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Chapter 1

Probability in dynamics

1.1 Observations of dynamical systems as stochas-

tic processes

1.1.1 Random variables and stochastic processes

Definition 1.1.1. A random variable is a function X : Ω → Rn on a prob-
ability space (Ω, P ).

Definition 1.1.2. A stochastic process is a sequence Xn of random variables.

Definition 1.1.3. The distribution function of a random variable is F (x) =
P (X ≤ x) = P (ω ∈ Ω : X(ω) ≤ x).

Definition 1.1.4. A stochastic process is stationary if for every k ≥ 0 the
sequence (Xk, Xk+1, . . . , Xk+n) has the same distribution as (X1, X2, . . . , Xn).

Example 1.1.5. The normal (or Gaussian) distribution N(µ, σ) has distri-
bution function

F (x) =
1√
2πσ

∫ x

−∞
e
−(t−µ)2

2σ dt.

Example 1.1.6. The exponential distribution has distribution function F (x) =∫ x
0
λe−λtdt.

Suppose T : X → X is a map on a probability space (X,µ) that preserves
µ: µ(T−1A) = µ(A) for all measurable A ⊂ X.

7



8 CHAPTER 1. PROBABILITY IN DYNAMICS

Example 1.1.7. X = S1, T (x) = 2x mod 1, with µ = Lebesgue measure.

Definition 1.1.8. Independent identically distributed random variables are
ones for which all Xi have the same distribution, and P (Xi ∈ Ai, Xj ∈ Aj) =
P (Xi ∈ Ai)P (Xj ∈ Aj) for all i 6= j.

Suppose φ : X → R is an observable on X. Then Xn = φ ◦ T n is a
stationary stochastic process; in general it is not independent in general.
Nevertheless, in systems such as the doubling map that exhibit ‘enough’ ex-
pansion, the process Xn often satisfies statistical laws such as the central
limit theorem. The mechanism driving this is decay of correlations. In these
lectures we examine how decay of correlations can be used to establish var-
ious statistical properties; the lectures on hyperbolicity, spectral gap, and
cone techniques examine various ways to establish decay of correlations for
examples of interest.

The first main result is the strong law of large numbers.

Theorem 1.1.9. If {Xi} are i.i.d. and E[Xi] <∞ then

lim
n→∞

1

n

n∑
i=1

Xi = E[X1]

for P -almost every x ∈ Ω.

In fact, the strong law of large numbers holds in a more general set-
ting that does not require independence of the Xn. Recall that a measure-
preserving transformation T is ergodic if every T -invariant set A (that is,
T−1A = A) has µ(A) = 0 or 1. Birkhoff’s ergodic theorem says that T is
ergodic if and only if for all φ ∈ L1(µ) limn→∞

1
n

∑n−1
i=0 φ◦T i(x)→

∫
φdµ. In

other words, the strong law of large numbers holds for Xn = φ ◦ T n.
The next main result for i.i.d. variables is the central limit theorem.

Theorem 1.1.10. If Xi are i.i.d. and E[X2
i ] <∞ then

lim
n→∞

Sn(x)− nE[X1]√
nV ar[X1]

dist−→ N(0, 1),

where Sn(x) = X1(x) + · · · + Xn(x) and V ar[X] = E[X − E[x]]2. In this
sense, the normal distribution with mean zero and variance one is a universal
attractor.
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This result does not hold as broadly as the law of large numbers; one can
easily produce examples of ergodic transformations that do not satisfy the
CLT. Nevertheless, we will see that the CLT continues to hold for observa-
tions of a broad class of systems.

Example 1.1.11. The Manneville-Pomeau map is defined as

T (x) =

{
x(1 + (2x)α) if x ∈

[
0, 1

2

]
2x− 1 if x ∈

(
1
2
, 1
]

for parameter α ∈ (0, 1). As T ′(0) = 1, zero is an “indifferent fixed point” of
T . If one chose α = 0, T would degenerate to the doubling map.

Note that T is uniformly expanding away from the neutral fixed point at
0, so whether or not a trajectory appears ‘chaotic’ depends on whether or
not we are currently close to this fixed poin. The Manneville-Pomeau map
is used as a model of turbulence in fluid as it alternates between “laminar”
and “bursting” behavior. Such alternation is call intermittent behavior.

Such intermittent-type maps have an absolutely continuous invariant mea-
sure with density dµ

dx
= x−α near zero. If α = 1, no such probability measure

exists; only an infinite measure may be found. Moreover if α ∈
(
0, 1

2

)
then

one can obtain the central limit theorem for Hölder continuous functions. If
α ∈

(
1
2
, 1
)

then one obtains “stable laws”.

1.1.2 Decay of correlation and mixing

Now we describe some conditions that are used to establish results like the
CLT.

Definition 1.1.12. A dynamical system is mixing if

lim
n→∞

∣∣µ(T−nA ∩B)− µ(A)µ(B)
∣∣→ 0 (1.1)

for all measurable A,B ⊂ X. Alternatively, we can say that the proportion
of the image of A in B is the same as the measure of A:

lim
n→∞

µ(T−nA ∩B)

µ(B)
= µ(A).

This is a stronger requirement than ergodicity.
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The idea is to quantify the rate of mixing; that is, the rate at which the
quantity in (1.1) converges to 0. We must do this carefully, though. If we let
A,B be any measurable sets, then the convergence can happen arbitrarily
slowly. A better way is to reformulate (1.1) in terms of functions: mixing is
equivalent to the condition that∣∣∣∣∫ φψ ◦ T ndµ−

∫
φdµ

∫
ψdµ

∣∣∣∣→ 0

for every φ, ψ ∈ L2(µ). The convergence can still happen arbitrarily slowly
if we do not place further restrictions on φ, ψ. So the goal is the following:
produce Banach spaces Bα, Bβ such that when φ ∈ Bα and ψ ∈ Bβ, the
quantity above decays quickly. This decay plays the role of ‘asymptotic
independence’ of time series of observables.

The main techniques for establishing decay of correlations are spectral
theory (via transfer operatores), convex cones, and coupling. We will discuss
the first two of these in the other lectures.

Example 1.1.13. For intermittent maps, if φ is Lipschitz, ψ ∈ L∞, then∣∣∣∣∫ φψ ◦ T nαdµ−
∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ Cn1− 1
α ||φ||Lip||ψ||L1(µ)

where C is independent of φ, ψ. This is a sharp bound.

Example 1.1.14. For the doubling map, if φ ∈ BV [0, 1], ψ ∈ L1(m) then∣∣∣∣∫ φψ ◦ T ndµ−
∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ Cθn||φ||BV ||ψ||L1(µ)

for θ ∈ (0, 1).

1.1.3 Return-time statistics

Suppose (T,X, µ) is a measure-preserving transformation. Poincare recur-
rence implies that for measurable A ⊂ X, T nx ∈ A infinitely often for
µ-almost every x ∈ A.

Theorem 1.1.15. Kac’s theorem states that if τA(x) = min{n > 1 : T nx ∈
A, x ∈ A} then E[τA] = 1

µ(A)
.
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Exponential return times laws: let An be a sequence of nested measurable
sets based a point p ∈ X. Let τAn(x) be the first return time of x ∈ An to
An.

Definition 1.1.16. T has exponential return time if

lim
n→∞

µ
(
x ∈ An : τAn(x) > t

µ(An)

)
µ(An)

= e−t.

For doubling maps, exponential return time holds for non-periodic points
only. This partitions points in [0, 1] into periodic and non-periodic; in par-
ticular, there is no Cantor set where this property fails.

1.2 Martingale methods

1.2.1 Conditional expectation

See also “Martingale Limit Theory and its Applications,” by P. Hall and
C.C. Heyde. Let (Ω, P ) be a probability space with Borel σ-algebra B. Let
F ⊂ B be a sub-σ-algebra.

Example 1.2.1. For the doubling map, F1 = T−1B, and F2 = T−2B (
T−1B ( B. Each is coarser than the next, as elements require more connected
components. A function φ : Ω → R is F -measurable if φ−1(a, b) ∈ F for all
intervals (a, b). For example,

φ(x) =

{
1 x ∈ [0, 1/2]

−1 x ∈ (1/2, 1]

is not T−1B-measurable, since φ−1((1− ε, 1 + ε)) = [0, 1/2] /∈ T−1B.

Assume
∫
|φ|dP < ∞, so φ is integrable. The conditional expectation

of φ given F , written E[φ|F ], is any random variable Z (defined uniquely
P -almost everywhere) that is F -measurable and∫

A

E[φ|F ]dP =

∫
A

φdP

for all A ∈ F . In particular, E[Z] ≤ E[φ]. We also have linearity of expec-
tation given F .
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Example 1.2.2. If φ is F -measurable, then E[φ|F ] = φ.

Example 1.2.3. If φ is independent of F (so that E[φIA] = E[φ]E[IA] =
E[φ]P (A) for all A ∈ F) then E[φ|F ] = E[φ]. We can check by examining
integrals: ∫

A

φdP =

∫
IAφdP = E[φ]P (A) =

∫
A

E[φ]dP.

Example 1.2.4. Suppose {Ωi} is a countable partition of Ω such that
P (Ωi) > 0 for all i. Let F be the sub-σ-algebra generated by {Ωi}. Then
E[φ|F ] must be constant on each Ωi, with E[φ|F ] = 1

P (Ωi)

∫
Ωi
φdP . Indeed,

by linearity of expectation it suffices to check that∫
Ωi

(
1

P (Ωi)

∫
Ωi

φdP

)
=

1

P (Ωi)

∫
Ωi

∫
Ωi

φdPdP =

∫
Ωi

φdP.

An important application of conditional expectation to dynamics is the
following: if P is the “transfer operator” and U is the Koopman operator
U : φ 7→ φ ◦ T , then

UPφ = (Pφ) ◦ T = E[φ|T−1B].

1.2.2 Martingales

Definition 1.2.5. Let Fn be an increasing sequence of σ-algebras (so that
they become finer and finer). A sequence of random variables Sn is called
a martingale with respect to the filtration {Fn} if E[|Sn|] < ∞, Sn is Fn-
measurable, and E[Sn+1|Fn] = Sn.

Often, Fn is the σ-algebra generated by S1, . . . , Sn. Then one can think
of Sn+1 as being a “fair game” given the first n outcomes.

Example 1.2.6. If Xn are i.i.d. tosses of a fair coin, and Sn the number of
heads after n tosses, then Fn = σ(S1, . . . , Sn) is generated by the n-cylinder
sets of a shift on {0, 1}, and Sn is a martingale with respect to Fn.

The above example holds whenever Xn are IID with E[Xn] = 0:

E[Sn+1|Fn] = E[Sn +Xn+1|Fn] = E[Sn|Fn] + E[Xn+1|Fn] = Sn + 0 = Sn.

