbitrary we have f = f, m-a.e. O]
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CHAPTER 6

Mixing Properties of the Random Dynamical System

In Chapter 6, we show that random dynamical system (T, i) has a Bernoulli scheme.
We give the definition of what it means for a random dynamical system to be
Bernoulli. Before that we give the theorem below which makes it clear that why

analyzing an operator with only eigenvalue 1 is enough.

Definition 6.0.3 (weak-mixing). We say that the random dynamical system (%, p)
1s weak-mixing if the random Perron-Frobenius operator Pz has only the eigenvalue

1 on the unit circle, and it has multiplicity one (that is, dimker(Pz — I) = 1).
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In the rest of the thesis we assume that the dimension of the eigenspace corre-
sponding to 1 is one; that is, the corresponding skew product realization of the random

dynamical system 1s weak-mizing.

Theorem 6.0.4. Let Pgz be the random Perron-Frobenius operator of the random
dynamical system with functions from T1(Y) as given before. Fix an integer M such
that o(PMYNSY = {1}. Let 1, ..., s and ¥y = ¢y, - - -, s = Xc, be as in Theorem
5.2.2 applied to PH. Then there exists a permutation 7 of the set {1,2,...,s} such

that
Pz(pi) = n()s

Us(Vri)) = s fori=1,2,...,s.
6.1 Bernoulli Property

First we define the Bernoulli property for the random dynamical system ({T}, u)
where 1 is the only eigenvalue of Pz on the unit circle and there exists only one
h € L' such that Pz(h) = h with [ @dm = 1. We prove that the skew product
realization of the random dynamical system (¥, i) where o = hm has the Bernoulli
property, so it is mixing, implying that the random dynamical system is ergodic. We

use results of Ornstein Theory for deterministic maps.

Definition 6.1.1. Let T be a random map defined on Y with constituent maps
T.:Y =Y, i=1,...,N and probability distribution (p1,...,pn) on the maps, let p
be a stationary measure for the random dynamical system. Let F be the associated
skew product map. If (F,m X p) has the Bernoulli property in the sense of Definition

3.4.1 then we say that the random dynamical system (¥, pu) has the Bernoulli property.
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Let us review the notation for the 7;(Y") types of maps first. The map T; €
T1(Y') is piecewise with countably many partition say ;. For finitely many functions
{T1,...,Tx} we refine the partitions fy,..., 8y to get a common partition S on
which all the maps are piecewise expanding. Furthermore, \/7_, T7*(8) represents
the refinement 8V TN (B)V (T, o T, ) (B) V...V (T o, oT Lo T 1) (B) for every

1 combination 7, o...oT,, of constituent maps for i =1,...,n.

Let ¥ be a random map on Y with constituent functions {71,...,Tn} C Ti(Y)
and [ be the common countably many partition so that each T; is piecewise expand-

ing. Let F" denote the o-algebra generated by the partition 8 =\/I_ T

We give the criteria below for the random dynamical system (T, u) to has the

Bernoulli property by using the criteria for a single map to have Bernoulli property,

see Definition 3.4.2 for the distance operation 0 used in the following Proposition.

Proposition 6.1.2. If the partition B for the random dynamical system (T, u) sat-
1sfies

sup 2(Bh, BIHE™) — 0 as n — oo
Lk>1

then the random dynamical system (¥, 1) has the Bernoulli property in the sense of

Definition 6.1.1.

Proof. The proof is a result of Ornstein Theory, see 3.4, applied to the corresponding

skew product system.

Let . : QxY — Q x Y be the corresponding skew product realization of the

random dynamical system (T, ) where  is the set of sequences with the the symbol
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6.1. BERNOULLI PROPERTY

space {,..., N} on each entry and .# is defined by

where o is the left shift function. Let m be the product measure on {2 obtained
by the distribution (pi,...,py) on constituent maps. Define the 1-cylinders C; for
1=1,...,N to be

Ci:{w:(wlwg...)EQ:Twl:ﬂ}.

Define a partition v on 2 x Y such that for any G € v, G = C; x B for some
i€{l,...,N} and B € 3. Note that 7 1(G) = .7 YC; x B) = {(wwsy...,7) €
QXY :w =T,z € w ' (B)}, so for any other H € ~, say H = C; x D we have
HNZG) ={(wws...,2) €S XY :wy =Tj,wpy =T;, and x € DNT; '(B)} =
Cji x E where Cj; is a 2-cylinder and E € ;. If we apply the same argument to all
sets of the partition v and all n'* inverse images we see that the refined partition 4%
consists of elements in the form of C;, ;) x B where C(;, _,,,) is an (n+1)-cylinder

and B € .

Now it is enough to show that the deterministic system (%, 7 x u) has the

Bernoulli property which is implied by

sup 3(7), VA" — 0 as n — oo (6.1)

1,k>1

by Ornstein Theory , Corollary 3.4.4. Then we only need to show that the assumption
of the Proposition 6.1.2 implies the Equation 6.1. Let G € 7} and H € 775" for

some fixed n,m and k € N. From the above argument we know that G = C;,..;,) X B
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6.1. BERNOULLI PROPERTY

where C(;,.;,) is an n-cylinder for some fixed n sequence of maps (7}, ...T;,) and
Bepy,and H=Cl, 1. irninsy) X D where
C(iz+n+1--~il+k+n+1) = {w €q: Twl+n+1 = Tiz+n+17 R JTwl+k+n+1 = Til+k+n+1}

for some fixed k-sequence of maps (15, .-, Tijprniy) and D € BiEEF" Then we
get the following
W™ = Y.l xuGNH) =7 x p(G)w x p(H))|
Geyb,Hey Thtm

= Z |7T X ’U(C(ilu-’in) x BN O(il+n+1--~iz+k+n+1) X D)

- [7T X M(C(llln) X B)][ﬂ- X M(C(il+n+l~--il+k+n+l) X D)]

where the sum is over B € 3, D € 6llif;+”, Cliy.iny and Cipy iy gynsr)- Lherefore

D(V(l)?%liern) - Z |7T X M(C(h...in;iz+n+1--.iz+k+n+1) x BN D)

=[x 1(Ciy..iny x Bl x pu(C x D)]

Ugnt1--Gtbtnt1)
= Z Diy -+ DinPirsnis - Pirsrpnsr (BN D)
—[pi - 'pin/’L<B)][pil+n+1 - 'pil+k+n+1ru(D)]

where p;, is the probability of choosing the map T;;, and since we are summing over

all possible n and k sequences of maps the sum of probabilities is 1 and we get

(v i) = > BN D)—u(B)u(D)|

I+k
BeBy,Dep Rt

= ok A

which concludes the proof. O

To show that the random dynamical system (¥, i) has the Bernoulli property we
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6.2. DECAY OF CORRELATION

see that by Proposition 6.1.2 it is enough to show that

sup (), BIE") — 0asn — 0 (6.2)
Lk>1

which we do by first defining an equal quantity to Equation (6.2) given in the fol-

lowing section and then we show that the new quantity converges to zero.

6.2 Decay of Correlation

Definition 6.2.1. Let (%, u) be a random dynamical system with the common in-
finitely many partition B. We define the n'* correlation of the system by

Corr(n) = supE, | sup |u(AlF) — p(A)|

1>1 AeF,

where FY, is the o-algebra generated by 7%, =\, T,

The following Lemma gives the equivalent quantity to Equation (6.2).

Lemma 6.2.2. Let 0 and Corr(n) be as above, and [ be the common partition for

the random dynamical system (T, p). Then we have

1
Corr(n) = 5 Sup (B0, B0
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6.2. DECAY OF CORRELATION

Proof.

sups1 060, Biin ™) = sup Y |u(ANB) = u(A)u(B)|

1Lk>1
Aeph,BeptEtr

— supzililf > u(BlA) = u(B)|u(A)

>1
T Aepy T Beptktn

= sup Y sup |u(BJA) — u(B)|u(A)
>1 . BEFX,
Aepy

= supE, | sup |u(B|F) — u(B)|
1>1 BeF®

I+n
= Corr(n).

The following Theorem concludes that the equivalent quantity of Equation (6.2)

converges to zero so the Bernoulli property follows.

Theorem 6.2.3. There exists K > 0 and p € (0,1) such that

Corr(n) < Kp" forn=1,2,...

Proof. Let A € Fiyp for [;n > 1. There exists B, € F§° such that A = ‘Z_(””)(Bw)
where T represents the choice is random. Note that such B, exists since we refine
the original partition by using the inverse images of every possible choice of the
constituent map but the set depends on the sequence we choose so we denote the

dependence with the subindex w. Now we have

1
AlF) = —/X dp for C € g
”( | 0) #(10) ) capl
- 5 /B P Pasxch)im
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6.2. DECAY OF CORRELATION

If we take the integral of both sides with respect to the measure m we get

1(A|Fy) = // wiin - - Poy (Xch)dmdm
where h € BV is the invariant density so that dy = hm.

Since 7w X p is the invariant measure for the skew product realization of the random

dynamical system for .7 : Q2 x Y — Q x Y we have
X p(Qx A) = p(A)=mxpu(,B)
= ZW([W]l—&-n)N(Bw)

w

where [w];4,, is an (I14n)-cylinder and B, is the inverse image of A obtained by the
cylinder [w]iyn s0 F ([w]i4n, Bo) = 2 x A and the sum is over all possible (14+n)-

cylinders. Then we get

\(AIF) — pn(A)| = ‘ﬁ/ﬂ/}gwﬂ,m...Pwl(XCh)dmdw—//whdmdw
1
P

— P ... Pu(xch) —h‘dmdw

IN

QJB, ,U(C> e
1
< —— P, - Py h) — h|dmdr
< A,Emm e Pt ]
= —P (xch h‘dm
_ pr+n(XCh> _ h
1(C) 1

which implies

Corr(n) = sup E,

>1 AeFp,
1P (xch) = hn(©)]),
< C
ap 3w |
= sup Z HPH”(XCh ||1
=1 cepl
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We have Py = Q + R where inf ||R”||'/" < p < 1 for some p € R. Also note that

the projection of PL(xch) to the eigenspace corresponding to the eigenvalue 1 is

</Y Pé(xCh)dm) h = (/Y Xchblé(l)dm) h = (/Y XChldm) h = u(C)h.

So if we consider the above quantity as the following way

1P Oceh) = hul©)]|, = |[PE(Ps(xeh) = hul(C)],

then by applying P2 = Q + R" to the term PL(xch) and then by subtracting the

projection Q(PL(xch)) we end up with

[P (xch) — hi(C)]|, = ||R™(PL(xch)), -

Therefore,

[P (xch) — hu(O)]], < IR"IPE(xch)

< Kip"||[Pg(xeh)sv
implying

Corr(n) < sup Z H PL (xch) — H1

21 5o
< Kip"sup Z |PL(xch)|| v
121 cepl

< KGp"(2F + 1)|]lsy.
by using the proof of Lemma 5.1.3. We conclude the proof by setting K = K;(2F +

DAl sy O

Corollary 6.2.4. The random dynamical system (T, p) is isomorphic to some Bernoulli

shift, so (T, ) is mizing, so ergodic.
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CHAPTER [

Limit Theorems for Random Dynamical Systems

By having the Bernoulli property in Chapter 6 we could conclude that the limit theo-
rems hold in the form proposed by Hofbauer and Keller [HK82] in the averaged sense
since the corresponding skew realization has the Bernoulli property. The averaged
Central Limit Theorem is also given by L. S. Young and E. Kobre for uniformly ex-
panding maps with finite partition in [KY07] where they use martingale arguments.
However we continue with perturbation methods to prove the averaged Central Limit
Theorem since we also need the speed of convergence to get the quenched Central
Limit Theorem. Our main reference for the Perturbation Theory results is [RE83]

where the Central Limit Theorem is given for a single uniformly expanding map with
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7.1. CHARACTERISTIC FUNCTION OPERATORS

the speed of convergence.

7.1 Characteristic Function Operators

Let us introduce some notation before we start giving the limit theorems. In Chapter

7 we define P to be the conjugate random Perron-Frobenius operator of Ps.

