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Abstract

There are two parts in this dissertation. In the first part we prove that genuine

nonuniformly hyperbolic dynamics emerge when flows in RN with homoclinic loops

or heteroclinic cycles are subjected to certain time-periodic forcing. In particular, we

establish the emergence of strange attractors and SRB measures with strong statis-

tical properties (central limit theorem, exponential decay of correlations, et cetera).

We identify and study the mechanism responsible for the nonuniform hyperbolicity:

saddle point shear. Our results apply to concrete systems of interest in the biological

and physical sciences, such as May-Leonard models of Lotka-Volterra dynamics.

In the second part we introduce a notion of conditional memory loss for nonequi-

librium open dynamical systems. We prove that this type of memory loss occurs at

an exponential rate for nonequilibrium open systems generated by one-dimensional

piecewise-differentiable expanding Lasota-Yorke maps.
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CHAPTER 1

Introduction

The nonuniform hyperbolicity theory is rich with interesting ideas and techniques.

This theory provides a rigorous mathematical foundation for the phenomenon known

as deterministic chaos and applies broadly in physics, engineering, neuroscience, and

biology.

Originating with the works of Lyapunov [56] and Perron [71], the nonuniform

hyperbolicity theory has emerged from the work of Pesin [72] as a relatively well-

understood mathematical theory in dynamical systems. Using nonzero Lyapunov

exponents as a point of departure, Pesin theory describes the ergodic properties of

smooth dynamical systems that admit invariant hyperbolic measures. The first part

of this dissertation addresses the following challenges.
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(1) What mechanisms produce nonuniformly hyperbolic dynamics in physical/biological

systems?

(2) Can one prove the existence of genuine nonuniformly hyperbolic dynamics in

concrete systems?

Until the early 1990s, no genuinely nonuniformly hyperbolic examples were provably

known. Sinai/Ruelle/Bowen (SRB) measures were first constructed in a genuinely

nonuniformly hyperbolic context for the Hénon family by Bendicks and Young [11].

Building on this work and on tower techniques of Young( [89], [90]), Wang and Young

developed a comprehensive theory for families of dissipative diffeomorphisms with

one direction of instability.

Questions (1) and (2) have been addressed in the contexts of periodically-kicked

limit cycles and intermittent maps. Using the rank one theory of Wang and Young,

it is possible to prove that if shear exists in a neighborhood of the limit cycle,

nonuniformly hyperbolic dynamics may emerge when the system is kicked periodi-

cally [66, 86]. Lin and Young call this mechanism shear-induced chaos [50].

Here we consider smooth flows in any physical dimension N with homoclinic or-

bits or heteroclinic cycles. We assume that the flow is dissipative near each saddle.

We identify a mechanism we call saddle point shear and we prove that saddle point

shear can produce nonuniform hyperbolicity when such flows are periodically forced.

Further, we prove the existence of SRB measures with strong statistical properties,

including a central limit theorem and exponential decay of correlations.
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Now we briefly describe the relation of our work with existing results in this area

and its contributions. As indicated above, Wang and Young studied periodically-

forced limit cycles with pulsatile forcing functions and Ott and Wang studied two

dimensional systems with homoclinic orbits and with a specific trigonometric forcing

function [83] in this context. Our settings is completely general and works for any

C4 forcing functions and near heteroclinic cycles in any dimension. Our results can

be applied to any physical systems with a dissipative heteroclinic cycle or homo-

clinic orbit. Heteroclinic cycles occur frequently in models for ecological dynamics,

fluid mechanical instabilities, mathematical biology and game theory [1, 32, 39, 5].

Intermittent behavior in dynamical processes may be described with the help of

heteroclinic cycles. Our results applies to many physical and biological model and

provides a tools to establish the existence of a comprehensive nonuniformly hyper-

bolic dynamical profile. In addition, our results lay the foundation for studies that

combine analytic and numerical methods. While heteroclinic phenomena often occur

in systems with symmetries, our results are independent of symmetry considerations.

In the past dissipative systems received only limited attention in classical me-

chanics. This is because it was believed that all orbits in these systems eventually

either go to fixed points or periodic orbits. Subsequent research would show that the

situation is more complex. Van der Pol first studied a periodically-forced damped

nonlinear oscillator and showed that it can have interesting behavior. Cartwright and

Littlewood proved later that in certain parameter ranges, the Van der Pol oscillator
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1.1. NONEQUILIBRIUM OPEN DYNAMICAL SYSTEMS

has periodic orbits of different periods [19]. A number of other differential equations

with chaotic behavior have been studied in the last few decades, both numerically

and analytically. In the dissipative setting examples include the equations of Lorenz

[54, 77, 75], the Duffing equation [33], Lorentz gases acted on by external forces and

modified Van der Pol-type systems [47].

1.1 Nonequilibrium open dynamical systems

In the second part of this dissertation we study the dynamics of nonequilibrium open

dynamical systems. By nonequilibrium, we mean that the dynamical model itself

may vary with time. By open, we mean that the phase space contain holes through

which trajectories may escape. We are motivated here by dynamical processes that

evolve in time varying environments or that contain time-varying parameters. For

example, consider billiard systems wherein both the scatterers and holes may move.

Such models are of interest in quantum optics, acoustic chemical dynamics, astron-

omy, and experimental study of electrons in semiconductors [38, 28].

Since chaotic dynamical systems exhibit sensitive dependence on initial condi-

tions, it is natural to take a statistical point of view when studying their long-term

behavior. When studying iterates of a single map, one may start with a particu-

lar class of initial probability measures, evolve these probability measures, and look

for limiting invariant measures. However for time-dependent (nonequilibrium) dy-

namical systems without holes, invariant measures will not exist in general. For
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1.1. NONEQUILIBRIUM OPEN DYNAMICAL SYSTEMS

this reason, we study the evolution of pairs of probability measures. We say that a

nonequilibrium system without holes exhibits statistical memory loss if for any two

suitable initial probability measures, the distance between them converges to zero in

a suitable metric as they evolve. For an autonomous system, statistical memory loss

is equivalent to decay of correlations.

Ott, Stenlund, and Young studied memory loss for nonequilibrium expanding

maps in any dimension and piecewise expanding maps in dimension one. They prove

that such systems lose memory in the statistical sense at an exponential rate [68].

Memory loss for time-dependent piecewise-expanding systems in higher dimensions

is studied by Gupta, Ott, and Török [30]. They prove statistical memory loss at an

exponential rate using oscillation norm.

The theory of open dynamical systems is much less developed than that of closed

systems. Open systems have been studied in the contexts of of escape rates and

conditionally invariant measures [6, 16, 21, 23]. In the second part of dissertation

we study statistical properties of open and nonequilibrium dynamical systems. We do

so by introducing a notion of conditional memory loss in statistical sense. We prove

this type of conditional memory loss occurs in a certain one-dimensional setting.

When studying memory loss or the related problems of decay to equilibrium/decay

of correlations, one may employ a number of techniques, including spectral methods,

coupling methods, and the use of convex cones and the Hilbert metric. We prove

our result by using convex cones and Hilbert metric.

6



1.2. DISSERTATION OVERVIEW

1.2 Dissertation overview

In the first part of dissertation, we study rank one dynamics near homoclinic or-

bits and heteroclinic cycles. In second part, we study conditional memory loss for

nonequilibrium open dynamical systems. The first part includes Chapters 2-4 and

the second part includes Chapters 5 and 6. In Chapter 2 we provide background

for our heteroclinic cycles results and we discuss saddle point shear mechanism. In

Chapter 3 we state and prove our main results on dynamics near heteroclinic cycles

and homoclinic orbits. Chapter 4 contains the proofs of several technical results

stated in Chapter 3. Chapter 5 contain background information on nonequilibrium

open dynamical systems. In Chapter 6 we state and prove our main result on sta-

tistical memory loss for nonequilibrium open dynamical systems. Finally we discuss

future directions in Chapter 7.

7



CHAPTER 2

Background and Motivation

Smooth dynamics is the study of differentiable flows or maps, and in these situations

one may try to develop local information from the infinitesimal information provided

by the differential. Among smooth dynamical systems, hyperbolic dynamics is char-

acterized by the presence of expanding and contracting directions for the derivative.

The study of hyperbolic dynamics began with the study of uniformily hyperbolic dy-

namics. Introduced by Smale, a uniformly hyperbolic set associated with a smooth

map is one over which the tangent bundle splits into two invariant subbundles, one

contracting and one expanding. Uniform hyperbolicity theory has many applications

within mathematics, such as to geometry, modern rigidity theory, dimension theory,

and statistical and mathematical physics.

8



2.1. PESIN’S THEORY

Few physical processes have a uniformly hyperbolic character. There are many rea-

sons for this, among them discontinuities and singularities (e.g. the Lorentz gas),

transient effects, neutral directions, and nonuniform effects. It is common in ap-

plications to find some hyperbolic behavior, but without uniformity of contraction

and expansion. Nonuniform hyperbolicity theory allows the asymptotic expansion

and contraction rates to depend on the point in a way that does not admit uniform

bounds which holds on a subset of the space.

2.1 Pesin’s theory

Nonuniform hyperbolicity conditions can be expressed in terms of the Lyapunov

exponents. Namely, a dynamical system is nonuniformly hyperbolic if it admits an

invariant measure with nonzero Lyapunov exponents almost everywhere.

Throughout this section let f : M → M be a diffeomorphism of a compact smooth

Riemannian manifold M . The Lyapunov exponent of the vector v ∈ TxM at the

point x ∈ M is defined by χ+(x, v) := limn→∞
1
n

log‖Dxf
n(v)‖, if the limit exist.

This takes only finitely many values χ+
1 (x) < · · · < χ+

p+(x)(x) that determine

the subspaces V +
i (x) := {v ∈ TxM : χ+(x, v) ≤ χ+

i (x, v)} (which are nested).

Similarly, backward Lyapunov exponents χ−i (x, v) can be obtained as n → −∞.

Pesin started with an invariant probability measure and described the properties of

corresponding ergodic system assuming almost every orbits have nonzero Lyapunov

exponents. The following multiplicative ergodic theorem of Oseledets is a key result

on the regularity of trajectories.

Theorem 2.1.1. For any invariant Borel probability measure ν, almost every x ∈M

9



2.1. PESIN’S THEORY

is Lyapunov regular in the following sense:

1. p+(x) = p−(x) =: p(x)

2. TxM = ⊕p(x)
i=1Ei(x) where Ei(x) := V +

i (x) ∩ V −i (x)

3. limn→±∞
1
n

log‖Dxf
n(v)‖ = χ+

i (x) = −χ−i (x) := χi(x)

uniformly in {v ∈ Ei(x) : ‖v‖ = 1}.

A diffeomorphisim f is said to have nonzero exponents on an invariant set Λ if

for each x ∈ Λ there is an s = s(x) such that

χ1(x) < .... < χs(x)(x) < 0 < χs+1(x) < ... < χp(x)(x). (2.1)

An invariant Borel probability measure ν on an invariant set Λ is called hyperbolic

measure if equation (2.1) holds a.e x ∈ Λ. Pesin’s work on relating Lyaponuv

exponent and nonuniform hyperbolicity can be summarized by the following theorem.

Theorem 2.1.2. Let Λ be a f-invariant set and let ν be an ergodic hyperbolic proba-

bility measure on it. Let Es(x) = ⊕si=1Ei(x) and Eu(x) = ⊕ki=s+1Ei(x).The subspaces

Eu(x) and Es(x) for x ∈ Λ have the following properties:

L1. Eu(x) and Es(x) depend measurably on x.

L2. TxM = Es(x)⊕ Eu(x).

L3. they are invariant dxf(Es(x)) = Es(f(x)) and dxf(Eu(x)) = Eu(f(x))

L4. there exist ε0 > 0 and measurable functions C(x, ε) > 0, K(x, ε) > 0, f -invariant

Borel functions λ1, λ2 : Λ→ R+ with λ1 < 1 < λ2 and 0 < ε ≤ ε0 such that

(a) the subspace Es(x) is stable: ‖dfnx v‖ ≤ C(x, ε)(λ1(x))n‖v‖

for v ∈ Es(x) and n ∈ N.

10



2.2. SRB MEASURE

(b) the subspace Eu is unstable: ‖dfnx v‖ ≤ C(x, ε)(λ2(x))−n‖v‖

for v ∈ Eu(x) and n ∈ N.

(c) ∠(Es(x), Eu(x)) ≥ K(x, ε)

(d) C(fn(x)) ≤ C(x, ε)e|n| and K(fn(x)) ≥ K(x, ε)e−|n| for n ∈ Z.

We summarize this by saying that for any hyperbolic measure ν, the set of Lya-

punov regular points with nonzero Lyapunov exponents contains a nonuniformly

hyperbolic set of full ν measure. In fact, finding trajectories with nonzero Lyapunov

exponents is a universal approach for establishing nonuniform hyperbolicity.

Pesin theory assumes the existence of a hyperbolic measure and proceeds from this

starting point. Which dynamical systems admit hyperbolic measures ?

2.2 SRB measure

When a dynamical system possesses some degree of hyperbolicity, individual orbits

are typically unstable. Utilizing a probabilistic point of view often yields insight.

The following questions are fundamental.

(Q1) Does the dynamical system admit an invariant measure that describes the

asymptotic distribution of a large set (positive Riemannian volume) of orbits?

If so, is this measure unique?

(Q2) What are the geometric and ergodic properties of the invariant measure(s)?

For example, is a central limit theorem satisfied? At what rate do correlations

decay? Large deviation principle? Weak or almost-sure invariance principle

(approximation by Brownian motion)?

11



2.2. SRB MEASURE

The Birkhoff ergodic theorem applies directly to a conservative system; inparticular

to a system preserving a measure µ that is equivalent to Riemannian volume. If µ is

ergodic, then almost every orbit with respect to µ and therefore with respect to Rie-

mannian volume is asymptotically distributed according to µ. By contrast, invariant

measures associated with dissipative (volume-contracting) systems are necessarily

singular with respect to Riemannian volume. Direct application of the Birkhoff

ergodic theorem yields no information about (Q1) in the dissipative context. Ques-

tion (Q1) remains a major challenge.

It is natural in the dissipative context to focus on special invariant sets on which

the core dynamics evolve: attractors. Let M be a compact Riemannian manifold and

let F : M →M be a C2 embedding. A compact set Ω satisfying F (Ω) = Ω is called

an attractor if there exists an open set U called its basin such that F n(x)→ Ω as

n→∞ for every x ∈ U . The attractor Ω is said to be

(a) irreducible if it cannot be written as a union of two disjoint attractors;

(b) uniformly hyperbolic if the tangent bundle over Ω splits into two DF -

invariant subbundles Es and Eu such that DF |Es is uniformly contracting,

Eu is nontrivial, and DF |Eu is uniformly expanding.

The geometry and ergodic theory of uniformly hyperbolic discrete-time systems are

well-understood. In particular, an irreducible, uniformly hyperbolic attractor Ω sup-

ports a unique F -invariant Borel probability measure ν with the following property:

there exists a set S ⊂ U with full Riemannian volume in U such that for every

12



2.2. SRB MEASURE

continuous observable ϕ : U → R and for every x ∈ S, we have

lim
n→∞

1

n

n−1∑
i=0

ϕ(F i(x)) =

∫
M

ϕ dν. (2.2)

The measure ν is known as a Sinai/Ruelle/Bowen measure (SRB measure). It is

natural to link sets of positive Riemannian volume with observable events. If we

do so, then the SRB measure ν is observable because temporal and spatial averages

coincide for a set of initial data of full Riemannian volume in the basin. SRB measures

were first shown to exist for uniformly hyperbolic attractors and the main result in

the uniformly hyperbolic context is the following.