Given a martingale Sn we call the terms Sn+1−Sn the martingale differ-
ences. It is not always the case that martingale differences are IID, as they
were in the previous example.
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Example 1.2.7. Polya’s urn is a stochastic process defined as follows. Con-
sider an urn containing some number of red and blue balls. At each step, a
single ball is drawn at random from the urn, and then returned to the urn,
along with a new ball that matches the colour of the one drawn. Let Yn be
the fraction of the balls that are red after the nth iteration of this process.

Clearly the sequence of random variables Yn is neither independent nor
identically distributed. However, it is a martingale, as the following compu-
tation shows: suppose that at time n there are p red balls and q blue balls
in the urn. (This knowledge represents knowing which element of Fn we are
in.) Then at time n + 1, there will be p + 1 red balls with probability p

p+q
,

and p red balls with probability q
p+q

. Either way, there will be p+ q+ 1 total
balls, and so the expected fraction of red balls is

E[Yn+1|Fn] =
p

p+ q
· p+ 1

p+ q + 1
+

q

p+ q
· p

p+ q + 1

=
p(p+ q + 1)

(p+ q)(p+ q + 1)
=

p

p+ q
= Yn.

In fact for our purposes the following version of a martingale will be the
most useful.

Definition 1.2.8. Let Fn be a decreasing sequence of σ-algebras. A sequence
Sn of random variables is a reverse martingale if Sn is measurable with respect
to Fn, E|Sn| <∞, and E[Sn|Fm] = Sm when n < m.

Although martingale differences need not be IID, they still satisfy the
central limit theorem.

Theorem 1.2.9. (Liverani, Neveu) Let {Xn}n≥1 be a stationary ergodic se-
quence of martingale or reverse martingale differences with respect to the
filtration {Fn}. IF X1 ∈ L2(P ), E[X1] = 0, then

lim
n→∞

1

σ
√
n

n∑
i=1

Xi →dist N(0, 1)

where σ = E[X2
1 ].

1.2.3 Back to dynamics; martingale approximation

Now we discuss how time series of dynamical systems can be approximated
by martingales provided correlations decay quickly enough. This allows us to
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deduce the CLT for a dynamical system as a consequence of Theorem 1.2.9.
The ideas presented here were introduced by Gordin in 1969.

Suppose T : X → X is ergodic with respect to µ, φ : X → R. The idea
is to decompose φ ◦ T i by

φ ◦ T i = χ ◦ T i + g ◦ T i − g ◦ T i+1

and Sn =
∑n

i=1 χ◦T i, where χ is chosen such that Sn is a (reverse) martingale.
Then summing the above we get

n∑
j=1

φ ◦ T j =

(
n∑
j=1

χ ◦ T j
)

+ g ◦ T − g ◦ T n+1. (1.2)

Divide by
√
nσ and the g terms will vanish in the limit, so that the cen-

tral limit theorem for φ ◦ T i will follow from the central limit theorem for
martingales.

To find χ and g, we start by defining the Koopman operator UTφ = φ ◦T
and its L2-adjoint P : L2(µ) → L2(µ). This says that

∫
(Pφ)ψdµ =

∫
φψ ◦

Tdµ.

Lemma 1.2.10. For every φ ∈ L2(µ) we have PUφ = φ and UPφ =
E(φ|T−1B].

Proof. For the first claim we observe that∫
(PUφ) · ψ dµ =

∫
(Uφ) · (ψ ◦ T ) dµ =

∫
(φ ◦ T ) · (ψ ◦ T ) dµ =

∫
φψ dµ

for every ψ. For the second, we start by observing that UPφ is T−1B-
measurable, since for every A ∈ B we have

((UP )φ)−1A = T−1 ◦ (Pφ)−1A ∈ T−1B.

Thus the claim follows once we observe that for every A ∈ T−1B, say A =
T−1C, we have∫
A

UPφdµ =

∫
T−1C

UPφdµ =

∫
(IT−1C(x))((Pφ) ◦ T )(x)dµ(x)

=

∫
(IC ◦ T )((Pφ) ◦ T )dµ =

∫
(IC) · (Pφ)dµ =

∫
φ · (IC ◦ T )dµ

=

∫
φIT−1Cdµ =

∫
T−1C

φdµ.
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Now comes the key place where we make an assumption on decay of
correlations. More precisely, we assume that φ is in some Banach space Bα

(such as Lipschitz, Hölder, bounded variation, etc.) on which the transfer
operator P has the property that

|P nφ|Bα ≤ cp(n)|φ|Bα (1.3)

whenever
∫
φdµ = 0, where p(n) is such that

∑∞
n=1 p(n) <∞.

Our scheme is to let φ ∈ Bα and define g =
∑∞

n=1 P
nφ. Then g ∈ Bα by

convergence in the Banach space norm. Define χ = φ− g ◦T + g, so χ ∈ Bα.
Then

Pχ = Pφ− P (g ◦ T ) + P

(
∞∑
n=1

P nφ

)

= Pφ− PUg +
∞∑
n=2

P nφ

= Pφ−
∞∑
n=1

P nφ+
∞∑
n=2

P nφ = 0,

where the third equality uses the first claim in Lemma 1.2.10. Using the
second claim in that lemma we see that E[χ|T−1B] = (UP )χ = 0.

We claim that Sn =
∑n

j=1 χ◦T j is a reverse martingale. Indeed, for every

k and every A ∈ T−(k+1)B we have A = T−(k+1)C for some C ∈ B, so∫
A

χ ◦ T k dP =

∫
T−k(T−1C)

χ ◦ T k dP =

∫
(χ ◦ T k)(1T−1C ◦ T k) dP

=

∫
χ1T−1C dP =

∫
T−1C

E[χ|T−1B] dP = 0.

Moreover, as in (1.2) we have

n∑
j=1

φ ◦ T j = Sn + g ◦ T − g ◦ T n+1. (1.4)

Given φ ∈ Bα ⊂ L2(µ) with
∫
φ dµ = 0, we can let χ, g be as given above

and writing Xn = χ ◦ T n. Then Sn =
∑n

j=1 Xj is a martingale with respect
to the decreasing sequence of σ-algebras Fn = T−nB.
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Moreover, E[X1] =
∫
φ dµ = 0 and σ := E[X2

1 ] =
∫
χ2 dµ, so Theorem

1.2.9 and (1.4) imply that 1
σ
√
n

∑n
i=1 φ ◦ T n converges in distribution to the

Gaussian N(0, 1) whenever σ > 0; this gives the central limit theorem for
observables in Bα.

Note that if σ = 0, then E[X2
1 ] = 0 implies that X1 = 0, so in particular

χ = 0. This gives φ = g − g ◦ T ; that is, φ is a coboundary. Notice that
if φ is a coboundary then it sums to zero over every periodic orbit; in cer-
tain circumstances the reverse implication is always true, this is the Livsic
theorem.

Example 1.2.11. Take T to be the doubling map and suppose
∫
φdm = 0.

It can be shown using the spectral gap property (see the spectral theory
lectures) that P nφ|Lip ≤ Cθn|φ|Lip for some θ ∈ (0, 1), and Pφ(x) = 1

2
(φ(y1)+

φ(y2)). Hence g =
∑∞

n=1 P
nφ is Lipschitz. We obtain the central limit

theorem unless φ is a coboundary.

We conclude this section by deriving an explicit formula for σ in terms
of φ (note that the formula above is in terms of χ).

Because Sn = X1+· · ·+Xn is a (reverse) martingale, we have E[XiXj] = 0
for all i 6= j. Using (1.4), we have(

n∑
j=1

φ ◦ T j
)2

=
(
Sn + g ◦ T − g ◦ T n+1

)2

= S2
n + 2Sn(g ◦ T − g ◦ T n+1) + (g ◦ T − g ◦ T n+1)2,

E

( n∑
j=1

φ ◦ T j
)2
 = E[S2

n] +O(
√
n),

where we leave it as an exercise to show the O(
√
n) bound. Then we observe

that

E[S2
n] = E

[
n∑
j=1

X2
j

]
+ 2

∑
i<j

E[XiXj] = nσ,

where we use linearity of expectation and the fact that E[XiXj] = 0 for
i 6= j. We conclude that

lim
n→∞

1

n
E

( n∑
j=1

φ ◦ T j
)2
 = σ.
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Example 1.2.12. Given the Manneville-Pomeau map with exponent α ∈
(0, 1), there is an absolutely continuous invariant probability measure µ with
dµ
dx
∼ x−α near zero. It has been shown that for every Lipschitz φ and ψ ∈ L∞,

both with mean zero, we have∣∣∣∣∫ φψ ◦ T ndµ
∣∣∣∣ ≤ c||φ||Lip|ψ|∞n−β

where β = 1
α
− 1. Plus |Pφ|∞ ≤ |φ|∞. Let ψ = signP nφ. Then |P nφ|1 ≤

c||φ||Lipn−β. If p = β − δ,∫
|P nφ|pdµ =

∫
|P nφ|p−1|P nφ|dµ ≤ |P nφ|p−1

∞ |P nφ|1 ≤ cn−β.

This implies that ||P nφ||p ≤ c′n
β
p−δ , which is summable when β > 2, or when

α < 1
2
. Thus if α ∈

(
0, 1

2

)
, we get the central limit theorem.

1.3 Axiom A systems

Suppose (X,T, µ) is Axiom A (µ a Gibbs measure). T invertible means that
Pφ = φ ◦ T−1, so there is no averaging under the transfer operator P . The
idea is to reduce to one-sided (non-invertible) dynamics by quotienting out
by the stable direction. This is the Sinai trick.

Use Markov partitions to code the Axiom A system by a two-sided shift
(σ,Ω,m), with semi-conjugacy π : Ω→ X. Lift φ : X → R to φ̃ : Ω→ R by
φ̃(ω) = φ(πω). Then φ̃ is Hölder with the usual topology on (σ,Ω,m).

Our goal is to write φ̃ = ψ + v− v ◦ σ where ψ depends only on “future”
coordinates ω0ω1ω2 . . .. Geometrically, consider the map G : X → X that
maps points on a local stable manifold to the same point via holonomy:
project (slide) points along stable manifolds onto a distinguished unstable
manifold. Symbolically, this corresponds to the map g : Ω → Ω defined as
follows: for each ω0 in the alphabet of the shift, fix ω̄−(ω0) = · · · ω̄−2ω̄−1 such
that ω̄−ω0 is a legal sequence for the SFT. Then define g by

g(ω) = ω̄−(ω0)ω1ω2 · · · .