Let h € BV be the eigenfunction corresponding to the unique eigenvalue 1 € S! so
P<z(h) = h. We define M, to be the multiplication operator so M(f) = fh. Then

the conjugate operator P is defined by
P(f) = My "PcMu(f) = Px(fh)/h.
Note that 1 € BV is the eigenfunction of P corresponding to the eigenvalue 1 since
P(1) = Pz(1h)/h = Pz(h)/h = h/h =1

which implies that the stationary measure for the system is m. The choice P is good
N

for Chapter 7 since such terms Z Di Z
=1 yTi(y)=z
which makes the calculations easier.

= (P1)(x) is simply equal to 1

1
77 ()|

Furthermore it is also a right choice to work with since if we consider the correspond-
ing skew product realization of the random process .# : Q x Y — Q x Y then the

adjoint operator of the composition operator with .# is denoted by P# and given by

P(f) = 2 Ps(f) = P(f).

for f € BV(Y). See Lemma 16, page 75 in [Kob05] for the proof.
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For f € C>(Y,R), we denote S¥ f to be the sum of the evaluations of T}, o...0T,, o

T, (z) under f, namely

Spf(x) = f(2) + [ (T, (2)) + [(To 0 Tiy (2)) + -+ f (Lo -+ Ty © Ty (2))-

The same process can also be given by using the corresponding skew product real-

ization that is
Sef(x) = f(x)+ foF(w,x)+ foF(w,x)+...4+ fo.F"(w,z)

Therefore to prove the Central Limit Theorem for the process S, (w,x) we use the
operator P since f does not depend on the first coordinate w € ). Note that we use

the notation S¥ f(z) to denote that the sum depends on w not the function f itself.

Definition 7.1.1. Define for f € C®(Y,R) the operators Pz, and Py s to be

Pzyp(g9) = Pz(e g)

and
Pus(g) = P(eg)

respectively where Ps is the random Perron-Frobenius operator and P s the conjugate

random Perron-Frobenious operator of the random dynamical system ¥, so
N N
Py s(g) = ijPTj(eltfg) = ijPTj,t,f(g)
j=1 j=1

where Pr; 4y is the characteristic operator of the single map T given by Pr, 4 s(g) =
Pr, (e g) as in [RE83], Section 1.5. We call Pz, s the random characteristic oper-
ator with respect to the observable f and P, the characteristic operator of the skew

product system % with respect to the observable.
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7.1. CHARACTERISTIC FUNCTION OPERATORS

The idea to prove the averaged Central Limit Theorem is to show that the char-

acteristic function of the process

Sz fa)~n [ fdu
\/ﬁ

converges to the characteristic function of the normal distribution. We assume that

fdp = 0 to make the calculations easier. Then the characteristic function of the

Snd (@)

process ——— is given by

vn

wlEqle” v for 6 € R. (7.1)
where Eg is the expected value with respect to the measure 7. Let t = \/iﬁ € R so

our main interest is the function W(t) = u(Eq [¢"*7/@)]). The following lemma gives
how the characteristic function of the random process is related to the characteristic

operator P;';. Later we take g =1 to prove the result.

Lemma 7.1.2. For everyn > 1 andt € R, we have
1(Pr(g)) = w(Eq [/ @) g ().

Proof. First we find how the random characteristic operator and the characteristic

operator are related. We have P(f) = w which implies

Pislg) = P(eg)
’Prz(eitfgh)

h
Ps.r(gh)
h
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7.1. CHARACTERISTIC FUNCTION OPERATORS

and similarly

Pi(g) = Pis(Prs(9))

Pz, +(gh
which generalizes to P';(g9) = %(g)

function of the process is related to the random characteristic operator Pg, , then

If we first find how the characteristic

we can use that

v h
u(Pry(a)) = wCLIy _aipn (b)),

Therefore we need to find the expression for Pg, (g):

m(P, (9)) = m(Pz(e™ P Pe(e™ ... Ps(e™g)...)))) with n many Pes,
= m(ePe(e Pz ... Pz(eg)...))) with (n-1) many Pgs
since m is invariant,
= m(Uz(e™)ePe(e™ .. Pz(efg)...)) with (n-2) many Pgs

since Us is the adjoint operator,

N
= m(z p;j (TNt I P (e Px(efg)...)) by Definition of Us,

j=1

N
= m(z p e TP (M P(eitg) .. )
j=1

N
= m(U(Z peUHITN I P g) .. .) with (n-3) many Ps,
=1

N
_ m( Z pkpjeit(foTk+foTjoTk)eitf N .P¢<€itfg) N )
G k=1

N
_ m( Z pkpjeit(f+foTk+foTjoTk) N .Pg(e“fg) N )
k=1
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7.1. CHARACTERISTIC FUNCTION OPERATORS

Z q2 ity f . Pz(eg)...) where the sum is over all 2-cylinders
My -1
Z n—l “S 7 g) where the sum is over all (n-1)-cylinders, so

= m(Bq [¢*577g])

Here M; denotes the number of possible combinations of i-cylinders, wj- is one of
the 7-cylinders and q§ is the probability of the corresponding i-cylinder. The sum
Sﬁlf isequal to f+ foT,, +...+ foT, o...T, where [T,,,...,T,,] is the fixed

i-cylinder denoted by w?.
Therefore, we get

w(Pislg)) = m(Pg,s(gh))
= m(Eq [¢"/gh])
— (Eq [¢5HTg)).

]

Proposition 7.1.3. For every t € R, the characteristic operator Py ¢ is continuous

on (BV,|| - |lgv) and on (L*,|| - ||l1). Furthermore, the function t — Py s is analytic.

Proof.

1P (9)lav = 1P g)llsv < 2Pllsvie™ ||aviglsv

since we have

fgllsv =\ fa+ 1fgll < |Flee \/ 9+ 19100 \/ £ + [ floclgls + lglocl £
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7.1. CHARACTERISTIC FUNCTION OPERATORS

= |flocllgllav + 1glocll £l v

<2|[fllzv llgllzv

since | floo < inf|f|+V f <|fl1 +V f. Furthermore

lellpy = Vet + e L
= Vecos(tf)+ Vsin(tf)+1
= 2tV f+1
So |Pes(9)llv < C(t)||gllsv which implies the continuity on (BV,|| - ||5v).
Similarly
[Pl = P g)lh
< el < llglh

which implies the continuity on (L'|| - ||;).
To check the analyticity consider

Pislg) = P(eyg)

n=0
(i)
= S (g
n!
n=0
For each term in the sum we have
" n 20t n
EoIP( )y < 2 1P ol Wi gl

which implies that ¢ — P, ; is infinitely many differentiable with respect to ¢ which

implies the analyticity. O]
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The following proposition is the main result that is used to prove the Central
Limit Theorem. The proof depends on the spectral properties of the operator P and
the proof for a Perron-Frobenius operator of a single map can be applied exactly the
same way to the random Perron-Frobenius operator. So we give only a sketch for
the proof and refer the reader to [RE83], Proposition 4 or to the book of Dunford

and Schwartz, Part I, see [DS09].

The notation is as in Chapter 5 but for the operator P that has only 1 as its

eigenvalue on S' so P = Q + R.

Proposition 7.1.4. There ezists a real number a > 0 such that whenever |t| < a we

have

(i) for every g € BV andn > 1,
"1(g) = A"(it)Ni(g) + M7 (g)

where A(it) is the unique greatest eigenvalue of Py s and |A(it)| > (24 p(R)/3
where p(R) is the spectral radius of the operator R, and N is the projection

onto the eigenspace &, corresponding to the eigenvalue \(it). M, is an operator

on BV with spectral radius p(M;) < (14 2p(R))/3, and M(&;) = 0.
(i1) the functions t — \(it), t = N; and t — M, are analytic,

(117) ||IMP(1)||sv < Clt|((1+2p(R))/3)™ where C' is a positive constant.

Proof. We start the proof by giving some definitions. Given the random Perron-

Frobenius operator P = Q + R we define the resolvent of P to be the operator S(z)
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on BV defined by
S(z)=1/(zI -P)=Q/(z—1)+ > _R"/z""

whenever |z| > p(R) and z # 1. Then we define the resolvent of P, y to be

(2) D ((Poy —P)S(2))"

whenever ||P; s — Pllgv < 1/||S(2)||sv so that the series above converges.

Let .4 and % be the circles with center 1 and 0, and with radii p; = (1 — p(R))/3

and ps = (1 +2p(R))/3 respectively. Let 0 < § < py, so
P(R)+6 < ps

since po — p1 = p(R). Let My = sup ||S(z)||sy where the supremum is taken over
12| > p(R)+ 6 and |z — 1| < 9. If || P,y — P|lsv < 1/Ms then the circles .7 and .7

are in the resolvent set of P, ;. Then the projection operators are

M, =— [ Si(z)dz

271 J o,
For |N; — Q||pv < 1 the image of N}, say &; is one dimensional. So for any g; that
generates &; we have

Pt,f-/\/t(gt) = Mpt,f(gt) = A(it)gs

Then for any n > 1,

iy = PrypNe+ PppMi = A (i) Ny + M
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where

M= [ s

21 ) o,

There exists a € R such that for |{| < a we have

Si(2) = S(2) +itSV(2),

implying .
M) = = [ S)dz+ 21 [ s (2)ds
t 27TZ Py 27'('2 s t
t n
-/ SW(2)dz,

implying | M}(1)[|sv < Clt|p; where

1
C=— sup [I8S)sv.

2T |2|=pa |t|<a

Then again the spectral properties of the operator P, ; for every real number ¢ is

provided by Theorem 5.1.2:

Proposition 7.1.5. For t € R with |t| small enough, the operator Py has only
finitely many eigenvalues of modulo 1. For each such eigenvalue, say ¢ € o(Py)NS*

the corresponding eigenspace &¢ is finite dimensional and contained in BV . We have

k
= oY Ry, forn > 1

J=1

where ng) is the projection to the eigenspace &¢,. Furthermore
ol =0fori#j (@)Y =9 @R =RQ’=0.
And Ry(BV') C BV with p(R;) < 1.
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Proof. We only need to check if the operator P, ; satisfies the Lasota-York inequality,

the rest is the result of Theorem 5.1.2. First note that we have
M (i) (i) (i)
Py g(9) = D 0Py - Prgp ("I Tt o0t g)
i=1

where ¢; is the probability of the ¢th n-cylinder given by T(Sln) . .Tu(,? and the sum is
over all possible n-cylinders which are M = N™ many. The equality is obtained by

applying the Equation 3.1 to maps e/ and /g so
al N
eztf’sz(ethg) = ZpiPTi (eztfg . e”fOTi) _ Zpi'PTi (g . 67«t(f+foTi))
i=1 -
implying for n = 2 that
PLe) = PP
= P <ZZ]11 piPr, (g . @it(f+f0Ti))>
- Zgjﬂ pipiPr, Pr, (g - e H1T)
- Zgjzl pipi Prjor; (g . eit(erfoTi))

We use the same rule above for any n > 1. For ||Pg, ;(g)||pv we use the inequality

4.7 in Remark 4.1.16 to get

1Pz ¢ (9)llBv =

w1

M
; (%) (%) ()
t(f+foly, +...+foT,. ,o..0Ty,
S 4Py Py (T kPO oo TD g
i=1

BV
3Py g
P wn w1 BV
< Z 4 (OTn eit(erfoTu(fl)+...+foTu(,?71o...oTo(fl))gH
; BV

@
I
A

+
=

||eit(f+foT£§)+...+foT$?,1o~--oT£’f)g|| 1)

it (HFTE) o foTl) 0. 0T

-

< Qi (CTTLQ ‘

| lgllsv + Rilglh )
1 \%4

]
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S

; (4) (%) (%)
< qi(Cr"Q(\/ it (HfoTuy +. A foTi jo.oTuy) + 1) HQHBV
1

i=

+ Rllgll)

S

Z C’T”QQW\/f—{—foT’)—i— —l—foTcg?ilo...oT(i))

w1
=1

+ Dllgllsv + Rllgll1)
M
< Z Gi (CT”Q(QItln\/ S+ Dllgllsv + Rllglll)

<ort (2|t|n\/f + 1) lgllBv + Rl|gll1 since Zqz =1,

=1

Now, for every t € R there exists ny such that Cr"™°2(2|t|ng \/ f+1) <1 which gives

P‘It f(gh>

the Lasota-York inequality for Pg; but then Pf';(g) = .

implies

1P (9)lsy < 2 P2 (90| 5y

(CT"Q <2|t|n\/f + 1) lghllByv + RthH1)
BV

< 2
Y

2 (Cr”2 (2|t\n\/f + 1) lgllsvlihllsy + R\|g||1||h||oo>
BV Y

where H%HBV, |h||pv and |||l are all finite so the characteristic operator Py s

B

< 2

satisfies the Lasota-York inequality, too. O

7.2 Central Limit Theorem

The condition on the function f € BV is that the equation

f=k+q@oTl,—ypforeveryic{l,...,L} (7.2)
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admits no solution for ¢ € BV and k € R.