Theorem 2.2.1. [92] Let f be a C2 diffeomorphism with an uniformly hyperbolic

attractor Λ. Then there is a unique f-invariant Borel probability measure µ on Λ that

is characterized by each of the following equivalent conditions:

1. µ has absolutely continuous conditional measures on unstable manifolds;

2. The metric entropy hµ(f) is given by

hµ(f) =

∫
log |det(Df |Eu)|dµ

3. There is a set V ⊂ U of full Riemannian volume such that for every continuous

observable φ : U → R, we have for every x ∈ V

1

n

n−1∑
i=0

φ(f ix)→
∫
φ dµ

There are analogous results for flows.

SRB measures have their origins in statistical mechanics. The concept of SRB mea-

sure has evolved as the theory of nonuniform hyperbolicity has developed. The

following definition is state of the art.

13



2.2. SRB MEASURE

Definition 2.2.2. Let M be a compact Riemannian manifold and let F : M → M

be a C2 embedding. An F -invariant Borel proability measure ν is called an SRB

measure if (F, ν) has a positive Lyapunov exponent ν almost everywhere and if ν

has absolutely continuous conditional measures on unstable manifolds.

The following result of Pesin characterizes SRB measures using the metric entropy

hµ.

Theorem 2.2.3. [7] Let f be an arbitrary diffeomorphisim and µ an f-invariant Borel

probability measure with a positive Lyaponuv exponent a.e.Then µ has absolutely

continuous conditional measures on W u if and only if

hµ(f) =

∫ ∑
χi>0

χidimEidµ

where hµ(f) is the metric entropy of f with respect µ.

Statistical properties of these measures have been studied using transfer operator

methods (e.g. [13, 89]), convex cones and projective metrics (e.g. [51]), and coupling

techniques (e.g. [20, 91]).

2.2.1 Construction of SRB measure

SRB measures were first constructed on Axiom A attractors. In the process, it

is shown that any limit point of the sequence { 1
n

∑n−1
i=0 f

i
∗(mγ)}n=1,2... is an SRB

measure, where γ ⊂ Λ is a piece of local unstable manifold and mγ denotes the

Lebesgue measure on it. The existence and construction result has been extended to

the setting in partially hyperbolic setting by Pesin, Viana, and Pollicott [15, 18]. The

key tools used are dominated splitting and ∠(Eu, Es) being bounded away from

14



2.2. SRB MEASURE

zero. However these tools cannot be used in the nonuniformly hyperbolic setting.

Existence of SRB measure outside uniformly hyperbolic context remains a major

challenge.

Hénon first showed by carrying out numerical studies that the family Ta,b(x, y) = (1−

ax2 + y, bx), called the Hénon family, has a chaotic attractor for certain parameters.

The Hénon family Ta,b is a perturbation of logistic family ga(x) = 1− ax2. Jakobson

proved that for a set of values of ’a’ of positive Lebesgue measure ga has absolutely

continuous invariant measure [35]. Benedicks and Carleson studied the Hénon family

for small values of b and a = 2 [10]. They showed that if b > 0 is small enough then

for a positive measure set of a-values near a = 2 the corresponding diffeomorphism

Ta,b exhibits a chaotic attractor. SRB measures are constructed for the first time for

nonuniformly hyperbolic attractors by Bendicks and Young.

Theorem 2.2.4. [11] For every b > 0 that is sufficiently small, there is a positive

Lebesgue measure set ∆b ⊂ (2− ε, 2) such that for each a ∈ ∆b, Ta,b admits a unique

SRB measure.

Then Wang and Young [84] studied rank-one attractors and developed a theory

of SRB measures on these attractor. Identifying mechanisms that produce nonuni-

form hyperbolicity and proving that nonuniform hyperbolicity is present in concrete

models remain major challenges. In this dissertation, we consider these phenomenon

in the context of systems with homoclinic loops or heteroclinic cycles. Shear is

responsible for emergence of nonuniform hyperbolicity in this context.

15



2.3. SHEAR-INDUCED CHAOS

2.3 Shear-induced chaos

Recent work has shown that shear is one such mechanism. If a system possesses

a substantial amount of intrinsic shear, nonuniform hyperbolicity may be produced

when the system is suitably forced. The forcing does not overwhelm the intrinsic

dynamics; rather, it acts as an amplifier, engaging the shear to produce nonuniform

hyperbolicity. Systems with substantial intrinsic shear may be thought of as excitable

systems.

2.3.1 Periodically-kicked limit cycles.

Periodically-kicked limit cycles have received the most attention thus far. We dis-

cuss a model of linear shear flow originally studied by Zaslavsky [93]. Consider the

following vector field on the cylinder S1 × R:

dθ

dt
= 1 + σz (2.3a)

dz

dt
= −λz. (2.3b)

Here σ > 0 measures the strength of the angular velocity gradient and λ > 0 gives

the rate of contraction to the limit cycle γ located at z = 0. System (2.3) has simple

dynamics: every trajectory converges to the limit cycle. However, (2.3) is excitable

in a certain parameter regime. The ratio σ/λ measures the amount of intrinsic shear

in the system. If this ratio is large, the system is excitable.
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2.3. SHEAR-INDUCED CHAOS

Suppose that periodic pulsatile forcing is added to (2.3b), giving

dθ

dt
= 1 + σz (2.4a)

dz

dt
= −λz + AΦ(θ)

∞∑
n=0

δ(t− nT ) (2.4b)

Here A > 0 is the amplitude of the forcing, Φ : S1 → R is a C3 function with finitely

many nondegenerate critical points, δ is the Dirac delta, and T is the time between

kicks (the relaxation time). Figure 2.1 illustrates the dynamics of (2.4). At each time

nT , the system receives an instantaneous vertical kick with amplitude A and profile

Φ. In particular, the limit cycle γ is deformed into a curve such as the sinusoidal

wave depicted in Figure 2.1. After each kick, the system evolves according to (2.3)

for T units of time (until the next kick). If both Aσ/λ and T are large, then shear

and contraction combine to produce stretch and fold geometry. Figure 2.1 illustrates

this geometry: the sinusoidal wave representing the kicked limit cycle morphs into

the other curve during the relaxation period.

Figure 2.1: Stretch and fold geometry associated with (2.4).

Stretch and fold geometry suggests the presence of SRB measures. It has been

shown that (2.4) does produce SRB measures. Wang and Young [86] prove that there
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2.4. THEORY OF RANK ONE MAPS

exists C(Φ) > 0 such that if Aσ/λ > C(Φ), then for a set of values of T of positive

Lebesgue measure, the time-T map generated by (2.4) has an attractor that supports

a unique ergodic SRB measure ν. The dynamics are genuinely nonuniformly hyper-

bolic and ν has strong statistical properties, among them a central limit theorem and

exponential decay of correlations. Wang and Young prove their theorem by applying

the theory of rank one maps.

2.4 Theory of rank one maps

The theory of rank one maps [84, 87, 88] provides checkable conditions that imply the

existence of nonuniformly hyperbolic dynamics and SRB measures in parametrized

families {Fa} of dissipative embeddings in dimension N for any N > 2. We give a

descriptive summary of the theory and its applications here and a technical descrip-

tion in Section 3.1 of Chapter 3. The term ‘rank one’ refers to the local character

of the embeddings: some instability in one direction and strong contraction in all

other directions. Roughly speaking, the theory asserts that under certain checkable

conditions, there exists a set ∆ of values of a of positive Lebesgue measure such that

for a ∈ ∆, Fa is a genuinely nonuniformly hyperbolic map with an attractor that

supports an SRB measure. A comprehensive dynamical profile is given for such Fa;

we describe some aspects of this profile now.

The map Fa admits a unique SRB measure ν and ν is mixing. Lebesgue almost

every trajectory in the basin of the attractor is asymptotically distributed according

to ν and has a positive Lyapunov exponent. Thus the chaos associated with Fa is

both observable and sustained in time. The system (Fa, ν) satisfies a central limit
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2.4. THEORY OF RANK ONE MAPS

theorem, correlations decay at an exponential rate for Hölder observables, and a large

deviations principle holds. The source of the nonuniform hyperbolicity is identified

and the geometric structure of the attractor is analyzed in detail.

Figure 2.2 illustrates the progression of ideas that has led to the theory of rank

one maps. At its core, the theory is based on theoretical developments concern-

ing one-dimensional maps with critical points. We note in particular the parame-

ter exclusion technique of Jakobson [35] and the analysis of the quadratic family by

Benedicks and Carleson [9]. The analysis of the Hénon family by Benedicks and Car-

leson [10] provided a breakthrough from one-dimensional maps with critical points

(the quadratic family) to two-dimensional diffeomorphisms (small perturbations of

the quadratic family). Mora and Viana [61] generalized the work of Benedicks and

Carleson to small perturbations of the Hénon family and proved the existence of

Hénon-like attractors in parametrized families of diffeomorphisms that generically

unfold a quadratic homoclinic tangency.

Theory of
1D maps

−→ Hénon maps
and perturbations

−→ Rank one
attractors

Figure 2.2: Progression of ideas leading to the theory of rank one maps.

The theory of rank one maps has been applied to many concrete models. The

dynamical scenario studied most extensively thus far is that of weakly stable struc-

tures subjected to periodic pulsatile forcing. Weakly stable equilibria [66], limit

cycles in finite-dimensional systems [67, 85, 86], and supercritical Hopf bifurcations

in finite-dimensional systems [86] and infinite-dimensional systems [55] have been
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treated. Guckenheimer, Wechselberger, and Young [29] connect the theory of rank

one maps and geometric singular perturbation theory by formulating a general tech-

nique for proving the existence of chaotic attractors for 3-dimensional vector fields

with two time scales. Lin [48] demonstrates how the theory of rank one maps can

be combined with sophisticated computational techniques to analyze the response

of concrete nonlinear oscillators of interest in biological applications to periodic pul-

satile drives. Electronic circuits have been treated as well [64, 65, 81, 82].

We apply this theory to homoclinic and heteroclinic phenomena.

2.5 Homoclinic and heteroclinic phenomena

We study the dynamics near heteroclinic and homoclinic orbits when forced period-

ically in dimension N ≥ 2.

Definition 2.5.1. Consider the continuous-time dynamical system described by the

ODE ẋ = f(x). Suppose there is an equilibrium at x = x0. A solution Φ(t) is a

homoclinic orbit if Φ(t)→ x0 as t→ ±∞. If f : M → M is a diffeomorphism

of a manifold M, we say that x is a homoclinic point if there exists a fixed (or periodic)

point p such that limn→±∞ f
n(x) = p

If the stable and unstable manifolds of a hyperbolic stationary point intersect,they

may do so transversely or they may have homoclinic tangencies.

The dynamical picture near transverse intersections is described by the following

theorem.

Theorem 2.5.2. [36] Let M be a smooth manifold, U ⊂ M open, f : U → M an

20



2.5. HOMOCLINIC AND HETEROCLINIC PHENOMENA

p

q

(a)

p q

(b)

Figure 2.3: (a) homoclinic tangency, (b) transverse homoclinic intersection

embedding, and p ∈ U a hyperbolic fixed point with transverse homoclinic point q.

Then in any arbitrarily small neighborhood of p there exist a horseshoe for some fixed

iterate of f. Furthermore the hyperbolic invariant set in the horseshoe contains an

iterate of q.

There are significant results concerning the dynamics near homoclinic tangencies

of one-parameter families of diffeomarphisms starting from the following significant

results by Newhouse.

Theorem 2.5.3. [62] M is 2-manifold. There is an open subset U ⊂ Diff 2(M),

in which the set of diffeomorphisms exhibiting a homoclinic tangency is dense. It is

also implied, in the dissipitive case that there exist a residual subset R of U such that

each diffeomorphisim in R has infinitely many hyperbolic periodic attractors(sinks).

Definition 2.5.4. Let φ : M ×R→M be a C3 map such that φµ(x) = φ(x, µ) is a

diffeomorphisim on M for each µ ∈ R. Let p = p0 be a hyperbolic fixed point for φ0

and let q be a homoclinic tangency associated to p. Since p is hyperbolic for small

µ we have a unique fixed point pµ near p and the mapping µ→ pµ is differentiable.

Under generic assumptions there are µ-dependent local coordinates such that W s(pµ)
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2.5. HOMOCLINIC AND HETEROCLINIC PHENOMENA

is given by x2 = 0 and W u(pµ) by x2 = ax2
1 + bµ, a 6= 0 and b 6= 0. In this case we

say the quadratic homoclinic tangency unfolds generically.

The unfolding of homoclinic tangencies yields a great number of changes in dy-

namics as µ evolves.

Palis formulated the following conjecture.

Conjecture: Generic one-parameter families of surface diffeomorphisims unfolding

a homoclinic tangency exhibit strange attractors or repellers in a persistent way in

the measure-theoretic sense (for a positive measure set of values of parameter).

Strange attarctor in this context is a compact invariant set Λ with a dense orbit

which has positive Lyaponuv exponents and the stable set W s(Λ) has non-empty

interior.

Mora and Viana proved the Palis conjecture for surface diffeomorphisims.

Theorem 2.5.5 ( [61]). Let (fµ)µ be a C∞ one parameter family of diffeomorphisms

on a surface and suppose that f0 has a homoclinic tangency associated to some peri-

odic point p0. Then under generic assumptions, there is a positive Lebesgue measure

set E of parameter values near µ = 0 such that for each µ ∈ E the diffeomorphism

fµ exhibits a strange attractor or repeller near the orbit of tangency.

2.5.1 Heteroclinic cycles

Definition 2.5.6. A heteroclinic cycle is a finite ordered sequence of invariant

sets {ξ1, ξ2, ...ξk} and connecting manifolds {Γ1,Γ2, ..Γk} such that Γj is backward

asymptotic to ξj and forward asymptotic ξj+1 with ξk+1 = ξ1. The invariant sets
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are typically equilibrium points but may include higher dimensional objects such

as periodic orbits or chaotic attractors. The connecting manifolds Γj are typically

isolated trajectory but may be multi-dimensional surfaces. If k = 1, the cycle reduce

to a homoclinic orbit.

p q

Figure 2.4: heteroclinic cycle with two equilibria p and q

Heteroclinic cycles constitute an important class of solutions. They are associated

with intermittent behavior because long pieces of trajectories near the invariant sets

ξj are followed by the connections Γj. We study the effect of external time-periodic

forcing and the existence of rank one chaos near heteroclinic cycles of dissipative

systems.

Saddle point shear is the mechanism responsible for the emergence of nonuniform

hyperbolicity in this context.

2.6 Saddle point shear

We study flows with homoclinic orbits or heteroclinic cycles in dimension N > 2.

When a system with a homoclinic orbit is forced with a periodic signal of period T ,

the stable and unstable manifolds that coincide in the unforced system will typically

become distinct. Figure 2.5 illustrates two of the possibilities for the time-T maps. If
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the stable and unstable manifolds intersect transversely as in Figure 2.5(a), then ho-

moclinic tangles and horseshoes may be produced. The point of intersection may be

a point of tangency between the stable and unstable manifolds, a so-called homoclinic

tangency. Rich dynamics emerge as a homoclinic tangency is unfolded [24, 45, 61, 84],

including the coexistence of infinitely many attracting periodic orbits [62, 63, 69],

and nonuniformly hyperbolic horseshoes [70].