The map g is Hölder continuous, and we write

v(ω) =
∞∑
k=0

φ̃(σkω)− φ̃(σkgω).
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Note that d(σkω, σkgω) decreases exponentially in k and so the sum converges
by Hölder continuity of φ̃. The function v is Hölder, and so ψ := φ̃+v ◦σ−v
is Hölder as well. We have

ψ(ω) = φ̃(ω) +
∞∑
k=0

(
φ̃(σk+1ω)− φ̃(σkg(σω))

)
−
(
φ̃(σkω)− φ̃(σkgω)

)
=
∞∑
k=0

φ̃(σkgω)− φ̃(σkgσω)

If ω, ω′ have the same past (ωn = ω′n for all n < 0), then we have gω = gω′,
and so the above formula shows that ψ(ω) = ψ(ω′). Thus ψ can be viewed
as a Hölder function on the one-sided shift corresponding to Ω, where the
transfer operator has a spectral gap. This implies that ψ ◦ σn, φ̃ ◦ σn, and
φ ◦ T n all satisfy the central limit theorem.

1.4 Non-stationary limit theorems

We stated the central limit theorem for reverse martingales and martingales.
We will now use the “natural extension” to take a non-invertible system and
make it invertible. In the process (which is sort of a reverse Sinai trick) we
will lose the smooth structure but preserve the probabilistic properties.

Let (T,X, µ) be a non-invertible system. We define an invertible system
related to it, the natural extension (σ,Ω,m). Let Ω be the set of one-sided
sequences x0x1x2 · · · of elements in X with the property that Txn = xn−1

for all n ≥ 1. Define σ : Ω→ Ω by σ : x0x1x2 . . . 7→ (Tx0)x0x1x2 . . ., so that
σ−1 is the usual shift.

Functions and measures lift from X to Ω. Let φ : X → R be lifted to φ̃
where φ̃(x0x1x2 . . .) = φ(x0). The measures lift as well. (σ,Ω,m) is ergodic
if and only if (T,X, µ) is ergodic.

Let B be the Borel sets on X and π : Ω→ X be the projection to the lead
element. Lift B to B0 on Ω by B0 = π−1B. Then Fi = σiB is an increasing
sequence of σ-algebras and a filtration (resembling cylinder sets). φ̃ ◦ σ−i is
Fi-measurable.

By our earlier martingale approximation arguments we can write φ =
χ+g ◦T −g where E[χ|T−1B] = 0. Lift χ to χ̃ on Ω: E[χ|T−1B] = 0 implies
that E[χ̃|σB0] = 0. Now let Sn =

∑n
i=1 χ̃ ◦ σ−i so that

E[Sn+1|Fn] = Sn + E[χ̃ ◦ σ−(n+1)|Fn] = Sn + E[χ|T−1B] = Sn.
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This is enough to deduce distribution limits for reverse martingales from
martingales: for example, for the CLT, we see that

µ

(
x ∈ X :

1

σ
√
n

(
φ(x) + φ(Tx) + φ(T 2x) + · · ·+ φ(T nx)

)
∈ A

)
= m

(
ω ∈ Ω :

1

σ
√
n

(
φ̃(ω) + φ̃(σ−1ω) + φ̃(σ−2ω) + · · ·+ φ̃(σ−nω)

)
∈ A

)
.

This method of reversing time cannot be used straightforwardly to obtain
almost-sure results; for example, the law of the iterated logarithm (LIL)
states that for P -a.e. ω we have

lim sup
n→∞

X
(ω)
1 + · · ·+X

(ω)
n√

n log log n
= 1,

where E[Xi] = 0 and 0 < E[X2
i ] < ∞. In order to establish the LIL for a

given system, we need a stronger result on almost sure approximation by IID
sums, such as the following recent result of C. Cuny and F. Merlevède (J.
Theor. Probab. 2015).

Theorem 1.4.1. Let {Xn} be a sequence of reverse martingale differences,
{Fn} an increasing sequence of σ-algebras, E[Xn|Fn+1] = 0, E[Xn] = 0. In
this case Xn is not necessarily X ◦ T n. Suppose

lim
n→∞

σ2
n =

n∑
k=1

E[X2
k ]→∞

(in the stationary case, the sum on the right is nE[X2
n]). Let {an} be a non-

decreasing sequence of positive numbers such that an
σ2
n

is non-increasing and
an
σn

is non-decreasing (σ2
n ∼ n in the stationary case). Assume

n∑
k=1

E[X2
k |Fk+1]− E[X2

k ] = o(an)

and
∑n

k=1 a
−ν
k E[|Xn|2ν ] <∞ for some ν ∈ [1, 2]. Then there is a sequence of

independent Gaussian random variables {Zn} with E[Z2
k ] = E[X2

k ] such that

sup
n

∣∣∣∣∣
n∑
k=1

Xk −
n∑
k=1

Zk

∣∣∣∣∣ = o(an log log an).



20 CHAPTER 1. PROBABILITY IN DYNAMICS

Corollary 1.4.2. In the stationary case∣∣∣∣∣
n∑
k=1

X ◦ T k −
n∑
k=1

Zk

∣∣∣∣∣ = o(
√
n log log n)

where E[Z2
k ] = E[X ◦ T k] and Zi ∼ N(0, σ2).

We can often do much better than n; an = n
1
4

+ε for expanding maps, for
example.

This shows that the law of the iterated logarithm holds for {φ ◦ T j}.
Decomposing φ = χ + g ◦ T − g implies both the central limit theorem and
the law of the iterated logarithm. Brownian motion is “lurking as a model”
and corresponds with Birkhoff sums.

Next suppose that our observations change over time— we are looking
at {φn ◦ T n}. Suppose φn = IAn for {An} ⊂ X (perhaps as nested balls
about a point p ∈ X). Does

∑n
k=1 IAnT

n(x) diverge for µ-almost every x?
This would imply that T nx ∈ An infinitely often. More quantitatively, if∑∞

n=1 µ(An) =∞ is there a limit (as an i.i.d. process)

lim
n→∞

∑n
j=1 IAj ◦ T jx∑n
j=1 µ(Aj)

= 1

for µ-almost every x?

Suppose that the maps change over time: in particular, each map may
not have the same invariant measure. If we choose a fixed sequence we have
a “sequential dynamical system”.

Example 1.4.3. (W. Philipp 1970) If T is the doubling map and {φn} is a
positive sequence of functions bounded in the BV norm then

lim
n→∞

∑n
j=1 φj ◦ T jx∑n
j=1

∫
φjdm

= 1.

This is related to the Gal-Koksma lemma and strong Borel-Cantelli. The
proof goes by non-stationary martingale approximation. Let φ̂i = φi−E[φi],

and consider gn =
∑n

j=1 P
jφ̂n−j+1, where P is the transfer operator for the
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doubling map, so

g1 = Pφ̂1,

g2 = Pφ̂2 + P 2φ̂1,

· · ·
gn = Pφ̂n + · · ·+ P nφ̂1.

Let χn+1 = φ̂n+1 − gk+1 ◦ T + gk. Observe that

Pχn+1 = Pφ̂n+1 − PUgk+1 + Pgk

= Pφ̂n+1 −
(
Pφ̂n+1 + · · ·+ P n+1φ̂1

)
+ P (Pφ̂n + · · ·+ P nφ̂1)

= 0

So {χn ◦ T n} is a sequence of reverse martingale differences and we have the
telescoping sum

1

σn

n∑
k=1

(
φk ◦ T k −

∫
φkdm

)
=

n∑
k=1

(
χk ◦ T k

)
+ g1 − gn+1 ◦ T n;

upon dividing by σn this converges to N(0, 1), as long as σn →∞.

If T varies, then instead of iterates of P one has compositions of different
transfer operators. In this case, use cone techniques and the spectral gap to
get limit theorems.
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Chapter 2

Hyperbolicity

2.1 An abundance of measures

A topological dynamical system is a compact metric space X together with
a continuous map T : X → X. It is often the case that (X,T ) has many
invariant probability measures, and so it is not a priori clear which measure
we ought to use. Thus we investigate the following questions:

1. Given a system (X,T ), is there a distinguished invariant measure we
ought to use?

2. If there is a distinguished measure µ, what are its statistical properties?

Let M(X) be the set of Borel probability measures on X. Within the class
we consider the setMT (X) of T -invariant probability measures, and the set
Me

T (X) of ergodic measures.

Definition 2.1.1. A measure µ is ergodic if for every measurable E ⊂ X
with T−1E = E, we have µ(E) = 0 or 1.

The ergodic measures are the extreme points of MT (X), and every T -
invariant measure is a convex combination of ergodic measures in a unique
way. (Note that this convex combination may be infinite.) We say that
MT (X) is a simplex. A fact that is counterintuitive at first glance is that for
many systems, the set of extreme points Me

T (X) is dense in this simplex.
We list a number of examples for which MT (X) has various types of

behavior.

23
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Example 2.1.2. The irrational rotation: X = S1 ⊂ C, T (z) = e2πiθz,
θ ∈ R \Q.

Example 2.1.3. (Example 1.1.7) The doubling map: X = S1, T (z) = z2.

Example 2.1.4. (Example 1.1.11) The Manneville-Pomeau map: exhibits
intermittent behavior.

Example 2.1.5. The logistic map: T : [0, 1] → [0, 1], T (x) = ax(1 − x) for
a ∈ [0, 4].

Example 2.1.6. X = T2 = R2/Z2, T (x, y) = (x+ θ1, y + θ2) mod Z2 where
θ1, θ2 ∈ R \Q are rationally independent.

Example 2.1.7. Shear on the torus: X = T2, T (x, y) = (x+y, y). Preserves
horizontal lines.

Example 2.1.8. The Arnold “cat” map: X = T2, T (x, y) = (2x+ y, x+ y).

Example 2.1.9. The Hénon map: T : R2 → R2, T (x, y) = (1− ax2 + y, bx)
for a, b ∈ R. ‘Classical’ values are a = 1.4, b = .3. One can view this as
a logistic map with some “memory” coming from the y-coordinate, in the
sense that x depends not only on its current position but also its previous
position, which is saved as y.

We are looking for expansion (nearby trajectories diverge) and transitivity
(every trajectory eventually comes close to every other one). When phase
space is in Rp we can measure expansion by looking at ‖dT n(x)(v)‖ for
x ∈ Rp and v ∈ TxRp, and seeing how quickly this quantity grows. The idea
then is to use the growth rate of this quantity to estimate the decay rate of
correlations.

For rotations (on the circle or torus), this quantity remains bounded, so
there is no expansion and nearby trajectories remain nearby; these maps are
called elliptic. For the shear map ( 1 1

0 1 ) on the torus, this quantity grows
linearly in n, so we have sub-exponential expansion. The doubling map and
cat map both have exponential expansions, with ‖dT n(x)(v)‖ growing like
λn for some λ > 1. Broadly speaking, systems with this sort of exponential
expansion are called hyperbolic.