Theorem 7.2.1. (Averaged Central Limit Theorem) The random dynamical system
(%, m) satisfies the averaged Central Limit Theorem for every f € C*(Y,R) with the

above condition (7.2), meaning

0= [ s L e
= e dt.

lim 7 x pu<g (w,x) : <c

no0 ’ NG - V2r0?

2

where the variance o is given by

= u(f*)+2>_ u(fPf). (7.3)

We assume that / fdu = 0 to simplify the calculations. First, note that for

|t| < a as in Proposition 7.1.4 we have

//eisﬁfdﬂd,u = /]Eg[itswq du
v Jo

= /Ptf )dp by Lemma 7.1.2,

_ zt/./\ft du+//\/l"

Lemma 7.2.2. For A as in Proposition 7.1.4 we have

Proof. We know that

/]EQ [&%&i’f] dp = / P j(1dp,
Y Y

and if we take the limit over n of the left-hand side we get

lim [ Eq [eiﬁsﬁf]dp = ¢'tilf)

n—o0 Y
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since lim Eq[Sy f] = p(f). Then the aim is to find the limit of right-hand side and
n—oo
set it equal to (/). By Proposition 7.1.4 we know that the right-hand side is equal

to
/Eg[eiisﬁf]duzv(z’f)/Nt(l)du+/M’%(1)du.
Y n Jy n y "

Then we need to find the limit of each term as n — oco. First,

t
/ M’i(l)du‘ < M (Ul < gy
Y n n

with po < 1 so lim

n—oo

./\/l"t(l)d,u‘ = 0. On the other hand,
Y n

ity ey R
Ni(l):QJrEN()—ﬁN(MENi (7.4)
where N, N @ and N . are operators on BV such that

lim ||N£||BV = O.
n—oo n

Therefore
lim Nt(l)du:/ Q)dp = 1.
n—oo [y n v
Similarly,
b it (it)? ., 2t
A(lg) = A0) + ﬁ)\ (0) + FA (0) + ﬁA(lﬁ)’ (7.5)

_ t .
with A(0) =1, lim A(i—) = 0, and lim, o A"(i£) = ™). Thus the limit of right-

n—00 n

hand side as n — oo is €' () which is equal to the left-hand side () implying

N(0) = u(f). a
We assume p(f) = 0so X(0) = 0.
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Lemma 7.2.3. For A\ as in Proposition 7.1.4 we have
Sf\?
L dp.
< \/ﬁ> ] g

Sw
Proof. The idea is similar to the previous proof: we give how lim [ Eq( ”f)z]du
n—oo [y \/ﬁ

is related to the random characteristic operator and then use Proposition 7.1.4 and

A'(0) = lim [ Eq

n—o0 Y

calculate each term.

Note that [, EQ[(%)Q]CZ/L can be obtained by using the characteristic function

[y Eq[eC/VMSifldy by taking the derivative twice with respect to ¢ and then evalu-

ating at t = 0:

o (it/ /)85 } _ Sef
e S RN C s T

Again we have that

| BaleT = [ Pr (1)
Y

y v

implies together with Proposition 7.1.4 that

itSf nee b n
Bale %5 =\ (i) [ o (it [ M0 (1
/Y vn'lly Ve y v
as in previous proof except that we have y/n instead of n in the denominator of the
perturbation value. Therefore we need to find the second derivative of each term on

the right-hand side with respect to ¢ and then evaluate at t = 0 and take the limit

as n — 0.

Now, we have
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For n sufficiently large and |z| = ps for S,/ = (2) we have

it
Sityym(2) = S(2) + %5(1)(2) - %5(2)(2) + E‘Sit/\/ﬁ(z)

where S,.8@ and S,/ are operators on BV and lim S,/ sy = 0. Therefore,
n—oo

1 it t? 2
M%(l) = 5 s 2" (S(z) + %S(l)(z) — %8(2)(2) + ESit/\/,;(z)) (1)dz
¢ 12

_ n o(1) o n Q(2)
S /SZZ 8 ()= — /Sz SO (2)(1)dz
t2 —
| #Suaz) e

2imn

S2
implying
lima—z M"(1)d B T — /z”$<2>(z)(1)dz—o
n—oo Ot | Jy v a t:o_"_"x’ 2imn Jg, -

t
Now for the other term )\”(z%) /Y N . (1)du we use the results from the previ-
ous proof, namely the Equations (7.4) and (7.5), and replace y/n with n. Then we

take the second derivative and evaluate at t = 0 and get

and if we take the limit as n — oo the sequence — / EQ[(Snf
y Vn

—X"(0) so the result follows. O

)?]dp converges to

2

The following lemma gives the representation of the variance ¢ in terms of the

conjugate random Perron-Frobenius operator:

S\
(\;g) ] du, then

ﬁaLMﬁ—@wW

Lemma 7.2.4. Ifo? = lim | Eq

n—oo Y

where P is the random Perron-Frobenius operator and g = (I —P)7 f.
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Proof. Let us first give in detail how / Eq

Y

STAY
dp behaves for some fixed n
vn

values:

Forn =2, 8§ f = f+ foT) with probability p; and S§f = f+ foT, with probability

po and so on. So

/YEQ (%)1 dp = /}/(Zﬁlpi(f;fomjhdm
/Z, P2 fo Tt T,

- [/ fzd,u—i—2/2pz foT)hdm
+;pifyfon-<fomhdm]

1
= 3| [ raus [ Patn)- gam

N
+leify7>ﬂ(h-fom-fdm]

/ f2dm + 2 / Pe(fh) - fdm + / FPe(h) - fdm]
Y Y Y
/f2dm+2/7>g(fh)/h-fdu+/f?hdm]

Y Y Y

N~ DN~
<

since we have
N
> piPr(fi- foTi) = fPz(f)
i=1
so we take f; = h for the above equality, see Equation 3.1. Thus,
S5 f
= (%)
=] (2

since Pz(h) = h and P<(fh)/h = P(f).

du= [ P [ ) s

Forn = 3,54 f = f+ foT+ foTioT; with probability p?, S§ f = f+ foT |+ foTyoT;

with probability p;p, and S§f = f+ f o1y + f o1y o T, with probability p,p; and
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so on. Then we get

SN (i (f+ foTi+ foTyoT))?
o (ﬁ)]d“_/y( 3 el

_/ S Pns (2 (Fo T + (foTyo Ty
3
Y
[ Ehirpd o T (- foT, ol (o foT;0 )
_l’_
Y 3

dm

h dm

N N
:% [/Yﬁhdm—i_/y;pi(foﬂyhdm—i_/yZpipj(fOTjOﬂ)thm]

ij=1

9 N N
—1—5 /Ypri(foTi)hdm—i-/YfZpipj(fo]}oﬂ-)hdm

ij=1

N
+/Y Z pip;(foTi)(foTjo Ti)hdm]

1,7=1
R (b f o).
=3 ny du—l—/}/;pngri(h foT) fdm

N
o [ 3 pw Pl o 0T o Ty

ij=1

+2 { | Petsn)- fim

N N
[P Yo Thdm - [ 37 pinPrihe FoT) - (f o T)im

ij=1

_1 2 . 3 (h-foT; ol
- [/Yf du+/yfh fdm+/yjzz;py(h foTy)(f o Ty)dm

N
/Y Ps(fh) - fdm + /Y P2(fh) - fdm + /Y S pifh- f o Tydm

ij=1

—= [/Yf%m/yf?dw/yipﬂ%xnfom~fdm]

+§ [/YPg(fh)-fdm+/y73§(fh)'fder/YPT(fh)'fdm}

=3 |2 [ 2]+ 5|2 [ P saus [ Py s
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since P2(fh)/h = P*(fh)/h. Thus,

[ = (Swf)] = [ Pawsg [ P sdne g [ P s

Here the main step is when we multiply the two forms f o T} o T; and f o T; we get

/szpj foTli)(foT;oT))hdm = /ijpJDT (h-foT;)(foT;)dm

7,j=1 zgl

-/ S b (f o T i

- /Y Pe(hf) fdm
= [ Psin

And by using the same methods in more general combinations like the ones below,
we get the integral of a product of second iterates and fourth iterates of random

maps which is given by

/ Z pipipipi(f o Ty o Ti)(f o Ty o Ty o Tj o Ty)h dm

i,5,k,0l= 1

/ Z pipipkpiPr,(h - foT; o T;)(f o T) o Ty, o Tj)dm

z]kl 1

-/ S mni(h - fo TS Ty Ty o Ty

jk‘l 1

/ Z pipipiPry(h - f o Tj)(f o Ty o Tj;)dm

jkl 1

/Zpkpzh DI o Ty oTy)dm
y

kll

/szﬂ?s F1)(f o Tiydm

=1

= [ Pam s

= [ Pnsan
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For n = 4 we have

[ (50

/ zﬁﬁkzlpipjpk<f+fon+fonoTi+foTkoTjoTi>2> -

- A

/szpjpkf + ( oT) (fo]}oﬂ)2+(foTk07}oﬂ)2hdm

1]1

/ S el - FoT) 4 (f- foT,0T) 4+ (f - £ o T o Ty o Thm

z]k 1

/szpgpk foT, foTyoT)+ (foT, foTyoT,o T hdm

z]k 1

= S papnlf o Ty 0Ty f o Ty o Ty 0 Tl
Y

ij k=1

1,2 , 2
=3 [ardus T [ POr P+ PSS [ PO
+PA(f) fdp+ 3 [y P(f) fdp

= [ Pan+ g [ P+ g [ P [ P

By using the same idea above we can write for any n that

| Eo (%)] du = /fd " )/ P(f) fd

2
/ an 1( )
¢ s
And if we take the limit as n — oo we get

=2 [ () fa
+2(”n_3)/ 3(F) fdp + . ..
= /f2du+2n25
<S\WF> ]dp—11m/f2du+22 /P’“ ) fdu
89
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) fdu
— -1
/f d,u+2/ lim (ZP’“ — Z )fdp,
Y k= k=1
~ [ fanz2 S PH(f)

k=1

:I>—‘

since ZZL Pk(f) = ZZL Rk(f) and ZZL ]ng(f) = ZZL kRk(f) with p(R) < 1

are finite. This gives the Equation 7.3.