(a) (b)

Figure 2.5: Some time-T maps that can occur when a system with a homoclinic
loop is subjected to periodic forcing of period T

We focus on the case in which the stable and unstable manifolds of the forced

system do not intersect (Figure2.5(b)). Afraimovich and Shilnikov [2] initiated the

study of this case by proving that it is possible to define a flow-induced map on a

certain cross-section. Our main results concern the dynamics of this flow-induced

map. For an unforced flow in any dimension N > 2 with either a homoclinic loop or

a heteroclinic cycle, we formulate checkable hypotheses under which a natural map

induced by the flow of the forced system admits an attractor that supports a unique

ergodic SRB measure for a set of forcing amplitudes µ of positive Lebesgue measure.

For such µ, the flow-induced map is rank one in the sense of Wang and Young and

therefore the dynamical profile described in [88] applies. In particular, the dynamics
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are genuinely nonuniformly hyperbolic, a central limit theorem holds, and correla-

tions decay at an exponential rate. Heteroclinic cycles have been studied extensively

in connection with dynamics on networks and systems possessing symmetries; see

e.g. [3, 34, 40, 41]. Figure 3.1 in Chapter 3 illustrates saddle point shear mechanism.
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CHAPTER 3

Rank One Chaos near Homoclinic Orbits and Heteroclinic

Cycles

We study saddle point shear, a mechanism that can produce sustained, observ-

able chaos in concrete models of physical phenomena. Shear-induced chaos has

received substantial recent attention in the context of periodically-kicked limit cy-

cles [50, 55, 67, 85, 86]. We formulate hypotheses that imply the existence of sus-

tained, observable chaos for a set of forcing amplitudes of positive Lebesgue measure.

By sustained, observable chaos we refer to an array of precisely defined dynamical,

geometric, and statistical properties that are made precise in Section 3.1.
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3.1 Theory of rank one maps

Let D denote the closed unit disk in Rn−1 and let M = S1×D. We consider a family

of maps Fa ,b : M → M , where a = (a1, . . . , ak) ∈ V is a vector of parameters and

b ∈ B0 is a scalar parameter. Here V = V1 × · · · × Vk ⊂ Rk is a product of intervals

and B0 ⊂ R \ {0} is a subset of R with an accumulation point at 0. Points in M are

denoted by (x, y) with x ∈ S1 and y ∈ D. Rank one theory postulates the following.

(H1) Regularity conditions.

(a) For each b ∈ B0, the function (x, y,a) 7→ Fa ,b(x, y) is C3.

(b) Each map Fa ,b is an embedding of M into itself.

(c) There exists KD > 0 independent of a and b such that for all a ∈ V,

b ∈ B0, and z, z′ ∈M , we have

| detDFa ,b(z)|
| detDFa ,b(z′)|

6 KD.

(H2) Existence of a singular limit. For a ∈ V, there exists a map Fa ,0 : M →

S1 × {0} such that the following holds. For every (x, y) ∈ M and a ∈ V, we

have

lim
b→0

Fa ,b(x, y) = Fa ,0(x, y)

Identifying S1 × {0} with S1, we refer to Fa ,0 and the restriction fa : S1 → S1

defined by fa(x) = Fa ,0(x, 0) as the singular limit of Fa ,b.

(H3) C3 convergence to the singular limit. We select a special index j ∈

{1, . . . , k}. Fix ai ∈ Vi for i 6= j. For every such choice of parameters ai,

the maps (x, y, aj) 7→ Fa ,b(x, y) converge in the C3 topology to (x, y, aj) 7→

Fa ,0(x, y) on M × Vj as b→ 0.
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(H4) Existence of a sufficiently expanding map within the singular limit.

There exists a∗ = (a∗1, . . . , a
∗
k) ∈ V such that fa∗ ∈ E, where E is the set of

Misiurewicz-type maps defined in Definition 3.1.1 below.

(H5) Parameter transversality. Let Ca∗ denote the critical set of fa∗ . For aj ∈

Vj, define the vector ã j ∈ V by ã j = (a∗1, . . . , a
∗
j−1, aj, a

∗
j+1, . . . , a

∗
k). We say

that the family {fa} satisfies the parameter transversality condition with

respect to parameter aj if the following holds. For each x ∈ Ca∗ , let p = fa∗(x)

and let x(ã j) and p(ã j) denote the continuations of x and p, respectively, as the

parameter aj varies around a∗j . The point p(ã j) is the unique point such that

p(ã j) and p have identical symbolic itineraries under fãj
and fa∗ , respectively.

We have

d

daj
fãj

(x(ã j))

∣∣∣∣
aj=a∗j

6= d

daj
p(ã j)

∣∣∣∣
aj=a∗j

.

(H6) Nondegeneracy at ‘turns’. For each x ∈ Ca∗ , there exists 1 6 m 6 n − 1

such that

∂

∂ym
Fa∗,0(x, y)

∣∣∣∣
y=0

6= 0.

(H7) Conditions for mixing.

(a) We have e
1
3
λ0 > 2, where λ0 is defined within Definition 3.1.1.

(b) Let J1, . . . , Jr be the intervals of monotonicity of fa∗ . Let Q = (qim) be

the matrix of ‘allowed transitions’ defined by

qim =


1, if fa∗(Ji) ⊃ Jm,

0, otherwise.

There exists N > 0 such that QN > 0.
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We now define the family E.

Definition 3.1.1. We say that f ∈ C2(S1,R) is a Misiurewicz map and we write

f ∈ E if the following hold for some neighborhood U of the critical set C = C(f) =

{x ∈ S1 : f ′(x) = 0}.

(1) (Outside of U) There exist λ0 > 0, M0 ∈ Z+, and 0 < d0 6 1 such that

(a) for all m >M0, if f i(x) /∈ U for 0 6 i 6 m− 1, then |(fm)′(x)| > eλ0m,

(b) for any m ∈ Z+, if f i(x) /∈ U for 0 6 i 6 m − 1 and fm(x) ∈ U , then

|(fm)′(x)| > d0e
λ0m.

(2) (Critical orbits) For all c ∈ C and i > 0, f i(c) /∈ U .

(3) (Inside U)

(a) We have f ′′(x) 6= 0 for all x ∈ U , and

(b) for all x ∈ U \ C, there exists p0(x) > 0 such that f i(x) /∈ U for all

i < p0(x) and |(fp0(x))′(x)| > d−1
0 e

1
3
λ0p0(x).

The theory of rank one maps states that given a family {Fa ,b} satisfying (H1)–

(H6), a measure-theoretically significant subset of this family consists of maps ad-

mitting attractors with strong chaotic and stochastic properties. We formulate the

precise results and we then describe the properties that the attractors possess.

Proposition 3.1.2. [86] Let Φ : S1 → R be a C3 function with nondegenerate

critical points. Then there exist L1 and δ depending on Φ such that if L ≥ L1 and

Ψ : S1 → R is a C3 function with ‖Ψ‖C2 ≤ δ and ‖Ψ‖C3 ≤ 1 then the family

fa(θ) = θ + a+ L(Φ(θ) + Ψ(θ)), a ∈ [0, 1]
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satisfies (H4) and (H5). (H7) holds if L1 is sufficiently large.

Theorem 3.1.3 ([84, 87, 88]). Suppose the family {Fa ,b} satisfies (H1), (H2), (H4),

and (H6). The following holds for all 1 6 j 6 k such that the parameter aj satis-

fies (H3) and (H5). For all sufficiently small b ∈ B0, there exists a subset ∆j ⊂ Vj

of positive Lebesgue measure such that for aj ∈ ∆j, Fãj ,b admits a strange attractor

Ω with properties (P1), (P2), and (P3).

Theorem 3.1.4 ([84, 85, 87, 88]). In the sense of Theorem 3.1.3,

(H1)–(H7) =⇒ (P1)–(P4).

Remark 3.1.1. The proof of Theorem 3.1.3 for the special case n = 2 appears in [84].

The additional component (H7) ⇒ (P4) in Theorem 3.1.4 is proved in [85]. For

general n, Wang and Young [87] prove the existence of an SRB measure for Fãj ,b if

aj ∈ ∆j. The complete proofs of (P1)–(P3) (and (P4) assuming (H7)) for Fãj ,b with

aj ∈ ∆j appear in [88] for general n.

We now describe (P1)–(P4) precisely. Write F = Fãj ,b.

(P1) Positive Lyapunov exponent. Let U denote the basin of attraction of the

attractor Ω. This means that U is an open set satisfying F (U) ⊂ U and

Ω =
∞⋂
m=0

Fm(U).

For almost every z ∈ U with respect to Lebesgue measure, the orbit of z has

a positive Lyapunov exponent. That is,

lim
m→∞

1

m
log ‖DFm(z)‖ > 0.
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(P2) Existence of SRB measures and basin property.

(a) The map F admits at least one and at most finitely many ergodic SRB

measures each one of which has no zero Lyapunov exponents. Let ν1, · · · , νr

denote these measures.

(b) For Lebesgue-a.e. z ∈ U , there exists j(z) ∈ {1, . . . , r} such that for

every continuous function ϕ : U → R,

1

m

m−1∑
i=0

ϕ(F i(x, y))→
∫
ϕ dνj(z).

(P3) Statistical properties of dynamical observations.

(a) For every ergodic SRB measure ν and every Hölder continuous function

ϕ : Ω→ R, the sequence {ϕ ◦F i : i ∈ Z+} obeys a central limit theorem.

That is, if
∫
ϕ dν = 0, then the sequence

1√
m

m−1∑
i=0

ϕ ◦ F i

converges in distribution (with respect to ν) to the normal distribution.

The variance of the limiting normal distribution is strictly positive unless

ϕ = ψ ◦ F − ψ for some ψ ∈ L2(ν).

(b) Suppose that for some L > 1, FL has an SRB measure ν that is mixing.

Then given a Hölder exponent η, there exists τ = τ(η) < 1 such that

for all Hölder ϕ, ψ : Ω → R with Hölder exponent η, there exists K =

K(ϕ, ψ) such that for all m ∈ N,∣∣∣∣∫ (ϕ ◦ FmL)ψ dν −
∫
ϕ dν

∫
ψ dν

∣∣∣∣ 6 K(ϕ, ψ)τm.
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(P4) Uniqueness of SRB measures and ergodic properties.

(a) The map F admits a unique (and therefore ergodic) SRB measure ν, and

(b) the dynamical system (F, ν) is mixing, or, equivalently, isomorphic to a

Bernoulli shift.

3.2 Dynamics near homoclinic loops

Let N > 2 be an integer. Let ξ = (ξi)
N
i=1 denote the standard coordinates in RN and

let {e i : 1 6 i 6 N} be the standard basis for RN . We start with a C4 vector field

f : RN → RN and the associated autonomous differential equation

dξ

dt
= f (ξ) (3.1)

3.2.1 Local dynamical picture

We assume the following dynamical picture in a neighborhood of the origin.

(A1) The origin 0 is a stationary point of (3.1) (f (0) = 0). The derivative Df (0) is

a diagonal operator with eigenvalues −αN−1 ≤ −αN−2 6 · · · 6 −α1 < 0 < β

corresponding to eigenvectors e1 to eN , respectively.

(A2) (dissipative saddle) The eigenvalues of Df (0) satisfy 0 < β < α1.

(A3) (analytic linearization) There exists a neighborhood U of 0 on which f is

analytic and on which there exists an analytic coordinate transformation that

transforms (3.1) into the linear equation

dη

dt
= Df (0)η.
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We now add time-periodic forcing to the right side of (3.1). Let p : RN × S1 → RN

be a C4 map for which there exists a neighborhood U2 of 0 such that p is analytic

on U2 × S1. Adding p to the right side of (3.1) yields the nonautonomous equation

dξ

dt
= f (ξ) + µp(ξ, ωt), (3.2)

where ω is a frequency parameter and µ controls the amplitude of the forcing. We

convert (3.2) into an autonomous system on the augmented phase space RN × S1,

giving

dξ

dt
= f (ξ) + µp(ξ, θ) (3.3a)

dθ

dt
= ω. (3.3b)

3.2.2 Two small scales and a useful local coordinate system

Let ε0 > 0 be such that Uε0 := B(0, 2ε0) ⊂ U∩U2 and let µ0 > 0 satisfy µ0 � ε0. We

focus on forcing amplitudes in the range [0, µ0]. When the phase space is augmented

with an S1 factor, the hyperbolic saddle 0 becomes the hyperbolic periodic orbit

γ0 := {0} × S1. This hyperbolic periodic orbit persists for µ sufficiently small. Let

γµ denote the perturbed orbit.

Proposition 3.2.1. There exists a µ-dependent coordinate system (X , θ) = (X1, . . . , XN , θ)

defined on Uε0 × S1 such that for every µ ∈ [0, µ0], γµ = {(X , θ) : X = 0}. That is,

we have standardized the location of the hyperbolic periodic orbit. Further, the stable

and unstable manifolds W s(γµ) and W u(γµ) are locally flat:

W s(γµ) ∩ (Uε0 × S1) ⊂ {(X , θ) : XN = 0}

W u(γµ) ∩ (Uε0 × S1) ⊂ {(X , θ) : Xi = 0 for every 1 6 i 6 N − 1} .
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In terms of (X , θ) coordinates, system (4.2) on Uε0 × S1 × [0, µ0] has the following

form:

dXi

dt
= (−αi + µGi(X , θ;µ))Xi (1 6 i 6 N − 1) (3.4a)

dXN

dt
= (β + µGN(X , θ;µ))XN (3.4b)

dθ

dt
= ω. (3.4c)

There exists K3 > 0 such that for each 1 6 k 6 N , Gk is analytic on Uε0×S1× [0, µ0]

and satisfies

‖Gk‖C3(Uε0×S1×[0,µ0]) 6 K3.

Proof of Proposition 3.2.1. The proof of this proposition is given in section (4.1) of

Chapter 4. �

3.2.3 Global dynamical picture

Define the µ-dependent sections Γ1 and Γ2 as follows:

Γ1 = {(X , θ) : XN = ε0, 0 6 X1 6 K0µ, −K0µ 6 Xi 6 K0µ for 2 6 i 6 N − 1}

Γ2 =
{

(X , θ) : X1 = ε0, K
−1
1 µ 6 XN 6 K1µ, −K2µ 6 Xi 6 K2µ for 2 6 i 6 N − 1

}
,

where K0 > 0 satisfies K0µ0 � ε0 and K1 > 0 and K2 > 0 are suitably chosen. We

assume that for µ ∈ (0, µ0], the flow generated by (4.2) induces a map from Γ1 into

Γ2.

(A4) For µ ∈ (0, µ0], the flow generated by (4.2) induces a C3 embedding Gµ : Γ1 →
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Γ2. Writing Gµ(X , θ) = (Y , ρ), (Y , ρ) has the form

Y1 = ε0 (3.5a)

Yk =
N−1∑
i=1

ckiXi + µΦk(X1, . . . , XN−1, θ) (2 6 k 6 N) (3.5b)

ρ = θ + ζ1 + µΦN+1(X1, . . . , XN−1, θ). (3.5c)

Here (cki) is an invertible matrix of constants, ζ1 is a constant, and the func-

tions Φ2, . . . ,ΦN+1 are C3 functions from Γ1 into R. We assume that ΦN > 0.

Hypothesis (A4) is motivated by bifurcation scenarios involving homoclinic orbits.