There is a distinction to be made between uniformly hyperbolic systems,
such as the doubling map and the cat map, and non-uniformly hyperbolic
systems, such as the Manneville–Pomeau map, logistic map, and Hénon map.
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Roughly speaking, in uniformly hyperbolic systems, the rate of growth and
the time it takes to observe that growth do not depend on x, while in non-
uniformly hyperbolic systems the rate of growth and the time it takes to
observe it may depend on x, and the growth can become arbitrarily weak.

In all of these examples, the phase space X is a manifold and thus carries
a natural notion of volume (length in one dimension, area in two), given
by Lebesgue measure. We look for invariant measures that are absolutely
continuous with respect to Lebesgue; if µ is an absolutely continuous invariant
measure then something true for µ-a.e. x will also be true for Lebesgue-a.e. x.
Some examples, such as the doubling map and cat map, preserve Lebesgue
measure itself, while for others, such as the Manneville–Pomeau map and
logistic map, Lebesgue measure is not preserved. For the time being, we
restrict our attention to examples preserving Lebesgue measure.

2.2 Markov partitions

2.2.1 Expanding maps

In the case of the doubling map, assign to each x ∈ [0, 1] a sequence where
the nth number is 0 if T n(x) ∈

[
0, 1

2

)
, and 1 otherwise. In general, given

T : X → X, let A = {A1, A2, . . . , Ad} be a partition of X where only bound-
aries of distinct elements of A overlap. Given x ∈ X, define ω ∈ Σ+

d =
{1, 2, . . . , d}N by Aωn 3 T n(x). Define Σ, a subset of the full shift Σ+

d to be
the closure of a set of admissible sequences, where “admissible” is taken to
mean “corresponding to a possible orbit of a point x ∈ X”. In the case of the
doubling map, ω is just the binary representation of x. Define σ : Σ+

d → Σ+
d

by σ(ω) = σ(ω0ω1ω2 . . .) = ω1ω2ω3 . . ..
Note that there are typically ‘forbidden’ sequences. For example, if we

partition [0, 1] into four intervals of equal length, labelled 0,1,2,3, and con-
sider the doubling map, then the symbol 0 can only be followed by a 0 or 1,
but not by a 2 or a 3, since no points in the partition element A0 = [0, 1/4]
are mapped into A2 ∪ A3 = [1/2, 1].

Definition 2.2.1. A subshift of finite type, or a topological Markov chain, is
defined by movements on a directed graph whose vertices are given distinct
labels. Equivalently, one can characterize the shift Σ ⊂ Σ+

d in terms of an
adjacency matrix Aij, where Aij = 1 iff there is an edge from vertex i to
vertex j, and say that ω ∈ Σ iff Aωnωn+1 = 1 for all n.
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Here is an example. Given β > 1, let T : [0, 1] → [0, 1] be defined by

T : x 7→ βx mod 1. Set β = 1+
√

5
2

, and A0 =
[
0, 1

β

)
, A1 =

[
1
β
, 1
]
. Then

T (A0) = A0 ∪ A1, while T (A1) = A0. In terms of Σ = {0, 1}N, if ω ∈ Σ has
ω0 = 0, then 0ω ∈ Σ because T (A0) ⊃ A0. 1ω ∈ Σ for the same reason. But
if ω has ω0 = 1, then 0ω ∈ Σ and 1ω 6∈ Σ. So A = {A0, A1} is a Markov
partition of [0, 1] for T , and the corresponding Markov chain has adjacency
matrix (

1 1
1 0

)
.

If β > 1+
√

5
2

, T (A1) ∩ A1 6= ∅, but β < 2 means T (A1) 6⊃ A1. Now the block
11 may be legal, but 111 is not whenever β < 2. So it is not immediately
clear whether this map can be coded by an SFT – this partition doesn’t work,
but maybe another one does.

Definition 2.2.2. If A is a partition for an expanding interval map, A is
Markov if for all A,A′ ∈ A we have T (A) ⊃ A′ or T (A) ∩ A′ = ∅ up to
endpoints. Write i→ j if T (Ai) ⊃ Aj.

2.2.2 Invertible maps

The Markov partition for the cat map requires AZ instead of just AN. The
latter codes forward trajectories of points on a common stable eigenline; these
points have the same future. Write ω+ = ω0ω1 · · · and let h(ω+) be the set
points such that fn(x) lies in Aωn for all n ≥ 0. Then h(ω+) is a segment
of a stable eigenline. Similarly, given ω− = · · ·ω−1ω0 and writing h(ω−) for
the set of points such that fn(x) ∈ Aωn) for all n ≤ 0, we get that h(ω−)
is a segment of an unstable eigenline (past is determined). Now to have a
Markov chain, we need h(ω+) ∩ h(ω−) 6= ∅ whenever ω+

0 = ω−0 . (Since every
such pair ω± corresponds to ω ∈ AZ in which all pairs ωn → ωn+1 are a legal
transition.)

Here is another way of saying this. For every Ai ∈ A, Ai must have
the property that for all x, y ∈ Ai, W s

A(x) ∩W u
A(y) ∈ Ai and in particular

is not empty. Since W s and W u are eigenlines, partitions are going to be
rectangles.

The Markov property for invertible maps states that if x ∈ Ai, y ∈ Aj
(i 6= j) then

T (W u
A(x)) ⊃ W u

A(y) or T (W u
A(x)) ∩W u

A(y) = ∅ (2.1)
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and

T−1(W s
A(y)) ⊃ W s

A(x) or T−1(W s
A(y)) ∩W s

A(x) = ∅. (2.2)

To produce a Markov partition of the torus for the cat map, one can start
with the squares B1, B2 shown in the picture. The sides of these squares are
eigenlines of the map. Exercise: convince yourself that B1 and B2 satisfy
(2.1) and (2.2). Note that the long skinny rectangle in the picture at the
right is the image of B2 under the map.

This is not quite a Markov partition yet because a point on the torus is
not uniquely specified by its coding in terms of B1, B2. To remedy this we
must partition further: the right-hand image shows A1 := f(B2) ∩ B2 and
A4 := f(B2)∩B1, with A2, A3, A5 the remaining partition elements as shown.
One can check that this gives a generating Markov partition, so the cat map
is (semi-)conjugate to an SFT on five letters.

2.3 Nonlinear maps

Definition 2.3.1. Let f : M →M be a diffeomorphism. Λ ⊂M is a hyper-
bolic set if it is compact, f -invariant, and the tangent bundle decomposes as
TΛ = Eu ⊕ Es such that df(Eu) = Eu and df(Es) = Es, where f contracts
Es uniformly and expands Eu uniformly.
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Theorem 2.3.2. A locally maximal hyperbolic set has a Markov partition.

How do we find these Markov partitions for nonlinear hyperbolic maps?
For example, one can consider a small perturbation of the cat map, or the
following example.

Example 2.3.3. The Smale–Williams solenoid maps the solid torus S1×D2

into itself by stretching to twice the length and wrapping around. It expands
in the S1 “direction” and contracts in the D2 “direction”, as shown in the
picture.1

Let M be a smooth manifold and f : M → M a diffeomorphism. (For
now we just need C1, although there are sometimes big differences between
C1 and C1+α.) If f(p) = p, and if dfp : TpM → TpM has no eigenvalues with
modulus one, then

TpM = Eu ⊕ Es, Eu =
⊕
|λ|>1

Gλ, Es =
⊕
|λ|<1

Gλ,

where Gλ denotes the generalized eigenspace of λ. Then for all vu ∈ Eu we
have ||dfnp (vu)|| ≥ Cχ−n||vu||, with a similar expression for Es but in forward
iteration (χ < 1).

Theorem 2.3.4. (Hadamard-Perron) There exists smooth submanifolds W s,W u

which are tangent to Es, Eu respectively at p such that f(W s) ⊂ W s and
f−1(W u) ⊂ W u where f, f−1 act as contractions on W i by a factor of χ.

In fact a neighborhood of the fixed point is foliated by stable/unstable
manifolds: contracted along the stable direction and pushed away from fixed

1Picture from Wikipedia, created by user ‘Ilya Voyager’, dedicated to public domain.
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point in unstable direction (to a different stable manifold). Consider the
following local stable manifold through the fixed point:

W s
δ = {x ∈M : d(fnx, p) ≤ δ for all n ≥ 0}

and the same for W u
δ for f−n. Define, then, W s as the global stable manifold

as

W s = {x ∈M : fnx→ p} =
⋃
n≥0

f−n(W s
δ )

with W u defined similarly.

If W s,W u intersect at a point q 6= p, then this point is a homoclinic point.
It converges to p in both forward and backwards iterates, which induces an
infinite number of intersections of W u,W s, the homoclinic tangle; the picture
shows the beginning of this process.

In fact, one can show that there is some neighborhood R of p and some
iterate g = fn such that g : R → g(R) is a ‘horseshoe’; in particular, the
maximal g-invariant set Λ ⊂ R is a Cantor set on which g is topologically
conjugate to the full shift on two symbols. The picture shows the rough idea
behind this.
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The Hadamard-Perron theorem also works if we replace p with “every
x ∈ Λ,” where Λ is a locally maximal hyperbolic set. In this case, the x are
allowed to move and so we get a ‘non-stationary’ version of the theorem.

Definition 2.3.5. R ⊂ Λ is a rectangular set if for all x, y ∈ R, W s
δ ∩W s

δ ∩R
is a single point, called [x, y]. So rectangles have “parallel” edges based on
foliations by (un)stable manifolds. Elements of Markov partitions must be
rectangles.

Definition 2.3.6. Let R be a rectangle. A ⊂ R is a u-set if it is the union of
unstable manifolds, and B ⊂ R is an s-set if it the union of stable manifolds.

Example 2.3.7. The Smale horseshoe induced by looking at the images of
a rectangle about a fixed and homoclinic point.

Definition 2.3.8. A = {R1, . . . , Rm} is a Markov partition for a hyperbolic
set Λ if

1. each Ri is a rectangle and Ri = ∂Ri, with ∂Ri ∩ ∂Rj = ∅ for all i 6= j;

2. the partition is generating;

3. if A ⊂ Ri is a u-set, then f(A) ∩Rj is either empty or a u-set;
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4. if B ⊂ Ri is an s-set then f−1 ∩Rj is empty or an s-set.

Definition 2.3.9. A hyperbolic set Λ is locally maximal if there exists an
open set U containing it and Λ = {x ∈M : fnx ∈ U for all n ∈ Z}.

For the cat map, Λ = T2 is a hyperbolic set. In fact, it continues to
be a hyperbolic set for small perturbations of the cat map; small open cones
around the stable and unstable eigenvectors are invariant for f , and hence for
small perturbations of f (since they are open), which can be used to deduce
uniform hyperbolicity.