Note that S(z) =1/(2] = P) = Q/(z— 1)+ >~ R"/z" and we have Q(f) =
so0 S(2)(f) = (zI = P)"1f) = D02y R"/2"(f) and if we evaluate at z = 1 we get

defined and

(I=P) 1 f) =302y R™(f) < oo since p(R) < 1. Therefore, g = (I —P)~'f is well
Z / PEIF) fdu

- nh_{go YEQ [(f;j) ] k=—00

-2 (fjp’%f)fdu) - [ s

k=0

= 2 [ =Py ) fan= [ Fdn

Y
— [ 201 - fan

- /Y2g f)fdu
/g+7’g 9—"Pg)d
= /g — (Pg)*d
— /73
since g = (I — P)7H(f) = Lo PH(f), so we have g + Pg = Yo7 PH(f) +

Z}iozl Pk(f) = 2Zkzopk( )—f=2g—fand g—Pg = ZZO:O,Pk(f)_ZEO:1 Pk(f) =
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f with the fact that

/ gldy = / g*hdm
Y Y
N

2
KD

i=1

= /YP;c(th)dm
= /Yp(gz)du

Note that P(g*) — (Pg)* > 0 since we have for every i = 1,..., N

(Pr(gh)? = (Z |9T’}((§))|>

- G (h(y)2g()
(;,:7%:96 T/ ()22 T (y)| /2 >
h(y) hg*(y) . |
< <ygziy:x |Tl’(y)]> (ygy:x \T[(y)|> by Cauchy’s inequality,
= Pr,(h)Pr,(hg*)z,

then for i # j we get
(Pr,(gh))*(Pr;(9h))* < Pr,(h)Pr, (hg?) - Pr,(h)Pr; (hg?)

implying

(Pr,(gh))(Pr;(gh)) < +/Pr,(h)Pr;(hg?) - Pr,(h)Pr,(hg?)
(7.6)

PTi(h)PTj (hQQ) + PTj (h)’PTz(th)
< 5 .
Therefore we have
(Pg)* = 5 szp] (Pr,(gh))(Pr, (gh))

2,j=1
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by Equation (7.6),

1 N PT (hg ) + PT]' (h)PTz (92)
=2 Z s 2

= o ij (ZPZPT ) Pr, (hg®) + Z (Zpﬂ?:r ) ) | Pr,(hg?)
= % ZPjPTj(h92> + % ZpiPTi(hQQ)

1 2
= ﬁ%(hg ) + QhPs(hg )="P(g")
since ZpiPTi(h) =Pz(h)=h O
i=1
Lemma 7.2.5.

o —t202/2
8 ), Pl =

Proof. From the proof of Lemma 7.2.2 we have that

/szﬁfa)dﬂzwz%)/YNg(l)dw/MZ(l)dﬂ

Y
where lim 1)du‘ =0 and
it t? 2
Ne()=Q+ —NW - —N® 4 — N,
n n n n n

and

t, it (it)? ., 2t

A=) = A0) + —N(0) + = X'(0) + 5 X(i--).

t t
We replace — with T in the equations and proceed in a same way. If we take
n n

n — oo together with the assumption that X'(0) = 0 we get

lim N ( )dp = lim Qdu =1
n—oo

n—o0 Y
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and

fim V(i) = A0) + ~=xN(0) + Do) + Ex L) = oo
n—00 \/ﬁ \/ﬁ n? \/ﬁ

which is obtained by taking the logarithm of the equation above so we get

. ot .
Jirgonln()\(z%)) = T}Lrilonln(l —A (O)%)
_In(1-N(0)5)

= lim L

n—o0 1/n , ,
" RV

= lim (W(O)F/2n7) [ (1 = X(0)t/2n) by L’hopitals rule,
n—00 —1/712

= =\'(0)t?/2

t

since lim A(i—=) = 0. Then the result follows from

n—oo T
P (1)du = /\”z—//\/ d;w/Mt

NG

E\

Y

]

Lemma 7.2.6. 0 > 0 if and only if f is not of the form f = k+@oT — ¢ for some

function ¢ and number k for the random map ¥.

Proof. We have p(f) = k and we also assume that p(f) = 0 so we have k = 0. If
0? = 0 then in the proof of Lemma 7.2.4 the inequality (Pg)? < P(g?) is an equality.

So we have

% > pipi(Pr,(gh))(Pr,(gh)) = # > pip; (Pr,(h)Pr, (hg®) + Pr,(h)Pr,(hg?))

i,j=1 i,j=1
1
= ﬁ Z piijTi(h>PTj(h’g2)7
i,j=1
in other words

12 (p, 1/2
(ZP’ Z ( >)>|1/2( |<y>() )‘1/2 ) (Z Z

i=1 yTy:p i=1 yTy:E

rn) (5r
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implying that for every i = 1,..., N and for every y € Y with T;(y) =«

c(h(y)'? _ ((y))?9(y)
T3 (y)[1/2 T (y) [/

for some constant ¢ € R by Cauchy’s inequality given in Proposition A.0.1 in an
averaged version, see Example A.0.2. That means for some fixed z € Y for every
i=1,...,N and for every y with T;(y) = « the value ¢(y) is constant and does not

depend on i and y. Therefore,

Pow) = ()

for some i € {1,..., N} and for some y; € Y with T;(y;) = z since Pzh = h. And

since f = g — Pg we get

f(z) = g(z) = (Pg)z = g(z) — g(y;)

f(T(y) = 9(Ti(vi) — 9(v:)

f(yi) = 9(Ti(y) — [(Tiyi)) — 9(i) + f(y:), by adding f(y;)
f(yi) = (9= f)oTi(y:) — (9= f)(w)

= poTi(yi) — o(yi)-

Since the choice of the map is not important we write

where ¥ is the random map. O
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Proposition 7.2.7. If we have f = xa for some borel subset A of Y with 0 <

w(A) <1 then o*> >0 .

Proof. Assume for a contradiction that 02 = 0. Then x40 %(z) = u(A) +poT(x) —
¢(x) for some function ¢, implying

2TIXA0T(@) _ 2mi(u(A)+poT(x) ()

The left-hand side can have 0 or 27 as its exponent that is independent from the
choice of ¥ so it is 1 implying

2mipoT(z) _ ,—2mip(A) 2mip(w)

€ € € .

We can consider T(z) as .7 (w, z) = (o(w), T, (x)) since ¢ only depends on the second
coordinate. Here % is the corresponding skew product realization of the random
dynamical system which is mixing by Corollary 6.2.4. So for G(w,z) = ?m#(m2(w.))
where 75 is the projection function to the second coordinate we have G o %" = A\G
with A = =274 implying that G is constant since .% is mixing, so A = e~ 2™#A) = |

implying p(A) is 0 or 1 which contradicts the assumption. O

7.3 Speed of Convergence

One of the advantages of using Perturbation Theory is that it allows us to calculate
the speed of convergence of the limit in the Central Limit Theorem. In probability
theory the result for independent identically distributed random variables is known

as the Berry-Essen’s Theorem. The proof depends on the Essen’s inequality given in

Theorem A.0.3.
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Theorem 7.3.1. For the random dynamical system (¥, p) defined before there exists

a constant C' > 0 such that for every v € R we have

‘MM {(W) | S:i(f):\;ﬁnu(f)} 1 / .

By the proof of Essen’s inequality A.0.3 for every U > 0 and for every n > 1 we have

Su(f) —np(f) [ Ay
UERMXW{ o }—%/me 2du

< 7+ /U|u|//

To prove Theorem 7.3.1 first we need to estimate the following term

sup

e_“Q/Zdudﬂ du.

& ()
vr — e_“2/2dud7r

which is given by the lemma below.

The lemma below is the corresponding version of Lemma 1 in [Pet85], page 109 for
Sa(f)
o

Lemma 7.3.2. There exists a real number a > 0 such that for every |u| < ay/n we

the process

have

ul

il

‘“2/4(2AU’3\‘/_+B ‘\/’_)‘l'(

where py = (1 +2p(R))/3, for some positive constants A, B and C.

S (f)
Vi — e P dpdn| < ——)ph

Proof. Clearly by Lemma 7.1.2 we have

e’“Q/Qd,udﬂ
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Again by using Proposition 7.1.4 with 6 = Y9 we get

NG
Pr, = XU(i0)NG + M
(1 +iON(0) — £A7(0) — EA® 4 9?%9))"
(u + Z'HN(I) — %N@) + 92/T/f,9> + ./\/lg
2

n(%gz + iA193 + 935(0)) <

62 —
= A+ N — EN(Q) + 021\/,«,9) + My

for some constant A; and })irr(l) £(#) = 0. Then if we go back to the integration we
—

want to approximate and replace § = u/o\/n we get

/Q/Y ‘P%,f(l) - e‘“z/Q‘ dpdr < A, (u) 4+ Bp(u) + (Clulo/v/n)ph

where
Ap(u) = e /2 |t fo? Vit fo*vme(u/ovm) _ |

Bu(u) = /2t /o ik [t (u/o )

For the first term An(u) we use the fact that |e* — 1| < |z|el*l and approximate the

/Tfo%(l) dudr.

corresponding z term that is
[iAw® /o /n+ (WP [o®n)e(u/ov/n)| < |u]24u® /o v/n

where A = |A;]. We choose the real number a > 0 that satisfies 24a/0® < 1/4 so

for every |u| < ay/n we have

[iAw? /o + (WP o’ n)e(u/ov/n)| < u?/A

Also let B be a BV bound for the terms in the intergral of the term By, (u) that is

u

20+/n

iND(1) — N3 (1) +

U —
20\/5/\/’
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With the bounds above the result follows. O

Proof of Theorem 7.3.1 . By using the result of Lemma 7.3.2 with U = a/n we get

Sp(f) —nu(f) L[ e
wa{ o }—%/we 2 du

sup
veER

IN

B n
— ev/2(24 -2 qu.
=+ / u’ + )+ T

7.4 More Limit Theorems

The main goal of this section is the quenched Central Limit Theorem. To prove the
quenched Central Limit Theorem first we need to prove two more limit theorems.
The first one is the Averaged Large Deviation Estimate which is a very standard
step if one is working on statistical properties of some dynamical systems. And the
next limit theorem gives that the process as in Theorem 7.2.1 not only converges
to the normal distribution but it also converges with tight maxima. The necessary

definitions are given below.

Theorem 7.4.1. (Averaged Large Deviation Estimate) Let S¥ f/n be the random
process as before. There exists a real number A > 0 such that for all a € (0, A) we

have the following estimate

_— {(w) : ]%S:ﬂx)

> a} < Qe Co’n (7.7)
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Proof. To prove the averaged large deviation result again we use the perturbation
theory, specifically the same result we used to prove the averaged Central Limit

Theorem which is mainly the Lemma 7.1.2 and Proposition 7.1.4.

For any random variable X with a probability distribution P for any 6 > 0 we

have
P{X>a} < Ep[\(xom e ®0)]

< e %Ry [69)(}
Since

P{X|>a) =P{X >a} + F{X < —a}
it is enough to give the result only for P{X > a}.

If we consider the random variable X being the random process S¥ f(x)/n for

each n, then the inequality becomes
1 w
X [ {—Sj;’f(x) > a} <e (B [etsnf(x)/”]) for 6 = t/n, for every t > 0.
n
This is by Lemma 7.1.2 equivalent to the quantity below
1 w —at/n n
TX s =S f(x)>ap<e ,u{ Lf(l)}.
n w
Again we can use Proposition 7.1.4 so that
R
(1) = NN (1) + M (1)

and by using the approximations of each term in the proof of Lemma 7.2.2 we can

Pi (1) = A" (z%) (1 +0 (%‘)) +0(p3).
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We define @7 (a) = sup af — In(X (i0)) for some C' > 0. Let 6y be the value at which
lo|<C

&/ attains its maximum so we have

In(A (i0y)) = abp — sup{(a)} < aby — < (a).

t

t ,
By considering A" (z—) — ¢"n(A(i%)) if we choose t to be nfy then we have
n

mx p{ASif(e) 2 a} < e nineneh (1L Ol + 6 ()
e (1L + Clo]) + O () -
Now we need to analyze 2/ (a). So by using the Equation 7.5 we have

(i0)”

A(i0) = 1 +i0N(0) + TX’(o) + 02\(i0),

with M (0) = u(f) = 0 because of the assumption on f. This implies
62
af —In (A (i6)) = ab — 5/\"(0) + O(6°). (7.8)

To find the point #; where the maximum is taken we take the derivative and set it
equal to zero. So we get a —60)\"(0) = 0 implying 6 = a/N\"(0). Note that \"(0) = o>

by Lemma 7.2.4. Thus we have

1
e {E8200) 2 0} < gm0

for a < Ce where Ce is small enough. O]

First we give the general definition of convergence to a distribution with tight
maxima. Then we show that the random dynamical system S¥f given before con-
verges to normal distribution with tight maxima by showing that the random dy-

namical system is a reverse martingale difference.
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Definition 7.4.2. Let S, be a sequence of random wvariables on a probability space
and By, be a renormalizing sequence, meaning B, = B(n) as a function B(x) : RT —
R* is of the form B(x) = x%L(z) where d > 0 and the function L : Rt — R is
LY, slowly varying that is, for every o > 0 lim M

T—00 L(:L’)
L'(x) = (L(z)/z). Then we say that (S,/B,, B,) converges with tight mazima to a

= 1 and normalized that s,

random variable & if S, /B, converges in law to Z and if the sequence

18 tight, that is for every € > 0 there exists ¢ > 0 such that for every n > 1 we have

Now the process S, in our case is S¥f(x) on probability space 2 x Y with dis-
tribution 7 x pu. The corresponding renormalizing sequence B, is y/n. We already
know that the process S¥ f(x)/y/n converges in distribution to the normal distribu-
tion A(0,0) for [ fdu = 0. We show below that the convergence is in fact with

tight maxima.