Suppose that (3.1) (µ = 0) has a homoclinic solution associated with the saddle

X = 0 that includes the positive XN component of the local unstable manifold of

the saddle and coincides with the positive X1 axis as t→∞. (The assumption that

the homoclinic orbit coincides with the positive X1 axis as t → ∞ is not necessary.

We proceed in this way to clarify the presentation.) When system (3.1) is forced

with a periodic signal (µ > 0), the stable and unstable manifolds will typically break

apart. When this happens, transversal intersections may be formed. It is also pos-

sible that the stable and unstable manifolds do not intersect for µ > 0. In the latter

case, it may be possible to define a flow-induced global map from Γ1 into Γ2 for µ > 0

sufficiently small. See [83] for an example in which explicit formulas for the global

map are derived.

Assuming (A1)–(A4) hold, for µ ∈ (0, µ0] the flow generated by (4.2) induces

a map Mµ : Γ1 → Γ1 given by the composition Mµ = Lµ ◦ Gµ, where Gµ is

from (A4) and Lµ : Γ2 → Γ1 is the ‘local’ map induced by (4.2). Our primary
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theorem for systems with homoclinic loops concerns the dynamical properties of the

family {Mµ : 0 < µ 6 µ0}. Figure 3.1 illustrates the geometry of Mµ when N = 2.

Theorem 3.2.2. Assume that system (4.2) satisfies (A1)–(A4). Suppose that the

C3 function ΦN(0, θ) : S1 → R has finitely many nondegenerate critical points. Then

there exists ω0 > 0 such that for any frequency ω satisfying |ω| > ω0, there exists

a set ∆ω ⊂ (0, µ0] of positive Lebesgue measure with the following property. For

every µ ∈ ∆ω, the flow-induced map Mµ admits a strange attractor Ω that supports a

unique ergodic SRB measure ν. The orbit of Lebesgue almost every point on Γ1 has

a positive Lyapunov exponent and is asymptotically distributed according to ν. The

SRB measure ν is mixing, satisfies the central limit theorem, and exhibits exponential

decay of correlations for Hölder-continuous observables.

Figure 3.1: Saddle point shear mechanism
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The figure 3.1 illustrates the saddle point shear associated with Mµ.Start with

the flat red curve C on Γ1. Generically, the flow from Γ1 to Γ2 will create ripples,

meaning that when Gµ(C) is viewed as a function of θ, X2 varies as θ varies. Since

the time it takes to travel from Γ2 to Γ1 depends on the X2 coordinate, shear occurs

in the θ direction. The purple curve Lµ(Gµ(C)) illustrates the resulting stretch and

fold geometry of Mµ.

3.2.4 Proof of Theorem 3.2.2

The proof of Theorem 3.2.2 requires careful study of the family of flow-induced maps

{Mµ : 0 < µ 6 µ0}. We will prove that the theory of rank one maps applies to this

family. In Section 3.2.5 we compute Lµ in a C3-controlled manner. The µ → 0

singular limit of the family {Mµ : 0 < µ 6 µ0} is computed in Section 3.2.6. Here we

must introduce auxiliary parameters because the direct µ → 0 limit does not exist.

Finally, in Section 3.2.7 we prove that {Mµ : 0 < µ 6 µ0} satisfies the hypotheses of

the theory of rank one maps.

Let p = ln(µ−1). We regard p as the fundamental parameter associated with (4.2).

Notice that µ ∈ (0, µ0] corresponds to p ∈ [ln(µ−1
0 ),∞).

We make the coordinate change (X , θ) 7→ (µx , θ) on Uε0 × S1. This stabilizes Γ1

and Γ2:

Γ1 =
{

(x , θ) : xN = ε0µ
−1, 0 6 x1 6 K0, −K0 6 xi 6 K0 for 2 6 i 6 N − 1

}
Γ2 =

{
(x , θ) : x1 = ε0µ

−1, K−1
1 6 xN 6 K1, −K2 6 xi 6 K2 for 2 6 i 6 N − 1

}
.
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3.2.5 Computation of Lµ

We compute Lµ in a C3-controlled manner. We begin by computing a normal form

for (4.2) that is valid on Uε0 × S1 × [0, µ0]. The rescaling X = µx transforms (3.4)

into

dxi
dt

= (−αi + µgi(x , θ;µ))xi (1 6 i 6 N − 1) (3.6a)

dxN
dt

= (β + µgN(x , θ;µ))xN (3.6b)

dθ

dt
= ω, (3.6c)

where gk(x , θ;µ) = Gk(µx , θ;µ) for 1 6 k 6 N . System (3.6) is valid onD(x , θ, µ) :=

Uε0 × S1 × [0, µ0].

On the time-tmap induced by (3.6). Let V (Γ2) be a small open neighbor-

hood of Γ2 in Uε0 × S1. We study the time-t map induced by (3.6) assuming

that all solutions beginning in V (Γ2) remain inside Uε0 × S1 up to time t. Let

q0 = (x 0, θ0) ∈ V (Γ2) and let q(t, q0;µ) = (x (t, q0;µ), θ(t, q0;µ)) denote the solu-

tion of (3.6) with q(0, q0;µ) = q0. Integrating (3.6), we have

xi(t, q0;µ) = xi,0 exp

(∫ t

0

(
− αi + µgi(q(s, q0;µ);µ)

)
ds

)
(1 6 i 6 N − 1)

(3.7a)

xN(t, q0;µ) = xN,0 exp

(∫ t

0

(
β + µgN(q(s, q0;µ);µ)

)
ds

)
(3.7b)

θ(t, q0;µ) = θ0 + ωt. (3.7c)
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We introduce the functions wk = wk(t, q0;µ) for 1 6 k 6 N by formulating (3.7) as

xi(t, q0;µ) = xi,0 exp
(
t(−αi + wi(t, q0;µ))

)
(1 6 i 6 N − 1) (3.8a)

xN(t, q0;µ) = xN,0 exp
(
t(β + wN(t, q0;µ))

)
(3.8b)

θ(t, q0;µ) = θ0 + ωt, (3.8c)

where

wk(t, q0;µ) =
1

t

∫ t

0

µgk(q(s, q0;µ);µ) ds. (3.9)

The following proposition establishes C3 control of the wk on the domain

D(t, q0, p) :=
{

(t, q0, p) : t ∈ [1, T ∗], q0 ∈ V (Γ2), p ∈ [ln(µ−1
0 ),∞)

}
,

where T ∗ is chosen so that all solutions of (3.6) that start in V (Γ2) remain in Uε0×S1

up to time T ∗. We view the wk as functions of t, q0, and p (not µ) for the following

estimate.

Proposition 3.2.3. There exists K4 > 0 such that the following holds. For any

T ∗ > 1 such that all solutions of (3.6) that start in V (Γ2) remain in Uε0 × S1 up to

time T ∗, we have

‖wk‖C3(D(t,q0,p))
6 K4µ (1 6 k 6 N).

Proof of Proposition 3.2.3. We prove this proposition in Chapter 4. �

The stopping time T (q0, p).

Let q0 = (x 0, θ0) ∈ Γ2 and let T (q0, p) be the time at which the solution to (3.6)

starting from q0 reaches Γ1. This stopping time is determined implicitly by (3.8b):

ε0µ
−1 = xN(T (q0, p), q0;µ) = xN,0 exp

(
T (q0, p) · (β + wN(T (q0, p), q0;µ))

)
.
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Solving for T , we have

T (q0, p) =
1

β + wN(T (q0, p), q0;µ)
ln

(
ε0µ

−1

xN,0

)
.

The following proposition provides a precise C3 control of T .

Proposition 3.2.4. There exists K5 > 0 such that T , viewed as a function of q0

and p, satisfies ∥∥∥∥T − 1

β
ln(ε0µ

−1)

∥∥∥∥
C3(Γ2×[ln(µ−1

0 ),∞))

6 K5.

Proof of Proposition 3.2.4. It is proved in Chapter 4. �

A C3-controlled formula for Lµ.

Let q0 = (y , ρ) ∈ Γ2 and define (z , θ̂) = Lµ(y , ρ) := q(T (q0, p), q0; p). We have

zN = ε0µ
−1 (3.10a)

zi = yi

(
ε0µ

−1

yN

)−αi+wi

β+wN

(1 6 i 6 N − 1) (3.10b)

θ̂ = ρ+
ω

β + wN
ln

(
ε0µ

−1

yN

)
. (3.10c)

3.2.6 The singular limit of {Mµ : 0 < µ 6 µ0}

We begin by computing Mµ. Referring to (A4), the global map Gµ : Γ1 → Γ2 is given

in rescaled coordinates by Gµ(x , θ) = (y , ρ), where

y1 = ε0µ
−1 (3.11a)

yi =
N−1∑
j=1

cijxj + φi(x1, . . . , xN−1, θ) (2 6 i 6 N) (3.11b)

ρ = θ + ζ1 + µφN+1(x1, . . . , xN−1, θ), (3.11c)
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Using (3.10) and (3.11),the flow-induced map Mµ is given by Mµ(x , θ) = (z , θ̂)

zN = ε0µ
−1 (3.12a)

z1 = ε0µ
−1

(
ε0µ

−1∑N−1
j=1 cNjxj + φN

)−α1+w1

β+wN

(3.12b)

zi =

(
N−1∑
j=1

cijxj + φi

)(
ε0µ

−1∑N−1
j=1 cNjxj + φN

)−αi+wi

β+wN

(2 6 i 6 N − 1) (3.12c)

θ̂ = θ + ζ1 + µφN+1 +
ω

β + wN
ln

(
ε0µ

−1∑N−1
j=1 cNjxj + φN

)
. (3.12d)

We compute the singular limit of
{
Mµ(p) : p ∈ [ln(µ−1

0 ),∞)
}

by deriving an auxiliary

parameter a from p. This is necessary because the term

ω

β + wN
ln(ε0µ

−1)

in (3.12d) does not converge as µ→ 0. Define κ : (0,∞)→ R by

κ(s) =
ω

β
ln(s−1).

Let (µn)∞n=1 be any strictly decreasing sequence such that µn ∈ (0, µ0] for all n ∈ N,

µn → 0 as n→∞, and κ(µn) ∈ 2πZ for all n ∈ N. For a ∈ S1 (here S1 is identified

with [0, 2π)), define

µa,n = κ−1(κ(µn) + a), p(a, n) = ln(µ−1
a,n).

We now view the family of flow-induced maps as a two-parameter family of em-

beddings:
{
Mµ(p(a,n)) : a ∈ S1, n ∈ N

}
. The parameter n measures the amount of

dissipation associated with Mµ(p(a,n)). The following proposition establishes C3 con-

vergence to a singular limit as n→∞.
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Proposition 3.2.5. We have

lim
n→∞

∥∥Mµ(p(a,n)) − (0,Fa)
∥∥
C3(Γ1×[0,2π))

= 0,

where Fa : Γ1 → S1 is given by

Fa(x , θ) = θ + a− ω

β
ln

(
N−1∑
j=1

cNjxj + φN

)
+
ω

β
ln(ε0) + ζ1. (3.13)

Proof of Proposition 3.2.5. We first address the term

ω

β + wN
ln(µ−1)

in (3.12d). Decomposing, we have

ω

β + wN
ln(µ−1) =

ω

β
ln(µ−1)− ωwN

β(β + wN)
ln(µ−1). (3.14)

Since µ = µ(p(a, n)), the first term on the right side of (3.14) is equal to a. The

asserted C3 convergence now follows from (A2), Proposition 3.2.3, and Proposi-

tion 3.2.4. �

3.2.7 Verification of the hypotheses of the theory of rank

one maps

We show that the family of flow-induced maps
{
Mµ(p(a,n)) : a ∈ S1, n ∈ N

}
satis-

fies (H1)–(H7). We establish the distortion bound (H1)(c) by studying the families

of local maps and global maps separately. Since the matrix (cij) is invertible, direct

computation using (3.11) implies that there exists a distortion constant D1 > 0 such

that for every µ ∈ (0, µ0] and (x , θ), (x ′, θ′) ∈ Γ1, we have

|detDGµ(x , θ)|
|detDGµ(x ′, θ′)|

6 D1. (3.15)
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Now let (y , ρ) ∈ Γ2. Expanding det(DLµ(y , ρ)) via permutations, it follows from (3.10),

Proposition 3.2.3, and Proposition 3.2.4 that the leading order term of det(DLµ(y , ρ))

arises from the following combination of derivatives:

∂yN z1 · ∂ρθ̂ ·
N−1∏
i=2

∂yizi.

It follows by direct computation that there exists D2 > 0 such that for every µ ∈

(0, µ0] and (y , ρ), (y ′, ρ′) ∈ Γ2, we have

|detDLµ(y , ρ)|
|detDLµ(y ′, ρ′)|

6 D2. (3.16)

Bounds (3.15) and (3.16) imply (H1)(c) withKD = D1D2. Hypotheses (H2) and (H3)

follow from Proposition 3.2.5.

Hypotheses (H4), (H5), and (H7) concern the family of circle maps{
ha : S1 → S1, a ∈ S1

}
defined by

ha(θ) := Fa(0, θ) = θ + a− ω

β
ln(φN(0, θ)) +

ω

β
ln(ε0) + ζ1.

Since φN(0, ·) has finitely many nondegenerate critical points, (H4), (H5), and (H7)

follow from proposition (3.1.2) if |ω| is sufficiently large.

Finally, the nondegeneracy condition (H6) follows by direct computation us-

ing (3.13) and the fact that cNk 6= 0 for some 1 6 k 6 N − 1. Hence prove the

theorem 3.2.2.

3.3 Dynamics near heteroclinic cycles

We start with (3.1) in two dimensions. Set N = 2.
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3.3.1 Existence of a heteroclinic cycle for the unforced sys-

tem

We assume that (3.1) has a heteroclinic cycle. The heteroclinic cycle consists of Q0

hyperbolic saddle equilibria {q i : 1 6 i 6 Q0} and connecting orbits {ϕi : 1 6 i 6 Q0}.

Let −λi < 0 < βi denote the eigenvalues of Df (q i). The connecting orbits satisfy

lim
t→−∞

ϕi(t) = q i, lim
t→∞

ϕi(t) = q i+1

for 1 6 i 6 Q0 − 1 and

lim
t→−∞

ϕQ0
(t) = qQ0

, lim
t→∞

ϕQ0
(t) = q1.

We assume that the saddles satisfy the following hypotheses.

(B1) (dissipative saddles) For each 1 6 i 6 Q0, the eigenvalues of Df (q i) satisfy

λi > βi.

(B2) (analytic linearizations) For each 1 6 i 6 Q0, there exists a neighborhood of

q i on which f is analytic and on which there exists an analytic coordinate

transformation that transforms (3.1) into its linearization at q i.

As in the homoclinic case, we study system (4.2). Here we assume that p is C4

on R2 × S1 and analytic in a neighborhood of each {q i} × S1.

When the phase space is augmented with with an S1 factor, each hyperbolic

saddle q i becomes a hyperbolic periodic orbit γq i,0
:= {q i} × S1. This hyperbolic

periodic orbit persists for µ sufficiently small. Let γq i,µ
denote the perturbed orbit.