The key tools in the proof of existence of Markov partitions are the fol-
lowing.

Definition 2.3.10. Given ε > 0, an ε-pseudo-orbit is {xn}n∈Z such that
d(xn+1, f(xn)) < ε for all n ∈ Z.

Lemma 2.3.11. (shadowing lemma) For all δ > 0 there exists an ε > 0 such
that if {xn} is an ε-pseudo-orbit, then there exists a unique y ∈ Λ such that
d(fny, xn) < δ for all n ∈ Z.

The shadowing lemma may be proved by using the Hadamard–Perron
theorem to produce “s-sets and u-sets” through the points xn and getting
good intersection properties.

To produce a Markov partition, since Λ is compact, we can fix an ε and
let a1, a2, . . . , ad be an ε-dense set. Use {a1, . . . , ad} as the alphabet for a
coding: i → j if d(f(ai), aj) < ε. Then Σ is a topological Markov chain
on {1, . . . , d} with this relation. ω ∈ Σ if and only if {aωn}n∈Z is a valid
ε-pseudo-orbit. By the uniqueness of this coding, we can find y ∈ Λ coded
by aωn .

In fact this does not quite give a Markov partition: writing Ai for the
set of points in Λ coded by some sequence with ω0 = i, one actually obtains
an open cover, but the intersections between Ai and Aj may be too large.
The way around this is to use Sinai’s trick to reduce the cover to a partition
while retaining the Markov property.

2.4 Absolute continuous invariant measures

Markov partitions can be used to produce SRB measures, which are the
appropriate ‘physical’ measures for ergodic theory.
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Consider a map f : [0, 1]→ [0, 1], we want to find an absolutely continu-
ous invariant measure (acim) dµ = ψdx.

Example 2.4.1. Take f to be the doubling map, p ∈ (0, 1) and µp = (p, 1−
p)-Bernoulli measure. µp[ω1ω2 . . . ωn] = p# of 0s(1− p)# of 1s. If p = 1

2
, we get

Lebesgue measure. Given µ, x ∈ I,

dµ(x) = lim
r→0

log µ(B(x, r))

log r
.

Then µ(B(x, r)) ≈ rdµ(x). (Note that the limit may not exist for all x, but
ignore this for the moment.)

Definition 2.4.2. Let Bn(x, δ) = {y ∈ X : d(fky, fkx) < δ, 1 ≤ k ≤ n}.
This is the Bowen ball or dynamical ball of order n; as n→∞ it is equal to
{x}.

For an interval map, fn(B(x, r)) ≈ B
(
fnx, reSnφ(x)

)
where φ(x) = log |f ′(x)| >

0 and Sn are the ergodic sums. So roughly Bn(x, δ) ≈ B
(
x, δe−Snφ(x)

)
. When

rn = δe−Snφ(x) we get

dµ(x) = lim
n→∞

log µ(Bn(x, δ))

log(δ)− Snφ(x)
= lim

n→∞

− log µ(Bn(x, δ))

n
÷ Snφ(x)

n
. (2.3)

The Brin-Katok entropy formula states that if µ is ergodic, then

lim
n→∞

− 1

n
log µ(Bn(x, δ))

exists and is constant µ-almost everywhere. (In general one must also take
δ → 0, but for expanding interval maps we can omit this step.)

Call the common value of the limit h(µ); this is equal to the Kolmogorov-
Sinai entropy (which is usually defined differently). Write

λ(µ) =

∫
log |f ′(x)|dµ

for the Lyapunov exponent of µ. Then we see from (2.3) and the Birkhoff
ergodic theorem that for µ-a.e. x, we have

dµ(x) =
h(µ)

λ(µ)
.
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Exercise: show that the measure-theoretic entropy of the doubling map
with the Bernoulli measure µp is

h(µp) = −p log p− (1− p) log(1− p).

Now we return to the definition of dµ(x) and look at how quickly µ(B(x, r))
decays with r. Given an ergodic measure µ on [0, 1], we must have dµ(x) ≤ 1
for µ-a.e. x, and the idea is that we have equality iff µ is an acim. In other
words, h(µ) ≤ λ(µ), with equality iff µ is an acim, and so with φ(x) =
− log |f ′(x)|, we have∑

Me
f

{h(µ)− λ(µ)} = sup
Me

f

{
h(µ) +

∫
φdµ

}
= 0.

Definition 2.4.3. If f : X → X, φ : X → R, define the topological pressure
P as

P (φ) = sup
Me

f

{
h(µ) +

∫
φdµ

}
.

A measure achieving this supremum is an equilibrium state.

Statistical properties of equilibrium states are related to the analytic prop-
erties of φ 7→ P (φ). For example, the first and second derivatives of the
pressure function P : C(X)→ R then are related to the mean and variance
of the time averages for φ.

Let f : M →M , U ⊂M be open such that f(U) ⊂ U , and Λ =
⋂
n≥0 f

nU
be a (hyperbolic) attracting set. Axiom A systems are an example.

Example 2.4.4. The cat map (Example 2.1.8) with a small perturbation.

Example 2.4.5. The solenoid (Example 2.3.3) gives an attractor that is a
Cantor set; in particular, the Lebesgue measure of Λ is zero, so there is not
a.c.i.m., but there are physical measures.

The ‘physical measures’ mentioned above are obtained as ‘SRB measures’
(for Sinai–Ruelle–Bowen). The idea is that a measure µ can be ‘decomposed’
into conditional measures on the unstable manifolds (this is a version of
Fubini’s theorem); if these conditional measures are absolutely continuous,

µ is an SRB measure. If φ(x) = − log
∣∣df |Eu(x)

∣∣, dµ = h(µ)
λ(µ)

along the unstable
directions.
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Chapter 3

Spectral Methods

3.1 Transfer operator and spectrum

3.1.1 The doubling map

Our goal in these lectures is to prove existence of absolutely continuous in-
variant measures, and exponential decay of correlations, for certain classes
of systems by establishing the existence of a spectral gap.

Some systems for which we can do this are piecewise expanding maps,
including the doubling map, some non-uniformly expanding maps, and some
(non-uniformly) hyperbolic maps. For example, we will prove the following.

Theorem 3.1.1. Given the doubling map, µ Lebesgue measure, φ ∈ L∞, ψ
Lipschitz, ∣∣∣∣∫ φ ◦ T nψdµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ C
1

2n
||φ||L∞||ψ||Lip.

A similar result will be proven for piecewise-expanding maps on [0, 1]: we
will show that there is an invariant measure µ with dµ = h dx (this is the
acip). It is unique if the map is topologically mixing. Moreover, there is
λ ∈ (0, 1) such that∣∣∣∣∫ φ ◦ T nψdµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ Cλn||φ||L∞||ψ||Lip.

Both of the above results will be proved using the (Ruelle) transfer op-
erator. Assume T : [0, 1] → [0, 1] that is nonsingular, i.e. Leb(A) 6=

35
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0 ⇒ Leb(TA) 6= 0. (Equivalently, assume that the Koopman operator
UT : L∞(Leb)→ L∞(Leb) given by UT (φ) = φ ◦ T is well-defined.)

Then there exists a PT : L1(Leb)→ L1(Leb) given by∫
φ ◦ Tψdx =

∫
φPT (ψ)dx for all φ ∈ L∞(Leb), ψ ∈ L1(Leb). (3.1)

It is easy to show that ||PT ||L1 ≤ 1, i.e. ||PTφ||L1 ≤ ||φ||L1 .
Given an absolutely continuous measure dµ = h dx, where h ∈ L1(Leb),

the transfer operator PT produces the new absolutely continuous measure
d(T ∗µ) = PT (h)dx where T ∗µ(A) = µ(T−1A) is the adjoint. So dµ = hdx is
T -invariant iff PTh = h.

Thus finding an absolutely continuous invariant measure boils down to
finding a fixed point of PT . Once we have found the fixed point h = PTh and
set dµ = h dx, to study decay of correlations we can consider ψ ∈ L1

0(µ) =
{ψ ∈ L1(µ) :

∫
ψdµ = 0}, for which∣∣∣∣∫ φ ◦ T kψdµ
∣∣∣∣ =

∣∣∣∣∫ φ ◦ T kψhdx
∣∣∣∣ =

∣∣∣∣∫ φP k
T (ψh)dµ

∣∣∣∣ ≤ ||φ||L∞||P k
T (ψh)||L1

In other words, one wants to study the rate of decay of ‖P k
T |L1

0(dx)‖. So

overall, the idea is to consider PT acting on L1(dx), find an eigenfunction
corresponding to the eigenvalue 1, and then show that PT restricted to a
subspace transverse to thie eigenspace has norm strictly smaller than 1.

As mentioned before, this does not work if we just consider L1 functions,
but if we introduce a little more regularity then we can hope for success. To
this end, suppose B is a Banach space such that B ↪→ L1; this means that
∃c > 0 such that φ ∈ B ⇒ ||φ||L1 ≤ c||φ||B. For example B = Lip,BV .

Now if there is λ ∈ (0, 1) such that ||PT |B0|| < λ, then we can carry out the
plan described above: for all ψ ∈ B0, ||P k

Tψ||L1 ≤ c||PTkψ||B ≤ c′λk||ψ||B.
In conclusion, φ ∈ L∞, ψ ∈ B0 implies that∣∣∣∣∫ φ ◦ T kψdµ

∣∣∣∣ ≤ ||φ||L∞||P k
Tψ||L1 ≤ Cλk||φ||L∞||ψ||B.

Definition 3.1.2. PT has a spectral gap on B if ‖PT |B0‖ < 1. We also say
that PT is quasicompact.

Given a piecewise C1 expanding interval map, one can show that PTφ|x =∑
Ty=x

φ(y)
|T ′(y)| . For the doubling map,

(PTφ)(x) =
1

2
φ
(x

2

)
+

1

2
φ

(
x+ 1

2

)
.
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Here we can skip the first step of producing an invariant measure, because
we already know Lebesgue is invariant (in other words, the constant function
1 is a fixed point of PT ).

Consider the semi-norm

|φ|Lip = sup
x 6=y

|φ(x)− φ(y)|
|x− y|

For the doubling map we have

|PTφ|x − PTφ|y| =
∣∣∣∣12 (φ(x2)− φ(y2))+

1

2

(
φ

(
x+ 1

2

)
− φ

(
y + 1

2

))∣∣∣∣
≤ |φ|Lip

|x− y|
2

where we make use of the fact that |φ(x) − φ(y)| ≤ |φ|Lip|x − y| in the last
line. Thus |PTφ|Lip ≤ 1

2
|φ|Lip.