Theorem 7.4.3. (Convergence with Tight Mazima) Let S¥ f(x)/«/n be the random
process as defined before with constituent maps in T1(Y). Then for every e > 0 there

exists ¢ > 0 such that for every n > 1 we have

SY f(x
qu{lrggél’L\/é)’>c}§e.

Note that this property is not only about the process S¥f(z)/+/n, the choice

of the sequence /n is also very important. Before giving the proof of Theorem
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7.4.3 first we give a tight maxima result for reverse martingale differences. Then to

prove Theorem 7.4.3 we only need to show that the process is a reverse martingale

difference.
Proposition 7.4.4. Let Zy, Z1, ... be a sequence of reverse martingale differences.
Let S, = Y00 Z, . If S,//n converges to normal distribution A (0,0) and if

Sn/\/n is L'-bounded then S, /\/n converges to A (0,0) with tight mazima.

Proof. By using the Martingale Maximal Inequality A.0.5 we have for every a > 0
and n € N that

P{max |Sk| > a} < gEHSnH

1<k<n

for some constant C' > 0. By choosing a = ¢y/n we get

S C C
P{max Ix] > a} < —E[|S,[] < =
1<k<n \/n cyn c
. |Sk| . . 1 Cl
since —= is bounded in L". Thus for every € > 0 choose ¢ > 0 to be — < e. [

\/ﬁ c

Proof of Theorem 7.4.5. Let f € BV with [ fdu = 0. We consider all maps on BV
as maps on the product space €2 x Y that only depends on the second coordinate
so f(w,z) = f(z). Let Uz be the composition operator with .# and let P4 be the

adjoint operator of U 4. Therefore the process can be given by

—
I
—

n— n

Sulf) =) foF' =) Us(f).

i

I
o
Il
=)

To show that the process S, /+/n has a tight maxima we first show that the process
defined by

Zy =U%(f) —Us(g) + U5 (g)
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is a reverse martingale difference, so (Z;:Ol Z;) /+/n has a tight maxima. And then
we show that the sequence (g —U'%(g))/+/n also has a tight maxima which concludes

the result.

Here the function g = Z P<(f) is as in Lemma 7.2.4 which is convergent by the

n=0
spectral gap. Also note that we have

P(f) = 2 Ps(fh)

where h is the stationary density so Y P%(f) is also convergent. For ¢ =1 in the

above equation we have
Zy=Uz(f)—Uz(g9) +yg
implying
Pz(Zy)=f—9+Pz(9)=f—-9+Plg) =0.

Thus for the filtration .Z ~!(B) we have

(m x W[z F7HB)] = 0

implying that Z; is a reverse martingale difference. Then by summing the random
variable Z; over all ¢ values, we conclude that the process we get below has a tight

maxima.
Yt Zi _Salf) | 9-U3(9)
NG NG N

Finally we need to show that (¢ —U%(g))/+/n has a tight maxima to finish the proof.

But this is easy since the function ¢ is bounded so we have

lim g — Ug(g)

n—00 \/ﬁ

That concludes the proof. O]

=0.
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We use the fact that the averaged Central Limit Theorem on the induced system
also satisfies the averaged Large Deviation result by Theorem 7.4.1 to show the
quenched Central Limit Theorem. The proof is based on the paper of Ayyer, Liverani
and Stenlund [ALS09] where the constituent functions are toral automorphisms. Here
we use the Borel-Cantelli argument they have in their proof for quenched Central

Limit Theorem.

Again we have the averaged Central Limit Theorem by Theorem 7.2.1. Let o2
be the variance of the process that satisfies the Central Limit Theorem. We show
that for 7 almost every sequence w we have the CLT with variance 0. For that first
we show that the previous limit theorems can also be given by using the Lebesgue

measure m.

Theorem 7.4.5. (Averaged CLT for non-stationary measures) The random dynam-
ical system (T, m) satisfies the averaged CLT for every f € C*°(Y,R) with respect to

the normalized Lebesgue measure m, that is

tim ) { ) s IO AL [ ey

Proof. We give a lower and an upper bound for the process

n—1
1
TXme— Y SUf(x)e ]
(e}
for some J € R. Let € > 0 be small. We know that the process satisfies the Central

Limit Theorem with respect to u so there exists Jy, J; with Jy C J C J; such that

for n large enough say n > N; we have

n—1
]_ 1 2 €
Xl —) Sv eJyy > “CRoqr — —
4 ”{\/ﬁ; w/ (@) 0} ﬁa/;oe 2
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and similarly

n—1
1 1 2 €
T X — SYf(x)e J; p < e V2og
u{ﬁz 2 /(@) } — ‘

And if we take both integrals over the set J as given above we get

—1
1 2 €
T X ) € J, /e_t 12oqp — —
“{ Z; 0} Varo Js 2

and similarly

]_ 2 €
X S“f(x) € J / “ERoqr .~
T M{\/—Z 1} o Je 5

We have an expanding system so we want to find a suitable number of iterates say M

that expands the process from Jy to J or from J to J; and the probability difference
€

caused by that many number of iterates is less than 3 For that first choose M; € N

so that for every n > M; we have

[ 1PE(0) = blam] < & (7.9)
where h is the stationary density for u.

Then if we choose M > Ny, M; large enough so that

| MM s My+M—1
Wi g&l S¢ f(x) € Jy implies NIESTN ; eJ, and
My +M—1 | MiM-1
Z Sy f(z) € J implies i ZZMZ) SYf(x) € Ly

then we have for every n > M that

1 Mi+n—1
w Sef(x) e J
oo & 0}
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n—1
1
(Ml) w
Zﬂ-[w]n xXm {\/ﬁ ;:0 Sz f(I) € JO}

n—1

1
M), X M {% ZZ_; S f(x) € Jo} + % by Equation (7.9),

1
> /e_t2/2°dt — E, and
210 J g 2

1 Mi+n—1
Tlniar, X M {\/ﬁ Y. Sif)e J}
=0
n—1
1
ST, X m® {% Z S;‘Jf(x) S Jl}
=0

n—1
1 € ‘
STl X K {—\/ﬁ ?:0 Sy f(x) € J1} t3 by Equation (7.9),

< ! /e_tQ/Q"ahf—E
oo J g 2

where M) is the measure with density Péﬁ(l) and T, denotes that 7 only

changes with n-cylinders. And that concludes the proof. O]

Large Deviations and speed of the convergence results can also be given in m

with the same argument.

Theorem 7.4.6. (Quenched CLT) The random dynamical system (¥, m) with maps
in To satisfies the quenched Central Limit Theorem for every f € C*(Y,R), that is

for m-almost every sequence w

Sz f@) ~n [ fdu oo
limm{zeyY: <c :—/ e
00 NG V2ro? )

—12/20% gy

if the corresponding random dynamical system on a torus satisfies the averaged Cen-

tral Limit Theorem.
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7.4. MORE LIMIT THEOREMS

Proof. To simplify the proof assume that [ fdm = 0 since we can generalize the
result by plugging in f = f; — [ fidm for a general function f;. We know that

the random dynamical system (T, m) satisfies the averaged Central Limit Theorem

SUJ
for every f € C(Y,R) with [ fdm = 0, so the mean of the process m (—"\”/fgﬁ))

with respect to the Bernoulli distribution 7 converges to the normal distribution

A (0,0?), so the characteristic functions:

~Sr“:f(1) 1

. t _ 142 2

lim m(eZ ﬁ)dW:e 27",
weON

n—oo

1551 @)

To simplify the notation let Z, = m (e Vn > and Z, be the characteristic
function of the centered normal distribution with variance o?. If nh%r{olo E.[Z,] = Z,
where Eg, is the expectation with respect to the Bernoulli measure m on the random
sequences in €2, then we can compute an L? estimate:

Eo(|Zn — Z,°) = Eo(|Z.° + 27 — 2Z,|Z,))
= Eol|Z,)? — Z2+ 222 - 27,|Z,|)
= Ea(|Zu]® = 22 +22,(Z; — | Za)))
(

= Eq |Zn|2) - Zg +QZU(ZJ _EQ(|Zn|)>

Now, we give a bound for the right-hand side, first for Z, — E;(|Z,|) and second

for Eq(|Z,]?) — Z2.

First bound: For Z, — Eq(|Z,|) we already know that the process |Z,| satisfies
the averaged Central Limit Theorem with a speed given in Theorem 7.3.1. The
Lemma 7.3.2 used in the proof gives the order of the convergence of the characteristic

functions. Thus we get

Z - B2, - o (L0
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Second bound: Since Y is a finite union of intervals in R we can consider it as
[0, 1] for now to easily calculate the numbers. Consider |Z,|* as a random variable

itself of a Cartesian product system since

2
. S%f(ac)
alt = ()]
! it S L 581w
/ dx /e Vi dy
0
/ / + 55 f(r) S“f(y)

v dxdy

zt S5 (T)+S°Jf<y)
dxdy

where

Spl(@)+5,f(y) = f(@)+ f(y)+ foTi(x)+foTi(y) ... foTnroTi(x)+ foT,10Ti(y)

so can be considered as
Fe(x,y) = F(z,y) + F(Th(x), T\(y)) + ... + F(Tp-10...Ti(x), Th—10... Ti(y))
where F(z,y) = f(z) + f(y). Furthermore, we can define (71(z),T1(y)) by (11 x
T1)(z,y), and (T 0o Ty (), To 0 T1(y)) by (1o x Ty) o (Ty x T1)(z,y) and so on.
Now we iterate the space [0, 1] x [0, 1] with maps T} x T; which can be considered as

maps on a torus by A; = ’ . Therefore, |Z,|* is the characteristic function
0 T

of the process SYF(z,y) on a torus. Such maps are defined in Chapter 4 and we
discuss in Theorem 4.2.3 that they satisfy the averaged Central Limit Theorem, too.
Since we have not gone over each step to give the proof we prefer to give it as a claim

in the theorem. So by the assumption given in the statement of the theorem we have
. S,,L';F(:l;,y)
lim Eq(|Z,]*) = lim Eq {mg (e“ v )] = ¢ 21t
n—oo n—oo
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where m, is the Lebesgue measure on a torus and o2 is the variation of the normal
distribution that the process on a torus converges. Now we need to calculate how it
is related to the variance of the process Z,. We know again from the straightforward

computation in Theorem 7.2.1 that

ot =m(f*)+2) m(fP"f)
n=1
Similarly on a torus we have

0} = my(F?)+2) my(FPLF)
=1

_ / 1 / lF(x,ny)2dxdy+2§: /O 1 /0 Py PR (F () diedy
- [ [ sty
+ 22/ / ZF 0Ty, o... Ty (z,y)F(x,y)dzdy
_ / / y) +2/(y)f(2) + f2(x))dady
+2;/0/0 (FoTyo.. . Ti(y) + foTyo.. To(@)(f(y)+ f(x))dzdy

1" 1
= /fQ(y)dy+0+/ S (x)d
0 oo 0

+2Z/ foTno...Tl(y)f(y)dy—i—/O foT,o.. Ti(z)f(x)dx
since / / foT,o...Ti(z)f(y)dzdy

= / foT,o...Ti(x / f(y)dydz = 0 by assumption that m(f) = 0,

0

_ 2m(f2 +4Zm fOTnO---Tl'f)

= 2 (m(f?) + 2Zm<fP"f>)
= 9202
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where o is the variance of the random process on [0, 1]. Therefore we have the first

term to be
[ F ] 1 2
BallZ") ~ 7} = Ba [ma (explit L) |- exp(- 50"
Fe 1
= Eq |m, ( exp(it "\(/"%y)) -—exp(—§t2(202))
£ 1
= Eq |[my exp(it%) | —exp(—étQU%)

1+ |t]?
Jn

i

which converges to zero for each t as n — oo with again a speed of & (
Theorem 7.3.1. Therefore we have

()

which implies by Chebyshev’s Inequality A.0.4 that
S5 F @) 1+ |t

(o) 4

The infinite sum of the probabilities on the left-hand side of the Equation (7.10) is
Lt
2—

vn

i=1
finite and existed for every t € R then we could apply the Borel-Cantelli Lemma
A.0.6 to deduce that

w{ ‘m(e’tﬁ 26}:0

which means the sequences for which we do not have the Central Limit Theorem has

5% f(x) 2

3
L 1+ |t

NG

Eq 2’ < ¢

1202

(7.10)

> e} < Ce 2

bounded by Z Ce

which is not finite and also depends on t € R. If it was

lim
n—oo

zero m-measure which would conclude the quenched Central Limit Theorem.