There exists ε0 > 0 such that for each 1 6 i 6 Q0, there exists a µ-dependent

coordinate system (Z (i), θ) = (Z
(i)
1 , Z

(i)
2 , θ) defined on B(q i, 2ε0) × S1 such that for
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every µ ∈ [0, µ0], γq i,µ
=
{

(Z (i), θ) : Z (i) = 0
}

and the stable and unstable manifolds

are locally flat:

W s(γq i,µ
) ∩ (B(q i, 2ε0)× S1) ⊂

{
(Z (i), θ) : Z

(i)
2 = 0

}
W u(γq i,µ

) ∩ (B(q i, 2ε0)× S1) ⊂
{

(Z (i), θ) : Z
(i)
1 = 0

}
.

3.3.2 Global dynamical picture

For each 1 6 i 6 Q0 and µ ∈ (0, µ0], define the µ-dependent sections Si and S ′i as

follows:

Si =
{

(Z (i), θ) : Z
(i)
1 = ε0, C

−1
i µ 6 Z

(i)
2 6 Ciµ

}
S ′i =

{
(Z (i), θ) : Z

(i)
2 = ε0, 0 6 Z

(i)
1 6 C ′iµ

}
.

Here the constants C ′i satisfy C ′iµ0 � ε0 and the Ci are suitably chosen. We assume

that for each 1 6 i 6 Q0 and µ ∈ (0, µ0], the flow generated by (4.2) induces a map

from S ′i into Si+1 (we set SQ0+1 = S1).

(B3) For each 1 6 i 6 Q0 and µ ∈ (0, µ0], the flow generated by (4.2) induces a C3

embedding Gi,µ : S ′i → Si+1 of the form

Gi,µ(Z
(i)
1 , ε0, θ) = (ε0, biZ

(i)
1 + µΥi(Z

(i)
1 , θ), θ + ζi + µΨi(Z

(i)
1 , θ)). (3.17)

Here the constants bi and ζi satisfy bi 6= 0 and ζi > 0 for all 1 6 i 6 Q0. The

functions Υi and Ψi are C3. We assume that Υi > 0 for all 1 6 i 6 Q0.

Figure 3.2 illustrates a sample configuration with 4 saddle equilibria.
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Assuming (B1)–(B3) hold, for µ ∈ (0, µ0] the flow generated by (4.2) induces a

map Mµ : S ′1 → S ′1 given by the composition

Mµ = (L1,µ ◦ GQ0,µ) ◦ (LQ0,µ ◦ GQ0−1,µ) ◦ · · · ◦ (L3,µ ◦ G2,µ) ◦ (L2,µ ◦ G1,µ),

where the maps Gi,µ are from (B3) and Li,µ : Si → S ′i are the local maps induced

by (4.2). Our primary theorem concerns the dynamics of the family {Mµ : 0 < µ 6 µ0}.

Define Π : S1 → R by

Π(θ(1)) =

Q0∑
i=1

1

βi+1

ln
(
Υi(0, θ

(i))
)
.

Here βQ0+1 := β1. The θ(i) for 2 6 i 6 Q0 depend on θ(1) and arise from a certain

singular limit of the family {Mµ : 0 < µ 6 µ0}. Our primary theorem assumes that

Π is a Morse function.

Theorem 3.3.1. Assume that system (4.2) satisfies (B1)–(B3). Suppose that the

C3 function Π : S1 → R has finitely many nondegenerate critical points. Then there

exists ω0 > 0 such that for any frequency ω satisfying |ω| > ω0, there exists a set

∆ω ⊂ (0, µ0] of positive Lebesgue measure with the following property. For every

µ ∈ ∆ω, the flow-induced map Mµ admits a strange attractor Ω that supports a

unique ergodic SRB measure ν. The orbit of Lebesgue almost every point on S ′1 has

a positive Lyapunov exponent and is asymptotically distributed according to ν. The

SRB measure ν is mixing, satisfies the central limit theorem, and exhibits exponential

decay of correlations for Hölder-continuous observables.
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Figure 3.2: A sample configuration with 4 saddle equilibria. Pictured are the
projections of the sections Si and S ′i onto the plane.

3.3.3 Heteroclinic cycles in physical dimension at least two

Theorem 3.3.1 generalizes naturally to physical dimension N > 2. Here we describe

the key aspects of the generalization.

First, let −α(i)
N−1 6 −α

(i)
N−2 6 · · · 6 −α

(i)
1 < 0 < β(i) denote the eigenvalues of

Df (q i). We assume the following version of (B1):

(B1)* For every 1 6 i 6 Q0, we have α
(i)
1 > β(i).

Second, the sections Si and S ′i are positioned as follows. The coordinate systems

(Z (i), θ) are now given by (Z (i), θ) = (Z
(i)
1 , . . . , Z

(i)
N , θ) and satisfy

W s(γq i,µ
) ∩ (B(q i, 2ε0)× S1) ⊂

{
(Z (i), θ) : Z

(i)
N = 0

}
W u(γq i,µ

) ∩ (B(q i, 2ε0)× S1) ⊂
{

(Z (i), θ) : Z
(i)
1 = · · · = Z

(i)
N−1 = 0

}
.

Working in (Z (i), θ) coordinates, for each i let Hi denote the hyperplane in RN that

is orthogonal to the corresponding incoming connecting orbit (µ = 0) and at distance
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ε0 from saddle q i. Section Si is positioned such that the projection of Si onto RN

is a subset of Hi. Further, the projection of Si onto the Z
(i)
N direction is the interval

[(C
(i)
N )−1µ,C

(i)
N µ] for C

(i)
N > 0 suitably chosen. Section S ′i is positioned such that the

projection of S ′i onto RN is contained in the hyperplane that is orthogonal to the

corresponding outgoing connecting orbit and at distance ε0 from saddle q i.

Remark 3.3.1. We have formulated Theorem 3.3.1 in physical dimension two for the

sake of clarity; it generalizes naturally to physical dimension N > 2.

3.3.4 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 closely follows the proof of Theorem 3.2.2 given in

Section 3.2.4. We therefore present only the modifications of the argument given

in Section 3.2.4 that are needed for the heteroclinic setting.

In magnified coordinates, for each 1 6 i 6 Q0 the global map Gi,µ is given by

(z
(i)
1 , z

(i)
2 = ε0µ

−1, θ) 7→ (y1, y2, γ),

where

y1 = ε0µ
−1 (3.18a)

y2 = biz
(i)
1 + Υi(µz

(i)
1 , θ) (3.18b)

γ = θ + ζi + µΨi(µz
(i)
1 , θ). (3.18c)

The local map Li,µ is given by

(z
(i)
1 , z

(i)
2 , θ) 7→ (x1, x2, ρ),

48



3.3. DYNAMICS NEAR HETEROCLINIC CYCLES

where

x1 = ε0µ
−1

(
ε0µ

−1

z
(i)
2

)−λi+w(i)
1

βi+w
(i)
2

(3.19a)

x2 = ε0µ
−1 (3.19b)

ρ = θ +

(
ω

βi + w
(i)
2

)
ln

(
ε0µ

−1

z
(i)
2

)
. (3.19c)

Here w
(i)
1 and w

(i)
2 are defined as in (3.9).

We use (3.18c) and (3.19c) to compute the angular component of the flow-induced

map

Mµ = (L1,µ ◦ GQ0,µ) ◦ (LQ0,µ ◦ GQ0−1,µ) ◦ · · · ◦ (L2,µ ◦ G1,µ) .

Let (x
(1)
1 , x

(1)
2 = ε0µ

−1, θ(1)) ∈ S ′1. For 1 6 i 6 Q0, define

(x
(i)
1 , x

(i)
2 = ε0µ

−1, θ(i)) = (Li,µ ◦ Gi−1,µ) ◦ · · · ◦ (L2,µ ◦ G1,µ) (x
(1)
1 , x

(1)
2 , θ(1)).

The flow-induced map Mµ is given by (x
(1)
1 , x

(1)
2 = ε0µ

−1, θ(1)) 7→ (z1, z2 = ε0µ
−1, θ̂),

where θ̂ is computed using (3.18c) and (3.19c):

θ̂ = θ(1) +

Q0∑
i=1

ζi + µΨi(µx
(i)
1 , θ

(i)) +

(
ω

βi+1 + w
(i+1)
2

)
ln

(
ε0µ

−1

bix
(i)
1 + Υi(µx

(i)
1 , θ

(i))

)
.

(3.20)

As in the homoclinic case, we compute the singular limit of
{
Mµ(p) : p ∈ [ln(µ−1

0 ),∞)
}

by deriving an auxiliary parameter a from p. Define κ : (0,∞)→ R by

κ(s) =

Q0∑
i=1

ω

βi+1

ln(s−1).

Let (µn)∞n=1 be any strictly decreasing sequence such that µn ∈ (0, µ0] for all n ∈ N,

µn → 0 as n→∞, and κ(µn) ∈ 2πZ for all n ∈ N. For a ∈ S1, define

µa,n = κ−1(κ(µn) + a), p(a, n) = ln(µ−1
a,n).
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We view the family of flow-induced maps as a two-parameter family of embeddings:{
Mµ(p(a,n)) : a ∈ S1, n ∈ N

}
. The following proposition establishes C3 convergence

to a singular limit as n→∞.

Proposition 3.3.2. We have

lim
n→∞

∥∥Mµ(p(a,n)) − (0,Fa)
∥∥
C3(S′1×[0,2π))

= 0,

where Fa : S ′1 → S1 is given by

Fa(x(1)
1 , θ(1)) = θ(1) + a+

(
Q0∑
i=1

ζi +
ω

βi+1

ln(ε0)

)
−

Q0∑
i=1

ω

βi+1

ln
(
bix

(i)
1 + Υi(0, θ

(i))
)
.

(3.21)

Proof of Proposition 3.3.2. The proof of Proposition 3.3.2 uses (3.20) and follows the

line of reasoning developed in the proof of Proposition 3.2.5. �

We finish the proof of Theorem 3.3.1 by showing that the family of flow-induced

maps
{
Mµ(p(a,n)) : a ∈ S1, n ∈ N

}
satisfies (H1)–(H7). The distortion bound (H1)(c)

follows from the fact that the distortion of each local and global map is bounded.

Hypotheses (H2) and (H3) follow from Proposition 3.3.2. Hypotheses (H4), (H5),

and (H7) concern the family of circle maps {ha : S1 → S1, a ∈ S1} defined by setting

x
(1)
1 = 0 in (3.21):

ha(θ
(1)) := Fa(0, θ(1)) = θ(1) + a+

(
Q0∑
i=1

ζi +
ω

βi+1

ln(ε0)

)
−

Q0∑
i=1

ω

βi+1

ln
(
Υi(0, θ

(i))
)
.

Since
Q0∑
i=1

1

βi+1

ln
(
Υi(0, θ

(i))
)

is a Morse function by hypothesis, (H4), (H5), and (H7) follow from Proposition

(3.1.2) if |ω| is sufficiently large. Finally, the nondegeneracy condition (H6) follows

by direct computation using (3.21) and the fact that b1 6= 0.
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3.3.5 An asymmetric May-Leonard model

Theorem 3.3.1 and its generalization to any finite physical dimension applies to

numerous concrete systems of interest in the biological and physical sciences. We

mention one such system here. The asymmetric May-Leonard flow is the flow on the

nonnegative octant of R3 generated by

ẋ1 = x1(1− x1 − a1x2 − b1x3)

ẋ2 = x2(1− b2x1 − x2 − a2x3)

ẋ3 = x3(1− a3x1 − b3x2 − x3).

(3.22)

System (3.22) models the Lotka-Volterra dynamics of three competing species with

Figure 3.3: heteroclinic cycle with cross sections.

equal intrinsic growth rates and differing competition coefficients. Assuming 0 <

ai < 1 < bi < 2 for 1 6 i 6 3, (3.22) admits a heteroclinic cycle with saddles (1, 0, 0),

(0, 1, 0), and (0, 0, 1) (see Figure 3.3).The asymptotic stability of this cycle is studied

in [22]. If the competition coefficients also satisfy

b1 − 1

1− a2

> 1,
b2 − 1

1− a3

> 1,
b3 − 1

1− a1

> 1,
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3.3. DYNAMICS NEAR HETEROCLINIC CYCLES

then (B1)* is satisfied and therefore the generalization of Theorem 3.3.1 to physical

dimension three applies to the periodically-forced May-Leonard system with any C4

periodic forcing functions pi (1 ≤ i ≤ 3), given by
ẋ1 = x1(1− x1 − a1x2 − b1x3) + µp1(x , ωt)

ẋ2 = x2(1− b2x1 − x2 − a2x3) + µp2(x , ωt)

ẋ3 = x3(1− a3x1 − b3x2 − x3) + µp3(x , ωt).
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CHAPTER 4

Normal Form and Error Estimates

In this Chapter we prove Propositions 3.2.1, 3.2.4, and 3.2.3. Description of prop-

erties of trajectories staying for a long time near saddle fixed points can be easily

done when a system is reduce to a certain linear form. Proposition 3.2.1 is about

reduction of a periodically forced system to a normal form near saddle point. We

use this Proposition to derive the local map by integrating the systems near saddle.

Proposition 3.2.4 gives C3 control over time spend by the solutions near saddle and

Proposition 3.2.3 control the nonlinear part of the solutions in C3 norm.
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4.1 Normal form

Proof of Proposition 3.2.1:

We begin with the equation

dξ

dt
= f (ξ) (4.1)

and its perturbed form as discussed in Chapter 3

dξ

dt
= f (ξ) + µp(ξ, θ) (4.2a)

dθ

dt
= ω. (4.2b)

By hypothesis (A3) on local dynamics from section (3.2) of Chapter 3, we have an

analytic coordinate change

η = ξ + q with inverse ξ = η + Q

where qi, Qi : RN → R (1 ≤ i ≤ N) are analytic, such that equation (4.1) takes

the following linear form

dη

dt
= Df (0)η.

Let’s denote the eigen value with respect to unstable direction β = −αN > 0

through out this proof. Using this coordinate change and equation (4.1) and (4.2a),

we get

(1 + ∂xiQi)(−αix+ fi) +
∑
j 6=i

(∂xjQj)(αjxj + fj) = −αiηi (1 ≤ i, j ≤ N) (4.3)

dηi
dt

= −αiηi + µ(1 + ∂xiQi −
∑
j 6=i

∂xjQj)(µpi) (1 ≤ i, j ≤ N) (4.4)

54



4.1. NORMAL FORM

Using equation (4.4) and (4.2), we get the following form of equation (4.2)

dηi
dt

= −αiηi + µ(1 + hi(η))(p̂i(η, θ)) (1 ≤ i ≤ N) (4.5a)

θ
′
= w (4.5b)

where hi(η) = 1 + ∂xiQi(x ) −
∑

j 6=i ∂xjQj(x ) and p̂(η, θ) = p(x , θ). When force

is added to the unperturbed system the hyperbolic stationary point of the equation

(4.1) became hyperbolic periodic solution of the equation (4.2) with period 2πw−1.

To standardize the location of periodic orbit and its local stable and unstable mani-

folds we use the following steps.