We now define

Lip = LipC[0, 1] = {φ : [0, 1]→ C : |φ|Lip <∞} ⊂ C0[0, 1]

with the norm || · ||Lip = || · ||C0 + |φ|Lip so that Lip is a Banach space. We
claim that PT has a spectral gap on LipC[0, 1]. Write

Lip = C1 +

{
φ ∈ Lip

∣∣∣∣∫ 1

0

φdx = 0

}
.

There exists a C such that φ ∈ Lip0 ⇒ ||φ||C0 ≤ C||φ||Lip. That Re(φ),
Im(φ) have zero integral means that φ vanishes somewhere, so for φ ∈ Lip0,
we have ||P k

Tφ||Lip ≤ C 1
2k
||φ||Lip.

PT on Lip is quasicompact: PT (1) = 1. PT (Lip) ⊂ Lip0:∫
PTφdx =

∫
PTφ ◦ 1dx =

∫
φ1 ◦ Tdx =

∫
φdx

using Lebesgue as the invariant measure. The spectral radius of PT on Lip0

is less than one.
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3.1.2 Spectral properties

Let us be a little more explicit about the role of the spectrum of PT . Recall
that the spectrum of the operator PT : Lip→ Lip is the set

σ(PT ) = {λ ∈ C | PT − λI is not an invertible operator on Lip},

which contains (but is not necessarily equal to) the set of eigenvalues of PT
(the point spectrum). We emphasise that this is a very general definition,
valid for any bounded linear operator on any Banach space, not just PT
acting on Lip. A basic fact in functional analysis is that the spectrum is
always compact and non-empty.

In the example above, the constant function 1 is an eigenfunction with
eigenvalue 1, and using this invariant decomposition Lip = C1 ⊕ H from
before (where H is the space of Lipschitz functions with zero mean), we have
σ(PT ) = {1}∪σ(PT |H). That is, apart from the eigenvalue at 1, the spectrum
of PT is determined by its action on the subspace H.

Recall from functional analysis that if we write ρ(PT ) = sup{|λ| | λ ∈
σ(PT )} for the spectral radius of PT , we have

ρ(PT ) = lim
n→∞

‖P n
T ‖1/n ≤ ‖PT‖. (3.2)

To determine the spectrum of PT |H we can use either the Lipschitz norm
‖ · ‖Lip or the semi-norm | · |Lip, because on the subspace H the semi-norm
becomes a norm and the two are equivalent:

|ψ̂|Lip ≤ ‖ψ̂‖Lip = ‖ψ̂‖∞ + |ψ̂|Lip ≤ 2|ψ̂|Lip.

(This fails outside of H, where to apply (3.2) we would need to use ‖ · ‖Lip.)
From the previous section and (3.2) we see that ρ(PT |H) ≤ 1

2
. Thus the

spectrum of PT has a single eigenvalue at 1, while the rest of the spectrum
is contained in the disc with centre 0 and radius 1/2.

Going beyond the doubling map to such examples as the piecewise ex-
panding interval maps discussed above, the goal is to carry out a similar
procedure by finding a suitable Banach space B of functions on which the
transfer operator acts with a spectral gap: that is, where there is a single
eigenvalue (or at most finitely many) lying on the unit circle, and the rest of
σ(PT ) is contained in a disc of radius ρ < 1. Then one is able to draw the
following conclusions.
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1. The eigenfunction(s) corresponding to the eigenvalue 1 are the densities
for the absolutely continuous invariant measures.

2. Given any r ∈ (ρ, 1), there is a constant Cr such that ‖P k
T ‖B ≤ Crr

k,
and so the correlations Ck(ϕ, ψ) decay like rk when the observables ϕ
and ψ are chosen from suitable function spaces.

Eventually it is also interesting to consider a more general class of transfer
operators associated to potential functions for which the largest eigenvalue
may not be 1, but for now we stick to the setting described so far.

3.2 Function spaces and compactness

Before moving on to more general piecewise expanding interval maps, we
recall some background material on functional analysis, and in particular on
compactness properties that will be important.

3.2.1 Function spaces and extra structure

It is useful to treat real-valued functions (or complex-valued functions, or
vector space-valued functions) as elements of a vector space, so that the
tools from linear algebra can be applied. Given a set X one may consider
the vector space RX of all real-valued functions with domain X. If X is finite,
say with n elements, then this is just the familiar vector space Rn. The more
interesting examples are when X is infinite, and so RX is infinite-dimensional.
We will focus on the case X = [0, 1], which is reasonably representative.

Generally speaking, the functions [0, 1] → R that arise from some appli-
cation are not entirely arbitrary, but have some degree of regularity – maybe
they are continuous, or piecewise continuous, or measurable, or integrable,
etc. It turns out that the vector space R[0,1] is “too large” for many ap-
plications, and that it is more suitable to consider a smaller space, whose
elements are functions with some extra properties. We will consider some of
the ways to do this, paying particular attention to how those choices let us
recover certain properties of Rn that involve extra structure beyond that of
the vector space itself:

• Topology: We know what it means for a sequence ~xk ∈ Rn to converge
to some ~x ∈ Rn, and we want a similar notion of convergence in a
vector space V ⊂ R[0,1].
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• Metric and norm: We want the notion of convergence to come from
a metric (distance function) that is compatible with the vector space
structure of V – that is, a norm, with respect to which the vector space
V becomes a Banach space.

• Compactness: A subset of Rn is compact if every sequence in that sub-
set has a convergent subsequence, and this property is important in
many applications and proofs. By the Heine–Borel theorem compact-
ness in Rn is equivalent to being closed and bounded. How can we
determine when a set of functions in V is compact?

3.2.2 Continuous functions and Arzelà–Ascoli

The extra structure we seek to place on V ⊂ R[0,1] should leverage some of
the extra structure that [0, 1] has, beyond simply being an uncountable set.
In particular, we may use either the topology of [0, 1] or Lebesgue measure
on [0, 1] to define properties of functions f : [0, 1]→ R. First we discuss the
topological option – later we see what happens when we use the measure-
theoretic structure to define the Lp spaces (and others).

The natural space to use is C(X), the space of continuous real-valued
functions on X = [0, 1], with the norm ‖f‖C0 = supx∈[0,1] |f(x)|. The space
of continuous functions is complete with respect to this norm, and so we
have a Banach space. What about compactness? How do we tell if a set
A ⊂ C(X) is compact? Of course A should be closed, but what else do
we need? Boundedness is no longer enough: the unit ball in C(X) is not
compact, as can be seen by considering the sequence of functions shown in
Figure 3.1.

The solution here is given by the Arzelà–Ascoli theorem: a set A ⊂ C(X)
is pre-compact (has compact closure) if and only if the following conditions
are satisfied.

• A is uniformly bounded: supf∈A supx∈X |f(x)| <∞.

• A is equicontinuous: for every ε > 0 there exists δ > 0 such that
|f(x)− f(y)| < ε for every f ∈ A and |x− y| < δ.

Remark 3.2.1. The proof that these conditions guarantee compactness uses
the following strategy, which it is a useful exercise to complete:
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Figure 3.1: Uniformly bounded but no convergent subsequence.

1. Given any sequence fn ∈ A, use uniform boundedness and a diagonali-
sation argument to find a subsequence that converges at every rational
number. (Or on some other countable dense set.)

2. Use equicontinuity to guarantee that {fnk(x)}k≥1 is Cauchy for every
x ∈ [0, 1], and hence converges.

In particular, one can consider the subspace Cα(X) ⊂ C(X) of Hölder
continuous functions with exponent α ∈ (0, 1) – this is a Banach space with
norm

‖f‖Cα = ‖f‖C0 + |f |α, |f |α = sup
x 6=y

|f(x)− f(y)|
|x− y|α

.

When α = 1 this is the space of Lipschitz functions. If A ⊂ Cα(X) is
uniformly bounded in the Cα norm, then it is uniformly bounded in the C0

norm and equicontinuous, and hence it is pre-compact in the C0 norm.
It is important to note here the structure of the last statement – we

have two norms, ‖ · ‖Cα and ‖ · ‖C0 , such that uniform boundedness in
one norm implies pre-compactness in the other. This is the closest
that we can come to an infinite dimensional analogue of Heine–Borel: as a
consequence of Riesz’s lemma, every infinite-dimensional Banach space has
a uniformly bounded sequence with no convergent subsequence.

In our study of spectral methods in dynamics, an important step is always
to find two norms with this relationship: uniform boundedness in one implies
pre-compactness in the other. We remark that the Arzelà–Ascoli theorem
actually gives just a little bit more than this: given a sequence fn ∈ C(X)
that is uniformly bounded in the Cα norm, pre-compactness only guarantees
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the existence of a limit point fnk
C0

−→ f ∈ C0, but in fact the limit point f is
in Cα as well, because any modulus of continuity for the sequence fn is also
a modulus of continuity for any limit point.

Another important family of function spaces, which leverages not only
the topological but also the differentiable structure of the unit interval, are
the spaces Cr, defined inductively as

Cr+1 = {f : [0, 1]→ R | f is differentiable and f ′ ∈ Cr}.

Here r need not be an integer (the base case for the induction is 0 ≤ r < 1),
so for example, for 0 < α < 1, C1+α is the space of differentiable functions
whose derivatives are Hölder continuous with exponent α. The space Cr

becomes a Banach space when endowed with the norm inductively given by

‖f‖Cr+1 = ‖f‖C0 + ‖f ′‖Cr .

For example, on C1 the appropriate norm is

‖f‖C1 = ‖f‖C0 + ‖f ′‖C0 . (3.3)

The relationship discussed above between uniform boundedness in one norm
and pre-compactness in another can be stated quite generally for this fam-
ily of norms: uniform boundedness in the Cr norm implies pre-
compactness in the Cs norm for any 0 ≤ s < r. This relationship is
often expressed by saying that “Cr is compactly embedded in Cs for r > s”.

3.2.3 Lp spaces

In terms of the measure-theoretic structure of the unit interval, the most
important function spaces are the Lp spaces

Lp = Lp([0, 1], dx)

=

{
f : [0, 1]→ R

∣∣ f is measurable and

‖f‖p :=

(∫
[0,1]

|f(x)|p dx
) 1

p

<∞

}
,

where 1 ≤ p <∞, and

L∞ = {f : [0, 1]→ R | f is measurable and ‖f‖∞ <∞},
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where ‖f‖∞ = sup{L ≥ 0 | {x ∈ [0, 1] | |f(x)| > L} has positive Lebesgue measure}
is the essential supremum of f .

In fact, this definition cheats a little bit, because elements of an Lp space
are actually equivalence classes of functions, where two functions are equiv-
alent if they agree on a set of full Lebesgue measure. This throws a small
technical monkey wrench into many arguments involving Lp spaces, since
strictly speaking an expression like f(x) for f ∈ Lp has no meaning unless
it is inside an integral sign. One way to avoid these technicalities is to em-
phasise the role of elements of Lp not necessary as functions, but rather as
linear functionals.