Let E,(t) denote the sequence of events

E,(t) = {

lim
n—oo
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7.4. MORE LIMIT THEOREMS

Now we define subsequences of events E,(t) say E,, (tx) and first show that Borel-
Cantelli argument can be applied to each subsequence and if we sum over these
subsequences to get back the original sequence we show that the sum is finite which

finishes the proof.
The subsequences are defined the following way: Define the set J, C N x R to be
Jp = {(n,t): 2" <n <28 |t <k}

Then E,, (1) is equal to the terms of E,,(t) where (n,t) belongs to Ji. Then we have

SRE) =Y X B <Y (5 0)

k=1 (n,t)€J; k=1 (MEJk

Thus we reduced the problem to showing that if the terms

sup 7(E,L(t)) = 71‘{ sup {‘m (e” v ) — em2t??
(

(n,t)eJk n,t)EJg

> e}} (7.11)

are summable over k. The rest of the proof looks for a suitable upper bound for the

term in Equation (7.11).

First we define new sets that cover the Jis. We choose reference points first then
define smaller sets around these reference points so that the union of these small sets
cover J. Now fix the J; so we have points (n,t) with 28 < n < 21 and |t| < k.
Denote these points by Ay = {2% 28 +-1,... 21} and By = [k, k]. We divide Ay

and By into smaller sets as follows. First we choose reference points to be
R(Ak) — {2k7 2k 4 [23]6/4]’ 2k 4 [2 . 23]6/4]’ 2k 4 [3 . 23/6/4]7 o 2k + [2k:/423k/4] — 2k+1}

Similarly we choose reference points for By that are finitely many which are

RBY = {—h—k+ 2 k2 e E
k) — ) k‘, k" k'_
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Now according to these reference points we can define the small sets that each lie in

Ay and By, accordingly. For each fixed n € R(Ax) and t € R(By) we define
Ae(n)={meN:|jn—m| <2"* 41}

and

Br(t) ={ueR: |u—t| <1/k}.
We can consider the reference points as the centers of the small sets we define. If
we can consider all the sets with the given centers we cover all possibilities for n
and t. Here we use that for every n if |t| < logy,n then (n,t) € J for k = |log,n|
to define the reference points. As one can notice the union of these small sets
contains more than the original sets so we have for R(J;) = R(Ax) x R(By) and
Je(n,t) = Ar(n) x Bg(t) that

Je=Acx By | Jklnt).
(nH)ER(Jy)

Therefore the quantity in Equation 7.11 is less then

Sy f(@)
it 0 2 ;2
E T sup {'m <el° V0 ) — 3t
(no,to)€Jk(n,t)

(n,t)€R(Jk)

)

Now we work on each term inside the sum and apply triangle inequality to the terms

obtained by adding and subtracting the terms that have n instead of ng and ¢ instead
of ty and combine them suitably so we get
5%, f(x)
i sup m (e it = Ims ) — e 2t

> €
(no,to)EJk(n,t)
it Sw f(f) 5% f (@)
T sup m(e° ) m(e ”)‘26/4
(no,to)€Jk(n,t)
it Sy f(z) Sy f(z)
+ o7 sup m(el ) m(e )‘26/4
(no,to)EJk(n,t)
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. S‘;‘;f(z) 1,2 9
m (e” v > —e 27

e*%t20'2 _ e*%tgaQ

+ 7 sup > €/4
(no,to) € (n,t)

+ 7 {Sup(no,to)EJk(n,t) > 6/4}

Now we work on each term. Note that the third term does not include (ng, to) so the

. S;"L’f(ac) 1,2 2
W{‘m <elt° v )—6_2t0

and by using the bound on such terms we have from Equation 7.10 we get

iy Sk f(z) 1,2 2
W{'m (ezto i ) —e 217

The last term is independent from n and ng so from the measure 7. For k large

supremum is simply

> 6/4}

21+ [t°

> 6/4} < Cl(e/4)” Tn

enough we have o/k < ¢/4 and the terms ty varies with |t — to| < 1/k so we have

1252 —1t2052

—e72 < €/4 which gives an empty set so the term vanishes.

The first term has t; fixed so we check the how the process itself differs with a

change in n:

1 1

> e/4}

1+m/n—-1 1
= TXm \jn—i—i/m S:erf(x)_%‘s:,nerf(x) 26/4}
< mxm ! Sy f(x)| > ‘
= ntm S e (T g — 1)

2m

+ 7r><m{ lejlf(x)
m

< CefCezn/m

> Eﬁ}

by averaged Large Deviation result, Theorem 7.4.1 where S¥ represents the sum

n,n+m

is from n to n + m. Furthermore we can estimate the term

ity 10! ity 215 @)
T sup mle” vio | —mle v >e€/4
(no,to)GJk(n,t)
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with
1 i S (@) o S I 2
R (P ( " )‘( . )‘ > /8
€ (no,to)€Jk(n,t)
1 Sw T Sw 2
< _(7T X m) sup ‘tol no f( ) o nf(fL’)
€ (noto)€Ji(n,t) /N N

Sz ) Sef(x)|”
N \/ﬁ

> ¢/16k

)
}

< % Z (me){

[n—no|<23k/4+1

2 /12
g 7C|n* nol € /k

In—ng|<23k/4+1

<

Q

The second term has n fixed while there is both ¢ and t; terms in exponents so we

can easily estimate that

o,
it SHIG)

it Sy f(x)
e N Vn

< |t — to

NG S f ()]

And by using the above estimation we get

., SY¥f(x) ., S f(x)
to2n ton
m(e” ﬁ)—m(eZ ﬁ)‘Ze/él}

m sup
(no,to)E]k (n,t)

1 ity Snl@ SR
< —(mxm) sup e’ Vv —e vno | >¢/8
€ (no,to)EJk(n,t)
1 |t — to]
< —(mxm) sup |Sf(x)] > €/8
€ (no,to)EJk(n,t) \/ﬁ
1

< tlmxm { Zispro) > ks
< C’e_Ck262/e.

Now if we add all the terms over all reference points we get

it S0 S (@)
Z T sup {’m(eo m)_QQtoa 26}
(n,t)ER(Jg) (n0,t0) € Jx (n,t)
1 + |t| C$E2 k’2 e_Ck2E2
S DI (O e e e

[n—ngl +
(n,t)eR(Jk) \/ﬁ €

< Ck22k/4 /e <k327k/2/6 | 93k/4—CH/A2 k2 e’CkQEQ>
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where n € R(Ay) and t € R(Bg). The sum over k is finite which makes it possible

to apply the Borel-Cantelli argument. O
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CHAPTER 8

Random Induced Maps

The main goal of Chapter 8 is proving the Central Limit Theorem that induces 7T;
maps if the induced random dynamical system satisfies the Central Limit Theorem.
We use the method of [CGO7| which they prove the result for a single map. We

generalize the method and the result to random dynamical systems.

8.1 Induced Maps of Deterministic Systems

Before introducing the system induced by random dynamical system first we review

the induced map of a dynamical system given by a single map and we give the
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Induced Map Theorem. The definition below is already given before for a single map
in Definition 2.2.5 to introduce the class 73(Y") but here we define it again with a
more suitable notation so when we switch to the random dynamical system we can
use the same notation, that is 7' for the induced maps and S for the maps that

induces the map T

Definition 8.1.1. A one-dimensional dynamical system given by the map S : X —
X 18 said to induce a map

T:Y =Y

such that Y C X where Y =2, Y; is a disjoint union of intervals, and there exists
a function R :'Y — Nt such that R|y, = R(i) is constant and gives the number of
iterations of S that must be applied to x € Y; to get T'(z), so for all i € N and for
all x € Y; we have

T(z) = SED ()

The function R is the return time and the induced map 7' is the return map on

Y. We say S : Y — Y has summable return times if

/ Rdm = i R(i)m(Y;) < o0

where R is the return time.

Ifamap S: X — X induces T : Y — Y then an abstract tower model can be
constructed on T : Y — Y which gives the same dynamics of S: X — X. Here Y is
called the base of the tower. Now we give the notation for an abstract tower model

as introduced in [You99].
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

Let F be a map defined on a space A where
A:={(z,0) €Y x{0,1,2,...} : £ < R(x)}.

together with a reference measure m. Here Y is as above, the domain of the induced
system partitioned into {Yy; = Yi}ic12.. and R : Y — N is the return time function

that is constant on each Yp ;.

The function F takes (x,¢) simply to (x,¢+ 1) if £+ 1 < R(x) and it maps each
Y’r,—1, which is the top level of the tower directly above Y| ; bijectively onto Y, where
R, = R(z) for x € Y;;. We define the correspondence of two systems F' : A — A

and S : X — X by the map 7 : A — X defined by
m(z,l) = S*(z)

and it is easy to see that the picture below commutes:

F: A — A

b s
S: X — X

8.2 Induced Maps of Random Dynamical Systems

In the previous section, we see that for some systems we have the corresponding
abstract tower model that gives the same dynamics so it is enough to work on
the tower model to explain the dynamics of the original map S : X — X. Here
we introduce a random dynamical system & : X — X with some conditions on

the constituent maps {Si,..., Sy} so that similarly we can introduce the induced

118



8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

random dynamical system of & : X — X, namely T : Y — Y and then define the
corresponding abstract tower model for the random dynamical system ¥ : ¥ — VY

with constituent maps {T1,...,Tn}.

Definition 8.2.1. Let & : X — X be a random dynamical system with constituent
maps {S1,...,Sn} and with probability density (p1,...,pn). The random map & :
X — X is said to induce a random map
T G Y, =>Y

i=1
such that \J;2,Y; CY C X where ;2| Y is a disjoint union of intervals such that
m(UJ:2, Y:) = m(Y), and there exists a function R : N — NT such that R(i) gives
the number of iterations of & that must be applied to x € Y; to get (x) which is
independent from the first R(i)—1 choices of & meaning if S;(x) ¢ Y then S;(x) ¢ Y

and S;(x) = Sj(x) for every j=1,...,N, so for all i € N and for all x € Y; we have
T(z) = 679 (z)
which means in particular

Tj(x) = SED () for every j € {1,...,N}

J

so the random dynamical system T has constituent functions {17 = SE,... Ty =
SEY with probability density (py,...,pn) where ST is defined by ST (z) = SO (1)

forx ey;.

From now on we call & : X — X a hybrid system since it is deterministic as long

as it does not end up in Y and the number of iterations that is needed to come back
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to Y does not depend on which constituent map is applied, it is only given by the
partition {Y;}. Now assume that the hybrid system & : X — X induces the random
dynamical system ¥ : Y — Y. We denote the sequences of symbols on X to be (2
and on Y to be {1y to emphasize the maps they represent although they are the same

sequences.
We define the corresponding hybrid maps Fi, Fy, ..., Fiy on an abstract tower A,
A:={(z,0) €Y x{0,1,2,...} : { < R(x)}.

which is defined to be exactly the same way of a tower of a single map since the
return map R : Y — NT does not depend on which constituent map is applied.
We define each F; to be identical on (x,¢) if £ +1 < R(z) which simply maps
(x,0) to (x,0 +1). If £+ 1 = R(z), then we define F; on (z, R(z) — 1) to be
Fi(z,0) = (T;(2),0). Let {F\, Fy,..., F,} be the set of constituent maps and §
denote the hybrid map on A with the set of sequences of sumbols 5. We assign
probability density (p1,p2,...,pn) to each symbol which gives the probability of

choosing each map respectively when we are iterating the system.

We claim that the hybrid maps system § on the tower A gives the same dynamics

of & on X. For that we define 7 : Qa X A — Q x X by

m(w,z,0) = (W, Sy 0... 08, (x) €A x X

for any finite ¢ sequence |[w'] of functions & since ¢ < R(zx) so we have
5 (2,0 s (o@), Fa(@0)
iy Ny
G: (w,8y0...08,() — (0(w),SuSu,0...08,(z))
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which commutes since if /+1 < R(x) then the right upper corner is simply (o (w), =, (+
1) which maps to (o (w), Su; Sy © -+ - 0 Sy (z)) under  where wywj ... w} is an arbi-
traty £+ 1 sequence, and if /+1 = R(z) then the right upper corner is (o(w), T,,, x, 0)
which maps to (o'(w), Sy, Suy 0. .. 08, (7)) = (o(w), S5 (x)) = (o(w), T, (x)) since
the S functions are identical if the process is not returning to Y so we can use S,

for every step before the return which is decided by the sequence w.