Standardization of periodic orbit

let µφ(θ, µ) = µφ(θ+2π, µ) be periodic solutions of the equation (4.5a). We proceed

to show that such solutions exist and unique with bounded C3 norm. The functions

φi for 1 ≤ i ≤ N should satisfy

w
dφi
dθ

= −αiφi − (1 + hi(µφ))(p̂i(µφ, θ)) (4.6)

So we have

φi(θ, µ) = e−αiw
−1(θ−θ0) − w−1

∫ θ

θ0

eαiw
−1(s−θ0)[1 + hi(µφ(s, µ))] · [p̂i(µφ(s, µ))]ds

Let θ = θ0 +2π. Using φi(θ0 +2π;µ) = φi(θ0, µ) for 1 ≤ i ≤ N , we get the following

φi(θ;µ) =
−w−1

1− e−2αiw−1π

∫ 2π

0

eαiw
−1(s−2π)[1 + hi(µφ(s+ θ);µ)] · [p̂i(µφ(s+ θ);µ)]ds

The existence and uniqueness of the functions φi follows from contraction mapping

theorem. The bound on the partial derivatives with respect to θ and µ obtained from

above equation by taking the partial derivatives. Now introducing a new coordinate
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change

X = ξ − µφ(θ;µ) (4.7)

which stabilizes the periodic orbit to a saddle point. In terms of this coordinates,

equation (4.5) has the following form

dXi

dt
= −αiXi + µFi(X , θ;µ) (1 ≤ i ≤ N)

dθ

dt
= w

(4.8)

where for each i

Fi(X , θ;µ) = −[hi(X+µφ)−hi(µφ)](p̂i(X+µφ))−(1+hi(µφ)(p̂i(X+µφ)−p̂i(µφ))

and are analytic with bounded C3 norm on

{(X , θ;µ) : ‖X ‖ < ε, θ ∈ S1, 0 ≤ µ ≤ µ0}

Flattening local manifolds

Let

Xn = µW s(X1 · · ·XN−1, θ;µ)

Xi = µW u
i (Xn, θ;µ) (1 ≤ i ≤ N)

be local stable and unstable manifolds of the periodic solution (X , θ) = (0 , wt)

of equation (4.8). We use following standard result about local manifolds.

Proposition 4.1.1. There exist ε > 0 and µ0 = µ0(ε) > 0 such that W u
i and W s

are analytically defined on

(−ε, ε)× S1 × [0, µ0]

and satisfy

W u
i (0, θ;µ) = 0 (1 ≤ i ≤ N) and W s(0, θ;µ) = 0
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with

‖W u
i ‖3 ≤ K (1 ≤ i ≤ N) and ‖W s‖3 ≤ K

Proof. See [31] for the proof. �

By definition W u
i for 1 ≤ i ≤ N − 1 and W u satisfies

−αiW u
i + Fi = w∂θW

u
i + ∂XN

W u
j · −αNXN + µFN (4.9a)

−αnW s + Fn = w∂θW
s +

N−1∑
i=1

(∂Xi
W s · −αiXi) + µFi (4.9b)

Now define new coordinates

xi = Xi −W u
i (1 ≤ i ≤ N − 1)

xn = Xn −W s

By using the equation (4.9) and new coordinates systems defined above (4.8) takes

the following form

dxi
dt

= (−αixi + µGi(x , θ;µ))xi (1 ≤ i ≤ N)

dθ

dt
= w

(4.10)

where for each Gi is a analytic function of all arguments defined on Uε × S1 × [0, µ0]

with C3 norm bounded by constant K.

This completes the proof of the Proposition 3.2.1.
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4.2 Error estimates

4.2.1 Proof of Proposition 3.2.3

Let z =
∏i=n

i=1 x
di
i .µ

dn+1 and let ∂zk denote the corresponding partial derivatives with

order k =
∑n+1

i=1 di. Since the C3 norms of the functions Gi are bounded on Uε×[0, µ0]

and Gi(x ) = gi(µx ), there exist K > 0 such that for every z of order ≤ n, we have

|∂kz (∂iθigi.z)| ≤ K (1 ≤ i ≤ n) (4.11)

on the domain D(t, q0, p).

C 0 estimates

Using the inequality (4.11) and Proposition 3.4, we have

‖wi‖C0(D(t,q0,p)) ≤ Kµ (1 ≤ i ≤ N) (4.12)

C 1 estimates

θt = θ0 + wt so ∂xi,0θ = 0. Now using (3.9), we have

∂xi,0wj = µt−1

∫ t

0

(
∑
k

∂xkgj.∂xi,0xk)ds (1 ≤ i, j ≤ N) (4.13)

and from equation (3.8), we have following for 1 ≤ i, j ≤ N

∂xi,0xj = txj∂xi,0wj (j 6= i) (4.14)

∂xi,0xi = txi∂xi,0wi +
xi
xi,0

(4.15)

using equations (4.13), (4.14), and, (4.15), we get

∂xi,0wj = µt−1

∫ t

0

(
∑
k

∂xkgj.xk.s∂xi,0wj)ds

+ µt−1

∫ t

0

∂xigi.
xi
xi,0

ds (1 ≤ i, j ≤ N) (4.16)
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from equation (4.11), we know that

|∂xigj.xi| < K (1 ≤ i, j ≤ N) (4.17)

using the above inquality in (4.16), we get the following

|∂xi,0wj| ≤ Kµt−1

∫ t

0

(
∑
j

|s∂xi,0wj|)ds+ K̂µ (1 ≤ i, j ≤ N) (4.18)

from which it follows that

|∂xi,0wj| < Kµ. (1 ≤ i ≤ N)

And for ∂θ0wi (1 ≤ i ≤ N) we use ∂θ0θ = 1. Computing the derivatives

∂θ0wi = µt−1

∫ t

0

∑
j

(∂xjgi.∂θ0xj) + ∂θ0gids (4.19)

using

∂θ0xj = txj∂θ0wj (1 ≤ i ≤ N)

in equation (4.19), we conclude

|∂θ0wi| < Kµ. (1 ≤ i ≤ N)

For ∂pwj we use the facts ∂pµ = µ, ∂pgj = µ∂µgj. By using the similar arguments

as above it follows that ∂pwi for 1 ≤ i ≤ N are bounded by K. Boundedness of ∂twi

for 1 ≤ i ≤ N follows from C0 estimates. Hence C1 estimates follows.

C 2 estimates

We use equation (4.13) to compute the 2nd derivatives.

∂2
xi,0xi,0

wj = µt−1

∫ t

0

(
∑
k

(
∑
l

∂2
xkxl

gj.∂xi,0xl)∂xi,0xk

+
∑
k

(∂xkgj.∂
2
xi,0xi,0

xk))ds (1 ≤ i, j ≤ N) (4.20)
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using (4.14), we have

∂2
xi,0xi,0

xj = t∂xi,0xj∂xi,0wj + txj∂
2
xi,0xi,0

wj (j 6= i) (4.21)

∂2
xi,0xi,0

xi = t∂xi,0xi∂xi,0wi + txi∂
2
xi,0xi,0

wi +
∂xi,0xi

xi,0
− xi
x2
i0

(4.22)

for 1 ≤ i, j ≤ N

using equation (4.21), and (4.22) in (4.20), we get

∂2
xi,0xi,0

wj = µt−1

∫ t

0

∑
k

(
∑
l

∂2
xkxl

gj.∂xi,0xl)∂xi,0xk)ds

+ µt−1

∫ ∑
k

(∂xkgj.t∂xi,0xk∂xi,0wk + txj∂
2
xi,0xi,0

wk)ds

+ µt−1

∫
∂xkgj.(

∂xi,0xi

xi,0
− xi
x2
i0

)ds (4.23)

for 1 ≤ i, j ≤ N

using equation (4.14), (4.11), and, C1 estimates on wi, 1 ≤ i ≤ N in equation

(4.23), we conclude that

|∂2
xi,0xi,0

wj| < Kµ. (1 ≤ i, j ≤ N)

Bounds for the other second derivatives are shown using similar procedure. And C3

estimates are also found in same spirit. This completes the proof.

4.2.2 Proof of Proposition 3.2.4

From Chapter 3 equation (3.2.5) we have stopping time

T (q0, p) =
1

β + wN(T (q0, p), q0;µ)
ln

(
ε0µ

−1

xN,0

)
=

1

β + wN
ln

(
ε0µ

−1

xN,0

)
(4.24)
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Let T (q0, p) = T . C0 estimates of T − 1
β

ln(ε0µ
−1) on the specified domain follows

from the fact that |wN | < Kµ and xN,0 ∈ Γ2.

C 1 estimates

From equation (4.24), we have

∂xi,0T = log(
εµ−1

xN,0
).

∂xi,0wN

(αn + wN)2
(1 ≤ i ≤ N − 1) (4.25)

and

∂xN,0
T = log(

εµ−1

xN,0
).

∂xN,0
wN

(αn + wN)2
+

1

(αn + wN)xN,0
(4.26)

using C0 estimates of T and C1 estimates of wN we have

|∂xi,0T | < K5. (1 ≤ i ≤ N) (4.27)

Similarly

|∂θT | < K5.

For µ derivative we use ∂pµ = µ

∂pT = log(
εµ−1

xN,0
)
∂pwN · µ

(αn + wN)2
+

1

αN + wN
(4.28)

by same reasons

|∂pT | < k5.

C1 estimates follows. C2 and C3 estimates are follows from computing the deriva-

tives and using C1 and C0 estimates of wN and T . This completes the proof of

Proposition 3.2.4.
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CHAPTER 5

Statistical Properties of Dynamical Systems

We study memory loss in nonequilibrium open dynamical systems. This work fits

into the larger study of statistical properties of dynamical systems. Memory loss in

this setting is an analog of decay of correlations. Transfer operators play a central

role in memory loss results.

5.1 Transfer operator

Let (X,T ) be a smooth dynamical system on a compact manifold X. The map T

associates to each measurable ϕ : X → R the function PT (ϕ) : X → R defined by

(PTϕ)(x) =
∑

y:T (y)=x

ϕ(y)

|T ′(y)|
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By change of variables it follows that for ϕ ∈ L∞ and ψ ∈ L1, we have∫
(ϕ ◦ T ) · ψ dx =

∫
ϕ · (PTψ) dx

If ϕ is the density of an absolutely continuous measure µ, then PT (ϕ) is the density

of the push-forward measure T∗µ defined by T∗µ(A) = µ(T−1(A)). We can view PT

as the action induced by T on the space M of absolutely continuous measures. It

has the following nice properties.

(a) PT is linear and positive.

(b) ‖PT (ϕ)‖1 ≤ ‖ϕ‖1 ∀ϕ ∈ L1.

(c) PTϕ = ϕ iff µ = ϕ dx is an absolutely continuous T -invariant measure.

(d) PTk = PkT ∀ positive integer k.

The map PT is called the transfer operator; It describes the evolution of initial densi-

ties under the dynamics. The transfer operator is used to find absolutely continuous

invariant measures and study statistical properties such as decay of correlations.

5.2 Statistical methods

One can use the following ideas when studying statistical properties of dynamical

systems.

(a) Spectral properties of the transfer operator and tools from functional anal-

ysis.

(b) Coupling techniques from probability theory. This involves matching and

evolution of densities under the transfer operator.
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(c) Hilbert or projective metric method. This uses a contraction theorem for

the Hilbert metric and gives explicit rates of correlation decay.

We use the Hilbert or projective metric method to study memory loss for nonequi-

librium open dynamical systems.

5.2.1 Convex cones and Hilbert metric

We start with definition of convex cone.

Definition 5.2.1. Let V be a vector space. A convex cone is a subset C ⊂ V with

the following properties.

(a) C ∩ −C = ∅

(b) γC = C for all γ > 0

(c) C is a convex set

(d) For all ϕ, ψ ∈ C, every c ∈ R, and every sequence (cn) in R such that cn → c,

if ϕ− cnψ ∈ C for all n, then ϕ− cψ ∈ C ∪ {0}.

Example 5.2.2. Let V = BV ([0, 1],R) be the space of all real valued functions

of bounded variation on the unit interval. Let C = {ϕ ∈ V : ϕ ≥ 0, ϕ 6≡ 0} and

Ca = {ϕ ∈ V : φ ≥ 0, ϕ 6≡ 0, var(ϕ) ≤ a
∫
ϕdµ} for a > 0. Then C and Ca are convex

cones.

Definition 5.2.3. Let C be a convex cone and let φ, ψ ∈ C. Let α(ϕ, ψ) =

inf {c > 0 : cϕ− ψ ∈ C} and β(ϕ, ψ) = sup {r > 0 : ψ − rϕ ∈ C}. The Hilbert metric
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dC is defined on C by

dC(ϕ, ψ) = log

(
α(ϕ, ψ)

β(ϕ, ψ)

)
.

Where we take α =∞ and β = 0 if the corresponding sets are empty.

Observe that dC is projective, i.e dC(λ1ϕ, λ2ψ) = dC(ϕ, ψ) for λ1, λ2 positive.

The following result due to G.Birkhoff asserts that in the current context, a positive

linear operator is a contraction in the Hilbert metric provided the diameter of the

image is finite.

Theorem 5.2.4 ([12]). Let V1 and V2 be vector spaces containing convex cones

C1 and C2, respectively. Let L : V1 → V2 be a positive linear operator, meaning

L(C1) ⊂ C2. Define

∆ = sup
ϕ∗,ψ∗∈L(C1)

dC2(ϕ
∗, ψ∗).

Then for all ϕ, ψ ∈ C1, we have

dC2(Lϕ,Lψ) 6 tanh

(
∆

4

)
dC1(ϕ, ψ).

This result allows one to obtain explicit, constructive bounds on rates of corre-

lation decay. It is natural to relate the Hilbert metric to some familiar norm. The

following proposition due to Liverani, Saussol and Vaienti describes the relation of

Hilbert metric to adapted norms on V.

Proposition 5.2.5. [53] Let C ⊂ V be a convex cone and let ‖·‖ be an adapted

norm on V; that is, a norm such that for all ϕ, ψ ∈ V, if ψ − ϕ ∈ C and ψ + ϕ ∈ C,

then ‖ϕ‖ 6 ‖ψ‖. Then for all ϕ, ψ ∈ C, we have

‖ϕ‖ = ‖ψ‖ =⇒ ‖ϕ− ψ‖ 6
(
edC(ϕ,ψ) − 1

)
‖ϕ‖ .
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Remark 5.2.1. ‖.‖1 is adapted with respect to the cone C of all nonnegative, bounded

variation functions in L1[0, 1].

The idea is to consider the cones defined in the example 5.2.2 as sets of density

functions on which transfer operators will act. We want to show that such actions

are contractions in the Hilbert metric and thereby develop results on memory loss.

5.3 Memory Loss

Memory is lost if the state of the system is largely independent of the initial state

as time increases. There are two ways memory loss can happen conceptually. First

trajectories may coalesce near a single trajectory as they evolve. The following

example illustrates the idea.

Example 5.3.1. Let X be a compact metric space and fi : X → X be a sequence

of uniformly Lipschitz maps with Lipschitz constant L < 1. The dynamical system

is defined by composition these maps. Since each map is contracting, all trajectories

coalesce into a small blob which continues to evolve with time.

A similar phenomenon occurs in random dynamical systems. An SDE of the form

dxt = a(xt) dt+
n∑
i=1

bi(xt) ◦ dW i
t

gives rise to a stochastic flow of diffeomorphisms in which almost every Brownian

path defines a time-dependent flow [42]. When all Lyapunov exponents are strictly

negative, trajectories coalesce near a unique equilibrium point that evolves in time

called a random sink [44]. This phenomenon occurs in dissipative systems such as the

66



5.3. MEMORY LOSS

Navier-Stokes system [57, 58] and in certain coupled oscillator networks modelling

neuronal activity [49].