Recall that if B is a Banach space, then B∗ is the dual space of continuous
linear functionals B → R. The Lp spaces have the property that

(Lp)∗ = Lq for 1 < p, q <∞ such that
1

p
+

1

q
= 1,

where f ∈ Lp defines a linear functional on Lq by

g 7→
∫
f · g dx for g ∈ Lq. (3.4)

Thus instead of thinking of a function f ∈ Lp, we may think of the associated
functional in (3.4), which is obtained by integrating the function f against
test functions from a suitable space. In this case the space of test functions
is taken to be Lq, but there are many other examples we could consider
– eventually this leads to the idea of considering distributions in place of
functions, but we will not go this far here.

Remark 3.2.2. Before moving on, we note that (L1)∗ = L∞, but (L∞)∗ is
a larger space than L1.

3.2.4 Weak derivatives

An important use of this alternate viewpoint – functions as continuous linear
functionals – is to define the weak derivative of a function. If f : [0, 1]→ R is
differentiable, then for any differentiable g : [0, 1]→ R with g(0) = g(1) = 0,
integration by parts gives∫

f ′ · g dx = −
∫
f · g′ dx. (3.5)
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Equation (3.5) characterises the derivative f ′, which motivates the following
definition: h ∈ L1 is the weak derivative of f ∈ L1 if∫

h · ϕdx = −
∫
f · ϕ′ dx for all ϕ ∈ G, (3.6)

where the space of test functions is G = {ϕ ∈ C1([0, 1],R) | ϕ(0) = ϕ(1) =
0}. Write h = Df in this case.

Example 3.2.3. The absolute value function f(x) = |x| has as its derivative
the step function Df(x) = −1(x < 0), 1(x > 0). Note that the value of Df(0)
is not uniquely defined because Df is considered as an element of L1.

Writing g(x) = Df(x) for the step function just described, we see that g
does not have a weak derivative in L1. Indeed, this is true for any function
with a jump discontinuity.

Using mollifiers one can show that any L1 function f can be L1 approx-
imated by (infinitely) differentiable functions fε such that f ′ε approximates
Df in L1. This can be used to show that the usual product rule for deriva-
tives holds for weak derivatives as well: D(fg) = (Df) · g + f · (Dg), as
long as f and g both have weak derivatives. The space of L1 functions with
a weak derivative in L1 is denoted W 1,1 and is an important example of a
Sobolev space. Here the norm is

‖f‖W 1,1 = ‖f‖L1 + ‖Df‖L1 ,

which can be viewed as an analogue of the definition of the C1 norm in (3.3).
Moreover, just as the C1 unit ball is C0 compact, so also the W 1,1 unit ball
is L1 compact, as we will see.

3.2.5 Kolmogorov–Riesz compactness theorem

In understanding compactness for subsets of function spaces, it is useful to
recall that the Heine–Borel theorem can be generalised to arbitrary complete
metric spaces as follows: a set is compact if and only if it is closed and totally
bounded. In particular, for Banach spaces, pre-compactness is equivalent to
being totally bounded.

The Arzelà–Ascoli theorem gives a necessary and sufficient condition for
a set in C0 to be totally bounded (and hence pre-compact). A similar re-
sult in the Lp spaces is the Kolmogorov–Riesz compactness theorem – an
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expository account of this theorem and its relationship to the Arzelà–Ascoli
theorem is given in a recent paper by H. Hanche–Olsen and H. Holden, ‘The
Kolmogorov–Riesz compactness theorem’ (Expo. Math. 28 (2010), 385–394).

In our setting (where we consider Lp spaces with respect to a finite mea-
sure), the Kolmogorov–Riesz theorem can be stated as follows: a set F ⊂ Lp

is totally bounded (in the Lp norm) if and only if

1. F is bounded, and

2. for every ε > 0 there is δ > 0 such that ‖f ◦ Tγ − f‖p < ε for every
f ∈ F and |γ| < δ, where Tγ : x 7→ x+ γ.

In other words, to go from bounded to totally bounded one needs the added
condition that small changes to the argument result in (uniformly) small
changes in the function, with respect to the Lp norm.

Roughly speaking the idea is that if a set can be “approximately embed-
ded” into a totally bounded set, then it must itself be totally bounded – this
is Lemma 1 in the paper referred to above. Then the condition on f ◦Tρ− f
for f ∈ F allows the set F to be “approximately embedded” into a bounded
set in Rn by averaging f over small neighbourhoods in its domain. This is of
course a very rough description and one should read the paper for the com-
plete proof and precise formulation of what it means to be “approximately
embedded”.

3.2.6 Bounded variation and Helly’s theorem

One can use the Kolmogorov–Riesz theorem to show that W 1,1 is compactly
embedded in L1. (This is a special case of the Rellich–Kondrachov theorem.)
However, since functions with jump discontinuities are not in W 1,1, we want
to use a bigger function space in order to study spectral properties of the
transfer operator.

The definition of weak derivative can be generalised if one is willing to
allow Df to live somewhere besides L1. Recall that we want Df to satisfy∫

(Df) · ϕdx = −
∫
f · ϕ′ dx

for every test function ϕ ∈ G, the space of C1 functions on the interval
that vanish at the endpoints. The left-hand side defines a linear functional
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G → R, and given any f ∈ L1 we may define Df as such a linear functional
by setting

(Df)(ϕ) = −
∫
f · ϕ′ dx.

If f /∈ W 1,1, this functional is not given by integration against an L1 function,
but now the definition makes sense for any f ∈ L1. Moreover, the space of
linear functionals on G carries a natural norm: the norm of ` : G → R is

‖`‖G∗ = sup{|`(ϕ)| | ϕ ∈ G, ‖ϕ‖C0 ≤ 1}.

A functional ` is continuous if and only if ‖`‖ < ∞. One can show that
‖Df‖G∗ = |f |BV , and so

BV = {f ∈ L1 | ‖Df‖G∗ <∞}.

The BV norm can be written as ‖f‖BV = ‖f‖L1 + ‖Df‖G∗ . Note that BV
is exactly the set of functions f ∈ L1 for which Df is a continuous linear
functional on G.

Helly’s selection theorem states that BV is compactly embedded in L1.
(This is not to be confused with Helly’s theorem in geometry.) This is a con-
sequence of the Kolmogorov–Riesz compactness theorem, because a relatively
straightforward computation shows that

‖f ◦ Tγ − f‖L1 ≤ |f |BV |γ|.

(See Lemma 11 and Theorem 12 in the paper of Hanche–Olsen and Holden
referenced above.) We remark that one can also give a direct proof following
the hint given in Footnote 8 of Keller and Liverani’s ‘A spectral gap for a
one-dimensional lattice of coupled piecewise expanding interval maps’: given
f ∈ BV , let fn be the step function that is constant on each dyadic interval
[k, k+ 1]/2n, with value equal to the average of f on that interval. Then the
functions fn approach f in L1, and the problem reduces to finding a suitable
subsequence of step functions.

3.3 Expanding interval maps

3.3.1 General strategy

Now we consider general piecewise expanding interval maps T . The map T is
assumed to be C2 on each of finitely many intervals whose union is X = [0, 1]
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– these are called the basic intervals for T . Moreover, we assume that λ > 1
is such that |T ′(x)| ≥ λ for every x ∈ X.

Our goal is to show that the transfer operator for such maps has a spectral
gap when it acts on suitable Banach spaces. Existence of a spectral gap can
be interpreted as the statement that apart from functions which are densities
of absolutely continuous invariant measures (and hence are fixed by PT ),
the transfer operator acts as a contraction on a certain space of functions;
the mechanism driving this contractive property is the fact that T expands
distances on the phase space [0, 1]. We note that the action of PT on L1

satisfies

‖PTϕ‖1 = sup

{∫
(PTϕ) · ψ dx

∣∣ψ ∈ L∞, ‖ψ‖∞ ≤ 1

}
= sup

{∫
ϕ · (ψ ◦ T ) dx

∣∣ψ ∈ L∞, ‖ψ‖∞ ≤ 1

}
≤ ‖ϕ‖1.

(3.7)

In fact, (3.7) holds for any measurable transformation T that is non-singular
– that is, T does not map a set of positive Lebesgue measure into a set of
zero measure. Non-singular maps are precisely those maps for which every
ψ ∈ L∞ has ‖ψ ◦ T‖∞ ≤ ‖ψ‖∞. In other words, non-singularity of T implies
that the Koopman operator does not expand distances in L∞, which in turn
implies that the transfer operator does not expand distances in L1. However,
(3.7) is not enough to deduce any information on decay of correlations for T ,
because the contraction is not strict.

In fact, (3.7) does not even let us deduce the existence of an absolutely
continuous invariant measure. How might we hope to find such a measure?
Recall the proof of the Krylov–Bogolyubov theorem, which establishes the
existence of an invariant measure for a continuous map on a compact metric
space (though there is no mention of absolute continuity): one starts with a
measure µ that is not necessarily invariant, and then considers the sequence
of Cesàro averages µn = 1

n

∑n−1
k=0 µ ◦ T−k. Any limit point of this sequence is

an invariant measure, and compactness of the space of measures shows that
such limit points exist.

In our setting we want an absolutely continuous invariant measure, which
means we should play the same game on the set of density functions: start-
ing with the constant function 1, representing Lebesgue measure, we may
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consider the sequence

ϕn =
1

n

n−1∑
k=0

P k
T 1. (3.8)

If ϕnj → ϕ ∈ L1, then dµ = ϕdx defines an invariant measure µ, which is
an acip. (Note that

∫
ϕn dx = 1 and ϕn ≥ 0 for all n.) But how do we

obtain a convergent subsequence? Thanks to (3.7) we know that every ϕn is
contained in the unit ball in L1 – but this ball is not compact.

The solution is to consider an auxiliary Banach space B ⊂ L1 such that
the unit ball of B is relatively compact in L1. If B can be chosen such that the
sequence ϕn is uniformly bounded in the B-norm, then relative compactness
implies the existence of a subsequence that converges (in L1) to some ϕ ∈ L1,
which is the desired density. (Indeed, it is often the case that ϕ ∈ B.)

For the doubling map, which we studied earlier, the appropriate Banach
space to use was the space of Lipschitz functions, whose unit ball embeds
compactly into L1 by the Arzelà–Ascoli theorem. However, this choice does
not fare so well for general piecewise expanding interval maps.