Theorem 8.2.2. Assume [ Rdm < co. If the random dynamical system T on Ay has
a finite stationary measure o whose density is uniformly bounded then the random

dynamical system § on A has a finite stationary measure.

Proof. We simply push forward the measure defined on Ag to the tower. Let g be

the stationary measure for the system {71, T3, ..., Tn} on Ay with probability vector

o0

(p1.p2.- -, pn). Define pf = (F) (ol{R > (}) where (F})\o(E) = po(Fi 'E).
=0

Since Ccii_ﬁf is uniformly bounded, and / Rdm < oo we have p(A) < oo for every

N

i = 1,2,...,n. Then define p/ = Z piit;.  We normalize p’ to give the desired
i=1

stationary measure u to the system with functions {Fy, Fy, ..., F,,} on A. H

We need the following theorem for the initial model we define in Chapter 2. The

connection of the theorem to the initial model is given in Chapter 9 . It is mainly

expanding the averaged Central Limit Theorem from the induced system to the

original system and is the main theorem of the section.

Theorem 8.2.3. Let T : Ay — Ay be a random dynamical system with constituent

maps T1,Ts, ..., Txn, a probability vector (pi,ps,...,pn) and a stationary measure
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

to- Let A be the tower defined as above with respect to the return time function R

with [ Rdm < co.

Define f : A — {0,1} to be a function on A and set S f = Zf o & where § is

randomly chosen from {F\, Fs, ..., Fx} and FR =T; fori =1, 2 ,N. We define

f: A —{0,1} to be the function on Ay given by

R(y)-1 .
— Z fo

k=0
where § is randomly chosen but does not affect the value of f(y) since every con-

stituent map just takes the point to one level up for 0 < k < R(y) — 1. Set
n—1

Sef = Zf o T/ where T is randomly chosen according to the constituent maps
j=0

sequence w. For almost every realization of constituent maps ¥ on Aq if we have

22 /952
e~ % /QO'de’

lim (7 X po)

n—o0

1
\2mod

then on A\ we have

lim (7 x ) e

n—oo

fo=n ] fan _ —
Vn \/ 2mwo?

The proof has two main steps. First we give how the process on the tower is

related to its induced process. Then by using the fact that the convergence to

normal distribution is in fact tight as given in Theorem 7.4.3 we expand the result

to the tower model.

First, let us give the drift of the original system in terms of the drift of the induced

system.
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

Lemma 8.2.4. If the functions f on A, f on Ay and measures p, jo and return

time R as above in Theorem 8.2.3 then

/fd,u ffd/m

B fRd,UO'

Proof. Let us give the proof for the characteristic functions on A C A, since it is

easier to calculate but the general idea is similar for any map f on A,.

[ adn = i)

w(A)

= (Z]%‘MO(A)> / (ZPiZ(Fz‘)iMdR%(A))

i=1 i=1 =0

= pup(A)/ (sz Z Z MO(AOJ)>

i=1 (=1 j=¢

= o(A)/ <ZZM0(A0J)>

(=1 j=¢

= uo(A)/ (ZZMO(AOJ)>

=0 ¢=1

= po(A4)/ (Z juo(Ao,j)>

i)
— [ xaduaf ( / Rduo) .

Therefore we have

N fXAdMO
dp = 8.1
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

Here is how two processes are related:

Theorem 8.2.5. For each f on A and for every sequence of maps , say F on A
and for p-almost every point (x,f) € A, there exists a function f on Ay, a sequence
of maps, say T on Ay such that for every n € N there exists m = m(x, F) € N such
that

ST f(z,0) = ST f(x)

where S,ff s the sum of the first n iterations of F evaluated underf on A while

ST f is the sum of the first m iterations of T evaluated under f on Ao, that is
m—1
STf = ZfOTw’j o...0Ty
j=0

and

if T =Ty, Ty ) and F = (Fuy, Fuy, ).

Proof. Fix one realization of the constituent maps sayF = (F,,,, Fi,, Flos,-..) . The
sum of the first n iteration of f with respect to the fixed sequence F is denoted by

Sz f and given by

A~ ~

S{f(I,O) = f(:L‘,O)—f—fOle(fL‘,0)+fOFw20Fw1(£L‘,0)—|—---—f—fOFwnilO...Ole(:L‘,O).

Here we choose the special point (x,0) € A instead of (x,¢) to show the result. It is
enough to do that since for (z, ¢) with £ > 0 we can add (-many of the first map of the
sequence F to itself and define 7' = (F,,, Fi,, ..., Fu,, F,,,...) and start iterating
at (x,0). Since this modification adds finitely many iterations and since it does not

change the point z, it is enough to show the result by starting at point (z,0).
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

We can also choose to iterate with the same function we start iterating from the
base when the image is on the levels of tower since the functions are identical as long

as the image is not in Ag. Therefore we can write

E, o

J

..oF,,o0F, (x,0)=F, o...0F, ok, (x,0)

where F,, is iterated j times on the right-hand side of the above equation as long as

F, o0...0F,(z,0)¢ Agfor k=1,...,j, that is R(x) <

To simplify the notation let xy = (x,0), x; = Fféioo))(xo), Ty = FWR(ZIRHR(ZO)( 1)
and so on, where R(x;) is the return time of x; € Ay and does not depend on F.
When we write Fwé(zll) Vi reg) (1) the subindex gives the position of the map F' on
the sequence F so it decides which constituent map is used to iterate the system
while the upper index gives how many times the function is iterated. Then the sum

becomes

A

STf(xo) = flxo)+ ...+ f o FAT ™ (z)
fo B (z0) + ...+ f o FI ™ ()

x 1
f © FWBE@I)HR@O)( 1)+ .+ f wR(fl))JrR(zO) (z2)

f wR(Lm)+ +R(xzq) (xm)7

= flao)+ ...+ fo P (@) + flwy) + ...+ fo wR<z )

¢ R(z
+ f(x2) -+ f © FwFE(fl)-s-R(zO)(m?) +oee f($m+1)~
where m = m(n, zo, F) is the number of returns to the base in first n iterations of

the constituent maps sequence F starting at xqg € Ag. For now let us assume that

we choose n so that the process ends up in the base after the n iterations of F. It
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

is easy to show that the difference between a process with any n and a process with

such n that end up in the base converges to zero in m X p.

In the sum above note that the functions are of the form

~

f@) + .o+ fo FEEI 0y = f(xy)

WR(z_1)
for some 1 < 7 < m which is a function on A since the sum only depends on x; € Ay.

Also the functions of the form % can be considered as follows:

R _ R o R _
F = Loy, FWR(x1>+R(xo> - T‘*"l’ FwR<x2)+R<x1)+R<xo) =T,

Ly

so we have

T = Tw6<.’L’0), Ty = wal(xl), T3 = Twé(.ﬂﬁg) c.

Then we define the sequence T = (T.;,T.s, Ty, -.) that depends on F and wo.

07
Therefore for each F and for each xy € Aq there exists a sequence w’ in €y so that
there exists a corresponding sequence 7 of functions ¥ such that for every n € N there

exists m = m(n, o, F) with ST f(zo) = ST f(xo) where T = (Toyy, T, Tarys - - -)

]

Now after analyzing how the original and the induced systems are related let us
go back to what we want to show. We want to prove the system on the tower satisfies
the Central Limit Theorem so we fix a sequence w € 2o and denote the sequence of
maps obtained by the fixed w by F so F = (F,,, F.,, ...). We rewrite the process on

the tower obtained by the sequence F by using the corresponding process 7 on Ag.

Again assume that [ f dp = 0 to simplify the calculations. Therefore the process
Saf

NLD
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

can be approximated by
St
vn

where m is the largest integer such that R’ (x) < n where R, is the sum of the

()

return times of first n iterates of T .

Since pg is ergodic we also have by Birkhoft’s Ergodic Theorem that

%Rzr;(x) 1 Ro F™(T,x) — /R(x)d(w X i) Z/Rduo

“m
and since the system is ergodic this is equal to u(Ag) by Kac¢’s Lemma A.0.7. Then

we can approximate n = R/ (x) with u(Ag)m. Therefore it is enough to show that

the process
St
NLD

is converging to the normal distribution .47 (0, o) with the measure p given by du' =

()

Xa,Rdp. We prove it in the following theorem which concludes also the Theorem
8.2.3. Note that the sequence m,, given in the following theorem corresponds to
m(z, F,n) defined above and is approximated by |n/u(Ag)]| for our case so m,/n

converges to one.

Theorem 8.2.6. Let (Y, po, T) be an ergodic probability preserving random dynam-
ical system, and let f : Y — R. Assume the process S f/\/n converges to normal
distribution A with tight mazima in average. Let my,mo, ... be a sequence of inte-
ger valued functions on £ x X such that m, /n converges to 1 in probability. Then

Se f/\/n also converges to A~ for any absolutely continuous measure pi' with respect

to L.
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8.2. INDUCED MAPS OF RANDOM DYNAMICAL SYSTEMS

Proof. We show that for any ¢ > 0, 6 > 0 we have

S (£) = S f ()
NG

Then convergence to the normal distribution .4~ with respect to m x p’ follows from

(% ) { ()

26}§2(5

Eagleson’s Theorem [Eag76].

We have that the convergence of S¥f/y/n to normal distribution is with tight

maxima so there exists ¢ > 0 such that for all n € N we have

(7 X po) { max |SY f| > c\/ﬁ} <.

1<k<n

Let r € (0,1) be small enough so that [v2rn] < %ﬁ for all large enough n and
c
define a sequence s, to be s, = [(1 —r)n]|. Since m,,/n converges to 1 in probability

we have for large n that (7 x po){(w, ) : |m,(w,x) —n| > rn} <. Then we get

Siaf o)~ S31(0) 5 )

{ ‘ 5%%"6)\/_ Sl (@)

Let (w, x) belong to that last set. Then there exists m € [(1 — r)n, (1 4+ r)n] so that

(WXMO){

< 64 (7 X o)

> e with m,, € [(1 —7r)n, (1 + r)n]} :

|59 f(x) — S f(x)] > ey/n. Since s, = [(1 —r)n] > (1 —r)n and it is the smallest
integer in that set so s, < m so we should have |S% f(z) — S f(z)| > ey/n/2 or

}S;‘jf(x) - S;"nf(x)| > ey/n/2. Then we choose the maximum over all possibilities so
we get
Spnd (2) = 57 [ ()

(7 % o) { - >}
< oo () mx12f(0) - 82.110)| 2 evij2)

0<k<[2rn]
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and then by the choice of r we have e\/n/2 > ¢v/2rn so

Y (LAC L LI
< o (rxp) { o [SE50)] 2 v

which is less than 26 since ¢ is the constant that satisfies the tight maxima property.

]
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CHAPTER 9

Corresponding Models

9.1 The Corresponding Random Dynamical Sys-

tem for the Hybrid Model

In Chapter 9 we show that the Markov process defined in Chapter 2 can be realized
as a random dynamical system. The idea is to append the jump interval to [0, 1] and
on this new space define two maps, one which simulates the situation when there
is a jump and the other map which simulates the no jump situation. We assign

probability p to the jump map and probability 1 — p to the no jump map. Then to
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9.1. THE CORRESPONDING RANDOM DYNAMICAL SYSTEM FOR THE
HYBRID MODEL

study the drift of the system to the right on the lattice we simply study the number

of visits to the jump interval.