In chaotic system memory is lost because of sensitive dependence on initial con-

ditions. Small errors in initial conditions can lead to substantial errors, so in practice

it is impossible to track specific trajectories in such systems. A statistical approach

is often considered. We say that an autonomous system exhibits memory loss in

the statistical sense if there exists a unique invariant measure with density ϕ such

that for any suitable absolutely continuous initial distribution with density ψ0, we

have ψt → ϕ as t → ∞, where ψt is the dynamical evolution of ψ0. We say a non-

equilibrium system loses memory in the statistical sense if for any two suitable

initial densities ϕ0 and ψ0, we have∫
|ϕt − ψt|dµ→ 0 as t→∞

where µ is a reference measure. In the following sections we discuss some existing

memory loss results on time-dependent systems.

5.3.1 Expanding maps

Definition 5.3.2. Let M be a compact connected Riemannian manifold with Rie-

mannian volume m. A smooth map f : M → M is said to be expanding if there

exists λ > 1 such that |Dxf(v)| ≥ λ|v| for every x ∈ M and every tangent vector v

at x.

Let fi : M → M be a sequence of expanding maps. The dynamical system is

defined by the composition of expanding maps. The map at time m, Fm, is defined
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by Fm = fm ◦ · · · ◦ f1. For λ > 0 and Γ ≥ 0 define

E(λ,Γ) = {f : M →M : ‖f‖C2 ≤ Γ, |Df(x)v| ≥ λ|v| ∀(x, v) ∈ TM}

and let the class of density functions be given by

D := {ϕ > 0 :

∫
ϕdm = 1, ϕ is Lipschitz}

Theorem 5.3.3. [68] Given λ > 1 and Γ > 0, there exist a constant Λ = Λ(λ,Γ) ∈

(0, 1) such that for any sequence fi ∈ E(λ,Γ) and any ϕ, ψ ∈ D, there exists Cϕ,ψ

such that ∫
|PFn(ϕ)− PFn(ψ)|dm ≤ Cϕ,ψΛn ∀n ≥ 0.

The proof uses a coupling technique.

5.3.2 Piecewise expanding maps in dimension one

Definition 5.3.4. Let S1 be the interval [0, 1] with end points identified. A map

f : S1 → S1 is said to be piecewise C2 expanding if there exists a finite partition Q

of S1 into intervals such that for each J ∈ Q

(a) f |J extends to a C2 mapping in a neighborhood of J

(b) there exist λ > 1 such that |f ′(x)| ≥ λ for all x ∈ J.

Iterates of a single piecewise C2 expanding map may not exhibit memory loss.

Indeed memory loss in this context is equivalent to mixing, and a single piecewise

C2 expanding map may need not even be ergodic. For this reason we introduce

enveloping maps.
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Definition 5.3.5. Let f be a piecewise C2 expanding map. For n ∈ N define

Qn :=
∨n
i=1 f

−(i−1)Q. We say f is enveloping if there is N ∈ Z+ such that for every

J ∈ Q we have
⋃
I∈QN |J f

N(int(I)) = S1.

One cannot expect memory loss out of an arbitrary composition of maps. We

therefore consider a natural topology on the space of piecewise C2 expanding maps.

Let g be a piecewise C2 expanding map. We say f is in the ε neighborhood Uε if the

following conditions are true.

1. the points of discontinuity of f and g are close.

2. f and g are C2 close in an appropriate sense.

The set of density functions considered in this case is

D = {ϕ ∈ BV(S1,R) : ϕ ≥ 0,

∫
S1
ϕ(x)dx = 1}

Theorem 5.3.6. [68] Let E be the set of piecewise C2 expanding maps with the

enveloping property and let g ∈ E. There exist Λ < 1 and ε > 0 such that for all

fi ∈ Uε(g) and ϕ, ψ ∈ D, there exists C(ϕ,ψ) > 0 such that for all n ∈ Z+, we have∫
S1
|PFn(ϕ)− PFn(ψ)|dm ≤ C(ϕ,ψ)Λ

n.

5.4 Conditional memory loss

Open dynamical systems are considered as systems with holes in the phase space.

The trajectories are considered until they fall into the holes. The study of statistical

properties of open systems was introduced by Pianigiani and Yorke in [73], wherein

69



5.4. CONDITIONAL MEMORY LOSS

they asked the following questions: Consider a particle on a billiard table whose

dynamics are chaotic. Suppose a small hole is made in the table.

1. What are the statistical properties in this system ?

2. If one starts with an initial distribution µ0 and µn represents the normalized

distribution at time n, does µn convergence to some µ independent of µ0?

Such a measure µ, if it is well-defined is called conditionally invariant measure. The

existence and statistical properties of such measure for equilibrium open systems have

been studied(see e.g. [52], [78]). For nonequilibrium systems, conditionally invariant

measures do not exist in general. We study memory loss in nonequilibrium open

context, a study motivated by following example.

Example 5.4.1. Open billiard with moving scatterers

Billiard dynamics are usually modelled by the motion of small particles inside a two-

dimensional torus. The dynamical system is defined by the trajectories made by

small particles in the domain X = T2−
⋃
i Γi,where the Γi are the convex subsets of

T2 which represent the boundaries of scatterers inside the billiard table. The motion

of the particle follows the rule that the angle of incidence is same as angle of the

reflection at collisions. The scatterers Γi are often thought of as fixed. However it is

more realistic to model them as slowly moving objects. This create nonequilibrium

billiard. If one additionally introduces holes (which may vary with time), one has a

nonequilibrium open billiard system.

In order to address the types of questions posed by Pianigiani and Yorke, we for-

mally introduce nonequilibrium open systems and an appropriate notion of memory
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loss.

5.4.1 Memory loss for open nonequilibrium systems

We now introduce nonequilibrium open dynamical systems. Let X be a Riemannian

manifold and let λ denote Riemannian volume (Lebesgue measure) on X. Consider

a sequence of maps (f̂i : X → X)∞i=1. For m ∈ N, define F̂m = f̂m ◦ · · · ◦ f̂1. We

call the sequence (F̂m)∞m=1 a nonequilibrium closed dynamical system. Unlike the

random dynamical systems setting, we do not assume that the f̂i are drawn from

a known distribution. Our setting is meant to model scenarios such as dynamical

processes with time-varying parameters or dynamics in time-varying environments.

An open system is produced by introducing holes. For j ∈ N, let Hj ⊂ X. We

call Hj the hole at time j. Informally, we create an open system from (F̂m)∞m=1 by

tracking trajectories until they fall into a hole. Once a trajectory falls into a hole, it

is deemed to have escaped. Formally, for m ∈ N define the time-m survivor set Sm

by

Sm = X \
m⋃
i=1

(F̂i)
−1(Hi).

Let Fm denote the restriction F̂m|Sm; that is, Fm is defined on points with trajectories

that have not fallen into a hole after m iterates. We call the pair ((Fm), (Hj))

a nonequilibrium open dynamical system. We define a notion of memory loss for

nonequilibrium open systems that is both statistical and conditional in nature as

follows:

Definition 5.4.2. Let ϕ0 and ψ0 be two initial probability densities defined on X.

Let ϕt and ψt denote the evolved densities under the action of the nonequilibrium
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open system. Since mass is allowed to escape through the holes, ϕt and ψt will not be

probability densities in general: we expect ‖ϕt‖L1(λ) < 1 and ‖ψt‖L1(λ) < 1. We say

that a nonequilibrium open system exhibits conditional memory loss in the statistical

sense if for all initial densities ϕ0 and ψ0 chosen from a suitable class, we have

lim
t→∞

∥∥∥∥∥ ϕt
‖ϕt‖L1(λ)

− ψt
‖ψt‖L1(λ)

∥∥∥∥∥
L1(λ)

= 0.

Ideally one explicitly estimates the rate of convergence as well.

We are motivated by the study of the statistical properties of open billiards with

slowly moving scatterers. In the following Chapter, we study a one-dimensional

setting as a nontrivial first step.
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CHAPTER 6

Memory Loss for Nonequilibrium Open Dynamical Systems

In this chapter we establish conditional memory loss in the statistical sense for

a class of nonequilibrium open systems generated by one-dimensional piecewise-

differentiable expanding Lasota-Yorke maps. We work in this setting because it

is simple enough to allow for a clear development of ideas yet complicated enough in

that it has some of the features of more realistic settings. Using convex cones and a

projective metric known as the Hilbert metric, we show that memory loss occurs at

an exponential rate and we explicitly estimate this rate.
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6.1. SETTING AND STATEMENT OF RESULTS

6.1 Setting and statement of results

6.1.1 Underlying closed dynamical systems

Let [0, 1] be the phase space on which our dynamical processes act. Let λ denote

Lebesgue measure on [0, 1].

Definition 6.1.1. For s < 1, let M(s,K2) denote the set of maps ĝ : [0, 1] → [0, 1]

that satisfy the following hypotheses:

(a) there exists a finite partition A(ĝ) of [0, 1] into subintervals such that for

each J ∈ A(ĝ), ĝ is C2 on J and extends to a C2 function on J ;

(b) maxJ∈A(ĝ) supx∈J |ĝ′(x)|−1 6 s;

(c) maxJ∈A(ĝ) supx∈J |ĝ′′(x)| 6 K2.

We now define δ-perturbations within M(s,K2). Let ĝ ∈ M(s,K2). Let Ω(ĝ) =

{0 = x1, . . . , xk = 1} be the set of partition points associated with A(ĝ) and define

dΩ(ĝ) = min16i6k−1 xi+1 − xi.

Definition 6.1.2. We say that f̂ ∈M(s,K2) is a δ-perturbation of ĝ ∈M(s,K2) if

(a) δ < 1
4
dΩ(ĝ);

(b) Ω(f̂) = {0 = y1, . . . , yk = 1} where |yi − xi| < δ for every 1 6 i 6 k;

(c) if ξf̂ ĝ maps each interval [xi, xi+1] affinely onto [yi, yi+1], then on every J ∈

A(ĝ), we have ∥∥∥f̂ ◦ ξf̂ ĝ − ĝ∥∥∥C2(J)
< δ.
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Let N(ĝ, δ; s,K2) denote the set of δ-perturbations of ĝ.

Remark 6.1.1. The set{
N(ĝ, δ; s,K2) : ĝ ∈M(s,K2), δ <

1

4
dΩ(ĝ)

}
is a basis for a topology on M(s,K2).

Iterates of a single map ĝ ∈ M(s,K2) do not necessarily exhibit memory loss.

Indeed, memory loss is equivalent to measure-theoretic mixing in this context, and

a single map ĝ ∈ M(s,K2) may not even be ergodic. For this reason, we formulate

an appropriate mixing condition.

Definition 6.1.3 (class E). Let ζ1 ∈ (0, 1) and ζ2 ∈ (1,∞). We say that ĝ : [0, 1]→

[0, 1] belongs to E(ζ1, ζ2) if the following hold.

(a) For every partition Q of [0, 1] into subintervals of equal length, there exists

a time E(Q, ζ1, ζ2) such that for every J1, J2 ∈ Q, we have

ζ1 <
λ(J1 ∩ ĝ−i(J2))

λ(J1)λ(J2)
< ζ2 (6.1)

for every i > E(Q, ζ1, ζ2).

(b) For every xj ∈ Ω(ĝ) and every i ∈ N, we have

dist

(
lim
z→x−j

ĝi(z),Ω(ĝ) \ {0, 1}

)
> 0, dist

(
lim
z→x+j

ĝi(z),Ω(ĝ) \ {0, 1}

)
> 0.

For xj = 0 (xj = 1), only the limit from the right (left) is considered.
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6.1.2 Nonequilibrium open dynamical systems

Start with a ‘base map’ ĝ ∈ M(s,K2). Let δ > 0 be small and consider a sequence

of maps (f̂i)
∞
i=1 in N(ĝ, δ; s,K2). For m ∈ N, let F̂m = f̂m ◦ · · · ◦ f̂1. We call the

sequence (F̂m)∞m=1 a nonequilibrium closed dynamical system.

We now introduce holes. For j ∈ N, let Hj ⊂ [0, 1] denote the hole at time j.

We assume that Hj consists of at most L pairwise-disjoint open subintervals Hj,k of

[0, 1]. For m ∈ N, define

Sm = [0, 1] \
m⋃
i=1

(F̂i)
−1(Hi).

We call Sm the time-m survivor set. Let Fm denote the restriction F̂m|Sm. We call

the pair ((Fm), (Hj)) a nonequilibrium open dynamical system.

6.1.2.1 Densities and transfer operators

Let BV([0, 1],R) denote the space of real-valued functions of bounded variation on

[0, 1]. The evolution of probability densities in BV([0, 1],R) under the action of a

nonequilibrium open dynamical system ((Fm), (Hj)) is described by the family (LFm)

of transfer operators defined by

LFm(ϕ)(x) =
∑

z:Fm(z)=x

ϕ(z)

|F ′m(z)|

(LFm(ϕ)(x) = 0 if F−1
m (x) = ∅). Of course, we expect to see ‖LFm(ϕ)‖L1(λ) < ‖ϕ‖L1(λ)

in general, since mass will escape through the holes. We define operators RFm by

renormalizing:

RFm(ϕ) =
LFm(ϕ)

‖LFm(ϕ)‖L1(λ)

.
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Notice that RFm is not linear. We are interested in the action of the sequence (RFm)

on the space

D =
{
ϕ ∈ BV([0, 1],R) : ϕ > 0, ‖ϕ‖L1(λ) = 1

}
.

6.1.2.2 Main theorem

Theorem 6.1.4. Let ĝ ∈ M(s,K2) ∩ E(ζ1, ζ2) and let L ∈ N. There exist δ0 > 0,

ε0 > 0, and Λ < 1 such that the following holds. Let (f̂i)
∞
i=1 be any sequence of

maps in N(ĝ, δ0; s,K2) and let (Hj)
∞
j=1 be any sequence of holes such that Hj consists

of at most L pairwise-disjoint open intervals and λ(Hj) 6 ε0 for every j ∈ N.

The resultant nonequilibrium open dynamical system ((Fm), (Hj)) exhibits conditional

memory loss in the following sense. There exists a convex cone Ca ⊂ BV([0, 1],R)

and a constant C1 > 0 such that for every ϕ, ψ ∈ D ∩ Ca, we have

‖RFm(ϕ)−RFm(ψ)‖L1(λ) 6 C1Λm (6.2)

for all m ∈ N.

Remark 6.1.2. See Section 6.2.2 and (6.15) for the definition of Ca.

6.2 Proof of Theorem

6.2.1 A Lasota-Yorke inequality

We introduce several useful partitions of [0, 1]. Let Z
(n)
1 = Z

(n)
1 (f̂1, . . . , f̂n) denote

the dynamical partition for F̂n. Let Z
(n)
2 be the coarsest refinement of Z

(n)
1 such

that every element of Z
(n)
1 is divided into subintervals of equal length and we have
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λ(J) 6 ns−1K−1
2 for every J ∈ Z

(n)
2 . For J ∈ Z

(n)
2 , we have

Var(|F̂ ′n|−1, J) =

∫
J

∣∣∣∣∣ F̂ ′′n (x)

(F̂ ′n(x))2

∣∣∣∣∣ dx 6 K2s
2λ(J) 6 sn. (6.3)

Let Z
(n)
3 be the coarsest refinement of Z

(n)
2 such that for every J ∈ Z

(n)
3 , we have

J ⊂ Sn or J ∩ Sn = ∅.