Definition 9.1.1. For I = [0,1], let 7 : I — I be the local map that belongs to
Ti(I), U be the jump interval and ¢ : U — [0,1] be the jump map and p is the jump
probability for the Markov process as defined in Chapter 2. Let Y =[0,1] U U where
U is simply the copy of the jump interval so m(U) = m(U). Define id : U — U to
be the identification and @ : U — [0,1] so that ¢ = @ oid, m denotes the Lebesgue

measure on Y. We define the constituent maps Ty, Ty first on [0,1] as follows
To(x) = 7(z) for x € [0,1],

7(z) if T(z) € U,

idot(z) if t(z) € U
And for x € U we define both of the maps by first moving the point to [0, 1] with
@ and define the same way as they are defined in [0,1], namely T;(z) = ¢ o T;(x)
forv1=0,11i x € U. Here Ty is the Jump map and Ty s the no jump map with
probabilities p and 1 — p respectively. We call the random dynamical system given by
constituent maps Ty and Ty with Bernoulli measure obtained by the probability vector

(1 —p, p) the corresponding random dynamical system of the Markov process defined

in Chapter 2.

Now we are ready to show that the new maps system consists of maps in 7;(Y)
with respect to a common partition 5. For that assume « is the partition for the
original map 7 with the properties given in Model I. We define a new partition

on [0,1] by using the partition element of o and refining it if a partition element
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intersects the jump interval U and on U again by using the partition « since U is
only an identification of U and refining it with the map ¢. Since 7 € T;(I) both
of the maps Ty and T} are piecewise uniformly expanding because we assume that

|7 - @' > A > 1.

The random dynamical system on Y given by the constituent maps {7p, 77}
represents the Markov process J,,(z) on N x [0, 1] given in Model I. The transitions

can simply be given by

. (i,%(x)) if 2 € 0,1]
(1,2) —
(i+1,%(z)) ifzelU

where ¥ is chosen from {7y, T} } with probability distribution (1 — p, p).

9.2 The Drift Rates and Limit Theorems of the

Hybrid Models

Assume for simplicity that we start at site 0. Note that the Markov process can be
given by iterating the corresponding random dynamical system and by counting how

many times the system ends up in the jump interval, so we have
n—1
Tn(w) = x0T ().
k=0

Two random variables 7, and Zz;é X © % are in fact same as functions of z.
Furthermore, the sample space of J,, consists of the jump sequences. Note that the

jump sequences do not depend on x, we can first fix a jump sequence and then start
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iterating the process. We check the next entry of a jump sequence only if the process
ends up in the jump interval R. Let w € ¥ be a fixed jump sequence and = € [ be
fixed. Let ng be the subsequence of n so that the ny iterates of the process is in R,
so k is the index of the jump sequence. Since x and w are fixed the subsequence is
well-defined. Then there exists a sequence of random maps w’ that depends on both
w and z such that T, =Ty if k =0, and 7,,, =T if k = 1. The other entries of the
random maps sequence can be chosen to be Tj or 1. Note that the p measure of any
fixed cylinder of jump sequences is same as the m measure of the set of corresponding
random map sequences. Therefore, for any fixed jump sequence w € ¥ if we consider

J¥(x) also as a function of w we have

n—1
T (r) = ZXUOT% O...oTwzl(:c)
k=0

where w’ € Q) is the corresponding random maps sequence of w € ¥. Thus, whenever
we prove a result for almost every jump choices of the process J,(x) we can prove
the same result for the process 3 p—y X7 © T'(z) for m almost every random maps

sequence.

First we prove the drift rate. By using Theorem 4.1.1 together with Corollary
6.2.4 we know that we have an ergodic stationary measure y for the random dynam-
ical system. By Ergodic Theorem we conclude that for u-almost every x € Y and

for m-almost every sequence of maps T we have

n—1

1 )

=S w0 Ti(w) > (D)
k=0

so a = p(U) is the Drift Rate. Since p has the positive density h(z) and ¥ is mixing

the drift rate result also holds for m-almost every x. This proves Theorem 2.3.1 for
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Model I. To give the drift rate result for the center of mass

again we consider the corresponding random dynamical system. Here >~ @ j1,(X;)
is the expected number of jumps in the first n iteration which can be easily given for

the corresponding random dynamical system by

| [ 30 . adds = np(@)
QIY =g

&(f1n)

n

since ™ X p is Z-invariant. Then in fact

= « for every n.

The Central Limit Theorem for Model I follows from Theorem 7.4.5 which is
given for m-almost every x € Y together with the equality of the Markov process
and the random dynamical system given above. Note that we need the Central Limit
Theorem for non-stationary measures since the process 7, is not restricted to the
stationary measure of the random dynamical system. However, the initial distribu-
tion is absolutely continuous so it is enough to give the results for the corresponding

random dynamical system with respect to Lebesgue.

The maps given in Model II have induced maps that lie in 7;(7), so say ¢ € To(I)
with ¢ : I — I and let 7 : Y — Y be the map induced by ¢ with return time
map R : Y — N, for some measurable set Y C I. The only extra condition for
such Markov processes is that the jump interval is placed to the base Y and the
jump map is ¢ : U — Y so it is mapped to the base Y. This condition is not that
restrictive since we know that most of the maps that are modeled with such induced

systems can have the whole set I as their base, see [You99] for an example. Then
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we can consider the Markov process only on the base so with local dynamics given
by 7:Y — Y. We define the constituent maps Ty, T} in a similar way. If we define
So, S1 to be TH T respectively then the new set of constituent maps {Sy, S1} on I
satisfies the properties of maps given in Chapter 8, Definition 8.2.1. Therefore we

can continue with the results given for such maps.

First the stationary measure pu is given as the pushforward measure of the sta-
tionary measure of the base pp and the jump set is in the base Y therefore the drift

rate of the random dynamical system & given by the constituent maps Sy, S is

LY 00 &0) = w(0) = o)/ [ Ry = o0 /() = /)

where « is the drift rate of the induced system. The drift rate for the center of mass
can be given as before and the Central Limit Theorem for the random dynamical

system & is a result of Theorem 8.2.3.

The other limit theorems for the random variable 7, (z) can be given with the
same idea, including the rate of convergence to the normal distribution, tight maxima
and large deviation estimate. For the quenched Central Limit Theorem again recall
the correspondence of jump sequences and the random maps sequences, then the

result follows.

9.3 Example: Pomeau-Manneville Maps

Lastly we give a concrete example for a hybrid system and give the corresponding

random dynamical system. We have a Pomeau-Manneville map as the local dynamics
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defined by
x4+ 2% if €0, 4)
s(z) =
20— 1, if z € [3,1]
where zyp = 0 is the only neutral point with f/(0) = 1. Let Z = [0,1) be the

neighborhood of zg = 0, and divide Y = [%, 1] into partitions:
. 1

Y1 = [q1, 1] where ¢(¢1) = py with p; = 5 S0 =g

Ys = [go, ¢1) where ¢(g2) = pe with p; = ¢(pa), S0 ps ~ 0.2850 and ¢y ~ 0.6425

Y3 = [g3, q2) where ¢(g3) = ps with py = ¢(p3), so ps ~ 0.1784 and g3 ~ 0.5892

The return map corresponding to the above partition is 7 = ¢ where Rly, = j

and the graph of 7 is given below. Let U = [%, %] and V = [%, %] be the jump

sssss

Figure 9.1: Return function 7 with o = 0.5 with respect to the partition {Y;}

intervals to right and left respectively. In previous chapters we define the hybrid
models only with a jump to right but it can be generalized to systems with jumps
to a finite distance sites as long as the jump intervals do not intersect. Here we have

UNV =0. Let ¢ : U — [%,1] defined by ¢(z) = 2* and ¢ : V — [%, 1] defined by

Y(x) = 2* 4 4. The isometries are given by iy(z) = z + - and iy(z) = . — = so

A

U=, and V=L L and Y = [, 1]
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We define the random maps. The map Ty simulates the situation of jumps for

both intervals U and V' and is given on [3,1] by

T(x)+ <, fzeli 1] and 7(z) €U,

Tyv(z) = 7(x) - 2, ifzell]and 7(x) €V,

7(z), if z €[3,1], but 7(z) ¢ U UV,

and Tyy(x) = Tyy(23) for x € U and Toy(x) = Tyy (2 + %) for z € V. The graph

of Tyv on [1%, 1f] is given below.

Figure 9.2: The corresponding Ty : [%, %] O of the return map 7

If we look at the graphs of the map Ty restricted to the right jump interval U
and restricted to the left jump interval V respectively below we see the same graph

that we have on the set [3,1] but with a different scaling.

Figure 9.3: Ty map restricted to U= 1, %]
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Figure 9.4: Ty map restricted to V = (<, 3]

The map Ty simulates the situation when there is jump on U to right but no
jump on V to left. Similarly Ty is a jump on V' and no jump on U map. The map
T, is the no jump map for both intervals U and V. It is more clear with the pictures
that the new maps we define for the random dynamical system {7y, Ty, Tyy, 1.} are
countably piecewise expanding. Here are the explicit definitions of the other maps:

T(x)+ <, ifxeli 1] and 77(z) € U,
T(z), if v €[3,1], but 7(z) ¢ U,

and Ty (z) = Ty (2®) for v € U, and Ty (z) = Ty(2® + 1) for z € V.

T(x)— <, ifzeli,1]and 7(z) €V,

7(z), if z € [3,1], but 7(z) ¢ V,
and Ty (z) = Ty (23) for z € U, and Ty (z) = Ty(z*+3) forz € V. As one can notice
that on U UV each constituent map first takes the point back to [%, 1] by jump maps

then acts on the point as defined on (3, 1].

and T.(z) = T..(2%) for 2 € U, and T,(z) = Tu(2® + 1) for z € V.
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If the probability of jumping right is given to be p € (0,1) and probability of
jumping to left is ¢ € (0,1) then the probability distribution on the constituent

maps {Ty, Ty, Tuv, T.} is given by p(1 —q), q(1 — p), pq, (1 — p)(1 — q) respectively.
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APPENDIX A

Some Equations and Calculations

Proposition A.0.1 (Cauchy’s Inequality). For vectors x = (x1,...,x,) and y =

(£o0) < (57) (£9)

where the equality holds if x = cy for some constant ¢ € R.

(Y1, -+, Yn) we have

Example A.0.2. We give an averaged version of Cauchy’s Inequality. Our main
interest is in fact the equality. So let x,y be a tuple of vector with probability p; and

a,b be another tuple of vector with probability ps where p1 + po = 1. It is easy to
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show that

n n 2 n n n n
(pl TN b) 5 <p1 Sy ) (pl S emy bz)
=1 =1 =1 =1 =1 =1

by using the original Cauchy’s Inequality. If we distribute the terms and combine in
a suitable way to check the condition for an equality we see that there exists ¢ € R
a

such that - 7 = c.

The Berry-Essen’s Theorem is stated in different ways, as it is proved indepen-
dently by two mathematicians, Andrew C. Berry (in 1941) and Carl-Gustav Esseen
(1942). We use the notation given in the book of V. V. Petrov, see [Pet85] and give

only one inequality which is used to prove the Berry-Essen’s Theorem.

Theorem A.0.3 (Essen’s Inequality). Let Xi,..., X, be independent random vari-
ables such that E[X;] = 0, E|X;]* < oo forj =1,...,n. If o] = E[X]], B, =
S o2, and Fy(x) = ]P’{B,Zl/2 Yo X< a;}, L, =By > i1 BIXG)? then

7=1 Vi

sup |Fo(x) — ®(2)| < AL, (A.1)

1 €T
for some constant A, where ®(z) = 2—/ e /24t
7r

— 0o
Now we give some inequalities from probability theory.

Theorem A.0.4 (Chebychev’s Inequality). Let X be a random variable in some

probability space. Then for any real number A € R,

E(X?)

PX| 20 < =
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Theorem A.0.5. Let {X,} be a nonnegative submartingale and X > 0. Then for
any n >0

E(X,)
> <
Pmax > A) < —

Lemma A.0.6 (Borel-Cantelli I). Let (E,) be a sequence of events in some proba-

bility space. If the sum of the probabilities of the events E,, is finite

f: P(E,) < o0

then the probability that infinitely many of them occur is zero, that is

P (lim sup En> =0.

n—oo

Lemma A.0.7 (Ka¢’s Lemma). Let (Q, B, 1) be a probability space and A € B be of

positive measure. Let 4 be the conditional probability measure defined by

_ WANB)

pua(B) = A VB € B.

Let T : Q — Q be a measure preserving map and let T4(x) be the first return time of

z to A Then we have

Mmyzémmpwﬂm<+mh

In particular, when the system is ergodic we have

1
]EA(TA) = /ATA d,uA = m
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