Proposition 6.2.1. Let θ ∈ (s, 1) and (f̂i)
∞
i=1 be any sequence of maps in M(s,K2)

and let (Hj)
∞
j=1 be any sequence of holes such that Hj consists of at most L pairwise-

disjoint open intervals. let N1 ∈ N be such that

θN1 > 6sN1(LN1 + 1). (6.4)

For every k ∈ N and every nonnegative ϕ ∈ BV([0, 1],R), we have

Var
(
LFkN1

(ϕ), [0, 1]
)
6 θkN1 Var(ϕ, [0, 1])

+

(
(1− θN1)−1 · 5sN1(LN1 + 1) sup

Z̃∈Z(N1)
2

λ(Z̃)−1

)
‖ϕ‖L1(λ) .

(6.5)

Proof of Proposition 6.2.1. Computing LFn(ϕ), we have

LFn(ϕ) =
∑
Z∈Z(n)

3
Z⊂Sn

LFn(ϕ1Z) (6.6)

=
∑
Z∈Z(n)

3
Z⊂Sn

(ϕ1Z · |F ′n|−1) ◦ (Fn|Z)−1. (6.7)

Therefore

Var(LFn(ϕ), [0, 1]) 6
∑
Z∈Z(n)

3
Z⊂Sn

Var
(
(ϕ1Z · |F ′n|−1) ◦ (Fn|Z)−1, [0, 1]

)
. (6.8)
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We estimate each term in the sum on the right side of (6.8). For Z ⊂ Z
(n)
3 such that

Z ⊂ Sn, let Z̃ ∈ Z
(n)
2 be such that Z ⊂ Z̃. For any such Z, we have

Var
(
(ϕ1Z · |F ′n|−1) ◦ (Fn|Z)−1, [0, 1]

)
6 Var

(
ϕ|F ′n|−1, Z̃

)
+ 2 sup

Z̃

ϕ|F ′n|−1

6 3 Var
(
ϕ|F ′n|−1, Z̃

)
+ 2 inf

Z̃
ϕ|F ′n|−1

6 3

[
sn Var(ϕ, Z̃) + (sup

Z̃

ϕ) Var
(
|F ′n|−1, Z̃

)]
+ 2 inf

Z̃
ϕ|F ′n|−1

6 3

[
sn Var(ϕ, Z̃) + sn(sup

Z̃

ϕ)

]
+ 2sn inf

Z̃
ϕ

6 6sn Var(ϕ, Z̃) + 5sn inf
Z̃
ϕ. (6.9)

Next observe that for every Z̃ ∈ Z
(n)
2 we have

#
{
Z ∈ Z

(n)
3 : Z ⊂ Sn and Z ⊂ Z̃

}
6 Ln+ 1. (6.10)

Estimates (6.8), (6.9), and (6.10) imply

Var(LFn(ϕ), [0, 1]) 6 (Ln+ 1)

(
6sn Var(ϕ, [0, 1]) + 5sn( sup

Z̃∈Z(n)
2

λ(Z̃)−1) ‖ϕ‖L1(λ)

)
.

(6.11)

We choose N1 ∈ N such that

θN1 > 6sN1(LN1 + 1)

(see (6.4)), yielding

Var(LFN1
(ϕ), [0, 1]) 6 θN1 Var(ϕ, [0, 1]) + 5sN1(LN1 + 1)( sup

Z̃∈Z(N1)
2

λ(Z̃)−1) ‖ϕ‖L1(λ) .

(6.12)

We obtain the Lasota-Yorke estimate (6.5) by iterating (6.12). �
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6.2.2 Parameter selection

We prove Theorem 6.1.4 by studying the action of {LFm} on a suitable convex cone

Ca of functions inside BV([0, 1],R). We choose Q (recall Definition 6.1.3(a)) and

introduce σ, T , and a such that (P1)–(P3) are simultaneously satisfied.

(P1) 0 < σ < 1

(P2) T ∈ N: choose such that T is a positive integer multiple of N1, T >

E(Q, ζ1, ζ2), and θT < 1. In view of (6.5), define

CLY = (1− θN1)−1 · 5sN1(LN1 + 1) sup
f̂1,...,f̂N1

∈N(ĝ,δ0;s,K2)

sup
Z̃∈Z(N1)

2

λ(Z̃)−1.

Definition 6.1.3(b) implies that CLY <∞ if δ0 is sufficiently small.

(P3) a > 0: the aperture of the cone Ca. We choose a such that

ζ1 − ζ2a · diam(Q) > 0, (6.13)

aθT + CLY

ζ1 − ζ2a · diam(Q)
6 σa. (6.14)

To see that (P1)–(P3) may be satisfied simultaneously, proceed in the following

order:

(a) Choose T sufficiently large so that θT/(ζ1/2) < σ.

(b) Choose a sufficiently large so that

aθT + CLY

ζ1/2
6 σa.

(c) Choose diam(Q) sufficiently small so that ζ2a · diam(Q) 6 ζ1/2.

(d) Increase T (if necessary) so that T > E(Q, ζ1, ζ2).
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6.2.3 Invariance of a suitable convex cone

Define

Ca =
{
ϕ ∈ L1(λ) : ϕ > 0, ϕ 6≡ 0, Var(ϕ) 6 aE[ϕ|Q]

}
. (6.15)

We study the action of LFm on Ca. For positive integers m > i, define

F̂m,i = f̂m ◦ f̂m−1 ◦ · · · ◦ f̂i, Fm,i = fm ◦ fm−1 ◦ · · · ◦ fi,

where fk is the open system corresponding to f̂k (i 6 k 6 m).

Lemma 6.2.2. There exist δ0 > 0 and ε0 > 0 such that for every ϕ ∈ Ca and i ∈ N

we have

(ζ1 − ζ2a · diam(Q))

∫
[0,1]

ϕ dλ 6 E[LFi+T−1,i
(ϕ)|Q] 6 ζ2(1 + a · diam(Q))

∫
[0,1]

ϕ dλ.

(6.16)

Proof of Lemma 6.2.2. First, choose δ0 sufficiently small so that (6.1) holds for F̂i+T−1,i

for all i ∈ N. Second, choose ε0 sufficiently small so that (6.1) holds for Fi+T−1,i for

all i ∈ N.

Write F = Fi+T−1,i. For x ∈ [0, 1], let Q(x) denote the element of Q that contains

x. We have

E[LF (ϕ)|Q](x) =
1

λ(Q(x))

∫
Q(x)

LF (ϕ) dλ

=
1

λ(Q(x))

∫
F−1(Q(x))

ϕ dλ

=
1

λ(Q(x))

∑
Q′∈Q

∫
Q′∩F−1(Q(x))

ϕ(z) dλ(z).

(6.17)
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Bounding ϕ from below, for every z ∈ Q′ ∩ F−1(Q(x)) we have

ϕ(z) > inf
y∈Q′

ϕ(y)

> sup
y∈Q′

ϕ(y)− Var(ϕ,Q′)

>
1

λ(Q′)

∫
Q′
ϕ dλ− Var(ϕ,Q′)

=
1

λ(Q′)

(∫
Q′
ϕ dλ− λ(Q′) Var(ϕ,Q′)

)
.

(6.18)

Using (6.17), (6.18), and (6.1), we have

E[LF (ϕ)|Q](x) >
1

λ(Q(x))

∑
Q′∈Q

∫
Q′∩F−1(Q(x))

1

λ(Q′)

(∫
Q′
ϕ dλ− λ(Q′) Var(ϕ,Q′)

)
dλ(z)

=
∑
Q′∈Q

λ(Q′ ∩ F−1(Q(x)))

λ(Q(x))λ(Q′)

(∫
Q′
ϕ dλ− λ(Q′) Var(ϕ,Q′)

)
> ζ1

∫
[0,1]

ϕ dλ− ζ2 · diam(Q) · Var(ϕ, [0, 1])

> ζ1

∫
[0,1]

ϕ dλ− ζ2a · diam(Q) ·
∫

[0,1]

ϕ dλ

= (ζ1 − ζ2a · diam(Q))

∫
[0,1]

ϕ dλ.

(6.19)

The upper bound

E[LF (ϕ)|Q](x) 6 ζ2(1 + a · diam(Q))

∫
[0,1]

ϕ dλ

follows from an analogous line of reasoning. �

Proposition 6.2.3. In the setting of Lemma 6.2.2, for every i ∈ N we have

LFi+T−1,i
(Ca) ⊂ Cσa.
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Proof of Proposition 6.2.3. Write F = Fi+T−1,i and let ϕ ∈ Ca. Using (6.5) and (6.16),

we have

Var(LF (ϕ), [0, 1]) 6 θT Var(ϕ, [0, 1]) + CLY ‖ϕ‖L1(λ) (6.20)

6 (aθT + CLY) ‖ϕ‖L1(λ) (6.21)

6
aθT + CLY

ζ1 − ζ2a · diam(Q)
E[LF (ϕ)|Q] (6.22)

6 σaE[LF (ϕ)|Q]. (6.23)

�

6.2.4 Applying Hilbert metric method

Let dCa be the Hilbert metric defined in section 5.2.1 from chapter 4.

Proposition 6.2.4. Assume the setting of Proposition 6.2.3. For every i ∈ N and

for all ϕ, ψ ∈ Ca, we have

dCa(LFi+T−1,i
(ϕ),LFi+T−1,i

(ψ)) 6 ∆0 := 2 log

(
1 + σ

1− σ

)
+2 log

(
ζ2(1 + a · diam(Q))

ζ1 − ζ2a · diam(Q)

)
.

(6.24)

Proof of Proposition 6.2.4. Let ϕ∗, ψ∗ ∈ Cσa. Suppose c > 0. We have

Var(cϕ∗ − ψ∗, [0, 1]) 6 cVar(ϕ∗, [0, 1]) + Var(ψ∗, [0, 1]) (6.25)

6 cσaE[ϕ∗|Q] + σaE[ψ∗|Q]. (6.26)

Therefore cϕ∗ − ψ∗ ∈ Ca if

cσaE[ϕ∗|Q] + σaE[ψ∗|Q] 6 aE[cϕ∗ − ψ∗|Q].
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This is equivalent to (
1 + σ

1− σ

)(
E[ψ∗|Q]

E[ϕ∗|Q]

)
6 c. (6.27)

Arguing analogously, for r > 0 we have ψ∗ − rϕ∗ ∈ Ca if

r 6

(
1− σ
1 + σ

)(
E[ψ∗|Q]

E[ϕ∗|Q]

)
. (6.28)

Bounds (6.27) and (6.28) imply

dCa(ϕ∗, ψ∗) 6 log

((
1 + σ

1− σ

)
sup
x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)
− log

((
1− σ
1 + σ

)
inf

x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)

6 2 log

(
1 + σ

1− σ

)
+ log

(
sup
x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)
− log

(
inf

x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)
. (6.29)

Proposition 6.2.3 and estimates (6.16) and (6.29) imply (6.24) with

∆0 = 2 log

(
1 + σ

1− σ

)
+ 2 log

(
ζ2(1 + a · diam(Q))

ζ1 − ζ2a · diam(Q)

)
.

�

Corollary 6.2.5 (corollary of Proposition 6.2.4). Assume the setting of Proposi-

tion 6.2.4. For every i ∈ N and for all ϕ, ψ ∈ Ca, we have

dCa(LFi+T−1,i
(ϕ),LFi+T−1,i

(ψ)) 6 tanh

(
∆0

4

)
dCa(ϕ, ψ). (6.30)

Proof of Corollary 6.2.5. The result follows directly from Birkhoff Theorem 5.2.4

from chapter 4 and Proposition 6.2.4. �

We are nearly in position to derive (6.2). One additional ingredient is needed: a

Lipschitz estimate involving R.
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Lemma 6.2.6. Assume the setting of Corollary 6.2.5. There exists CLip > 0 such

that for all integers n satisfying 1 6 n < T , for every i ∈ N, and for all ϕ, ψ ∈ D∩Ca,

we have ∥∥RFi+n−1,i
(ϕ)−RFi+n−1,i

(ψ)
∥∥
L1(λ)

6 CLip ‖ϕ− ψ‖L1(λ) . (6.31)

Proof of Lemma 6.2.6. Write F = Fi+n−1,i and ‖·‖ = ‖·‖L1(λ). Let ϕ, ψ ∈ D ∩ Ca.

We have

‖RF (ϕ)−RF (ψ)‖ =

∥∥∥∥ LF (ϕ)

‖LF (ϕ)‖
− LF (ψ)

‖LF (ψ)‖

∥∥∥∥ (6.32)

=

∥∥∥∥ LF (ϕ)

‖LF (ϕ)‖
− LF (ϕ)

‖LF (ψ)‖
+
LF (ϕ)

‖LF (ψ)‖
− LF (ψ)

‖LF (ψ)‖

∥∥∥∥ (6.33)

6
|‖LF (ψ)‖ − ‖LF (ϕ)‖|
‖LF (ϕ)‖ · ‖LF (ψ)‖

‖LF (ϕ)‖ (6.34)

+
1

‖LF (ψ)‖
‖LF (ϕ)− LF (ψ)‖ (6.35)

6 2(ζ1 − ζ2a · diam(Q))−1 ‖LF (ϕ)− LF (ψ)‖ (6.36)

6 2(ζ1 − ζ2a · diam(Q))−1 ‖ϕ− ψ‖ (6.37)

using (6.16). Set

CLip = 2(ζ1 − ζ2a · diam(Q))−1.

�

We now derive (6.2). Write ‖·‖1 for the L1 norm. Let ϕ, ψ ∈ D∩Ca. Let m ∈ Z+

and write m = kT + n where k ∈ Z+ and 0 6 n < T . If k > 1, by using (6.31),

Proposition 5.2.5, (6.30), and (6.24) respectively, we have
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‖RFm(ϕ)−RFm(ψ)‖1 6 CLip ‖RFkT
(ϕ)−RFkT

(ψ)‖1

6 CLip (exp (dCa(RFkT
(ϕ),RFkT

(ψ)))− 1)

= CLip (exp (dCa(LFkT
(ϕ),LFkT

(ψ)))− 1) (projectivity)

6 CLip

(
exp

((
tanh

(
∆0

4

))k−1

dCa(LFT
(ϕ),LFT

(ψ))

)
− 1

)

6 CLip∆0e
∆0

(
tanh

(
∆0

4

))k−1

6 CLip∆0e
∆0 tanh−2

(
∆0

4

)((
tanh

(
∆0

4

))1/T
)m

Consequently, for any m ∈ Z+ we have

‖RFm(ϕ)−RFm(ψ)‖1 6 CLip max {∆0, 1} e∆0 tanh−2

(
∆0

4

)((
tanh

(
∆0

4

))1/T
)m

.

This establishes (6.2) with

C1 = CLip max {∆0, 1} e∆0 tanh−2

(
∆0

4

)
(6.38)

Λ =

(
tanh

(
∆0

4

))1/T

. (6.39)
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CHAPTER 7

Discussion

We conclude the dissertation with some observations and possible future directions.

Following future directions can arise from the first part of the dissertation.

• Our results apply to heteroclinic cycles wherein each saddle has a one-dimensional

unstable manifold. What happen if saddles has more than one unstable manifolds?

• Do our results extend to infinite-dimensional dynamical systems?

• Can we formulate results for heteroclinic networks?

• We assume the existence and form of the global map in our settings. There can

be detail study of existence and explicit computation of global maps relating

to forcing functions in general. Numerical algorithms may be useful in this
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context.

Our work on conditional memory loss suggests the follwing future directions

• Formulation of the conditional memory loss idea in other different interesting

settings such as nonuniformly hyperbolic systems, skew product and lattice

systems.

• Extension of the result to higher dimensions where the geometry is complicated

due to presence of holes in the domain.
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