Say that the map T is full-branched if T (Ji) = [0, 1] for each basic interval
Ji. If T is not full-branched, then one can choose points x1, x2 that are
arbitrarily close together but have different numbers of pre-images, and so
in particular the quantities

∑
y∈T−1(xj)

|T ′(y)|−1 for j = 1, 2 do not approach
each other as x1 → x2. This means that PT1 has a discontinuity at the
endpoints of a non-full branch of T , and so the space of continuous functions
is not PT -invariant.

We deal with the situation by replacing the space of Lipschitz functions
with a different space, which is invariant under the action of PT .

3.3.2 Functions of bounded variation

We recall some more facts about functions of bounded variation, which we
discussed earlier. Recall that the total variation of a function ϕ : [0, 1] → C
is

|ϕ|BV = sup

{
n∑
k=1

|ϕ(xk)− ϕ(xk−1)|
∣∣∣ 0 = x0 < x1 < · · · < xn = 1

}
, (3.9)

and that ϕ has bounded variation if |ϕ|BV <∞. We denote by BV the vector
space of such functions. A useful example to keep in mind is the following:
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Given any α ≥ 0, the function ϕα(x) = xα sin(1/x) is defined on (0, 1] and
can be extended to [0, 1] by ϕα(0) = 0. It has bounded variation if and only
if α > 1.

Remark 3.3.1. A bounded variation function is continuous except perhaps
on a countable set of jump discontinuities, and differentiable Lebesgue-a.e.
(Think of the examples just mentioned – the function ϕα is continuous at 0
as long as α > 0, and is differentiable at 0 precisely when α > 1, that is,
when it is of bounded variation.)

The total variation as defined in (3.9) is a semi-norm on BV . We want
to think of BV as a subspace of L1, but we must be careful to remember
that elements of L1 are equivalence classes of functions (mod zero w.r.t.
Lebesgue measure), and note that the quantity in (3.9) depends on which
representative of the equivalence class we choose. Thus to define | · |BV on
L1 we put (abusing notation slightly)

|ϕ|BV = inf{|ϕ̂|BV | ϕ = ϕ̂ Lebesgue-a.e.}. (3.10)

An alternate approach that allows us to avoid this step is to define the BV -
semi-norm through integration: it can be shown that (3.9) is equivalent to

|ϕ|BV = sup

{∣∣∣∣∫
[0,1]

ϕ · g′ dx
∣∣∣∣ ∣∣ g ∈ G} , (3.11)

where G = {g ∈ C1([0, 1],C) | ‖g‖∞ ≤ 1, g(0) = g(1) = 0}. The idea behind
this equivalence is the following.

• When ϕ is differentiable, (3.9) is equivalent to |ϕ|BV =
∫

[0,1]
|ϕ′| dx.

• Choosing g ∈ G such that ϕ′ · g ≈ |ϕ′|, one gets
∫
|ϕ′| dx ≈ ϕ′ · g dx.

• Integrating by parts yields the expression in (3.11).

Although the expression (3.11) does not make the heuristic interpretation of
“total variation” as obvious as (3.9) does, it nevertheless has two important
advantages over that definition:

1. it does not depend on the choice of representative function in an equiv-
alence class of L1, and so allows us to define | · |BV on L1 without an
extra step along the lines of (3.10);
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2. it generalises more readily to functions on higher-dimensional domains.

As with the Lipschitz semi-norm that we used last time for the doubling map,
we can define a BV -norm by adding the L1-norm to the BV -semi-norm:

‖ϕ‖BV = ‖ϕ‖1 + |ϕ|BV .

The space of BV functions is appropriate for us to study because its unit ball
is relatively compact in L1 – this is Helly’s selection theorem, which states
that if ϕn ∈ BV is such that ‖ϕn‖BV is uniformly bounded, then there is

ϕ ∈ BV such that ϕnj
L1

−→ ϕ for some subsequence nj.
In particular, if we can show that the sequence ϕn defined in (3.8) is

uniformly bounded in the BV norm, then Helly’s theorem will yield a BV
limit point ϕ, and the measure µ defined by dµ = ϕdx will be an acip for T .

3.3.3 A Lasota–Yorke inequality

In order to proceed further, we must investigate the properties of the transfer
operator PT with respect to the BV norm. Along the way we will see that
BV is invariant under PT . We give an argument using the definition (3.11) to
derive a bound that was first given by A. Lasota and J. Yorke in a 1974 paper
– the argument there is equivalent to the one here, but uses the definition
(3.9).

Given a function g ∈ G, we need to estimate
∫

(PTϕ) · g′ dx. To this end
we recall that by the definition of the transfer operator, we have∫

(PTϕ) · g′ dx =

∫
ϕ · (g′ ◦ T ) dx =

∫
ϕ · (g ◦ T )′ · (T ′)−1 dx,

where the second equality is valid because T is differentiable at all but finitely
many points. Recalling the definition (3.11), this gives

|PTϕ|BV ≤ sup

{∣∣∣∣∫ ϕ · (g ◦ T )′ · (T ′)−1 dx

∣∣∣∣ ∣∣ g ∈ G} . (3.12)

It is tempting to try and use the bound |T ′(x)| ≥ λ to conclude that this
quantity is ≤ λ−1 sup

{∣∣∫ ϕ · (g ◦ T )′ dx
∣∣ ∣∣ g ∈ G}, but we must take care –

the argument of the integrand may vary, and so we cannot proceed quite so
directly. Rather, we use the identity

d

dx

(
g ◦ T
T ′

)
= (g ◦ T )′(T ′)−1 − (g ◦ T )

T ′′

(T ′)2
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to obtain∣∣∣∣∫ ϕ · (g ◦ T )′ · (T ′)−1 dx

∣∣∣∣ ≤ ∣∣∣∣∫ ϕ

(
g ◦ T
T ′

)′
dx

∣∣∣∣+

∫
|ϕ| · |g ◦ T | · |T

′′|
|T ′|2

dx

≤ λ−1

∣∣∣∣∫ ϕg̃′ dx

∣∣∣∣+K‖ϕ‖1,

where g̃ = λg◦T
T ′

has ‖g‖∞ ≤ 1 and K = max(|T ′′|/|T ′|2). (Note that it is
at this point that we use the hypothesis that T is C2 – elsewhere only C1 is
used.)

If the map T were differentiable on the entire interval [0, 1] and fixed the
endpoints, then we would have g̃ ∈ G and so (3.12) would immediately imply
|PTϕ|BV ≤ λ−1|ϕ|BV + K‖ϕ‖1. Unfortunately, as shown in Figure 3.2, g̃ is
discontinuous at each of the discontinuity points of T , and moreover does not
vanish at the endpoints of [0, 1] if those endpoints are not fixed by T . Thus
we must be more careful.

Figure 3.2: g̃ may not be in G.

The idea is to approximate g̃ with functions from G, as shown in Figure
3.3. Let 0 = b0 < b1 < · · · < bn = 1 be the endpoints of the intervals on
which the map T is C2. Given ε > 0, let h : [0, 1] → C be a continuous
function such that h(0) = h(1) = 0, h(x) = g̃(x) when |x − bk| ≥ ε for each
k, and h is linear on B(bk, ε).

Finally, let h̃ ∈ G be close to h in the uniform metric and agree with h
except on an ε2-neighbourhood of each point where h is non-differentiable.
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Figure 3.3: Approximating g̃ with elements of G.

We get ∫
ϕ · g̃′ dx ≤

∫
ϕ · h̃′ dx+

∫
ϕ · |h̃′ − g̃′| dx

≤ |ϕ|BV +
n∑
k=0

(∫
B(bk,ε)

ϕ · |h̃′| dx

+

∫
B(bk,ε)

ϕ · |g̃′| dx
)
.

(3.13)

The second integral in the sum goes to 0 as ε→ 0. (This uses the assumption
that T ′ ∈ L1.) For the first integral, we use the fact that h′ = 1

2ε
(g̃(bk + ε)−

g̃(bk−ε)) to conclude that as ε→ 0, the integral goes to ϕ(bk)|g̃(b+
k )− g̃(b−k )|,

where ϕ(bk) is understood as limε→0
1
2ε

∫
B(bk,ε)

ϕdx, so that in particular we

choose the representative of the L1-equivalence class that minimises the total
variation, as in (3.10).

Since ‖g‖∞ ≤ 1 and g(0) = g(1) = 0, we conclude that

n∑
k=0

∫
B(bk,ε)

ϕ · |h̃′| dx ≤
n∑
k=1

|ϕ(bk−1)|+ |ϕ(bk)|. (3.14)

We can bound this sum in terms of |ϕ|BV and ‖ϕ‖1. Letmk = infx∈[bk−1,bk] |ϕ(x)|,
then

|ϕ(bk−1)|+ |ϕ(bk)| ≤ 2mk +
∣∣ϕ|[bk−1,bk]

∣∣
BV
,

as suggested by Figure 3.4.

Moreover,
∫

[bk−1,bk]
|ϕ| dx ≥ mk(bk − bk−1) ≥ mk∆, where ∆ = mink(bk −



3.3. EXPANDING INTERVAL MAPS 53

Figure 3.4: Bounding |ϕ(bk−1)|+ |ϕ(bk)|.

bk−1), and so we can sum over k to get

n∑
k=1

|ϕ(bk−1)|+ |ϕ(bk)| ≤ 2∆−1‖ϕ‖1 + |ϕ|BV .

Together with (3.13) and (3.14), this gives∫
ϕ · g̃′ dx ≤ 2|ϕ|BV + 2∆−1‖ϕ‖1,

so that (3.12) and the discussion following it gives us

|PTϕ|BV ≤ 2λ−1|ϕ|BV + (2∆−1 +K)‖ϕ‖1.

In terms of the BV norm we have

‖PTϕ‖BV ≤ 2λ−1‖ϕ‖BV + (2∆−1 +K + 1)‖ϕ‖1;

using the assumption that λ > 2, we can write this in the form

‖PTϕ‖BV ≤ r‖ϕ‖BV +R‖ϕ‖1 (3.15)

for r ∈ (0, 1) and R > 0. This is a Lasota–Yorke inequality, and turns out to
have important implications for the statistical properties of the map T .

3.3.4 Existence of an acip

Now we can return to the sequence ϕn defined in (3.8) as 1
n

∑n−1
k=0 P

k
T 1, and

show that it is uniformly bounded in BV . Indeed, iterating the Lasota–Yorke
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inequality (3.15) gives

‖P 2
Tϕ‖BV ≤ r‖PTϕ‖BV +R‖PTϕ‖1

≤ r2‖ϕ‖BV + (1 + r)R‖ϕ‖1,

where we use the inequality ‖PTϕ‖1 ≤ ‖ϕ‖1 from (3.7). Writing R̄ = R(1 +
r + r2 + · · · ) = R(1− r)−1, we have by induction

‖P k
Tϕ‖BV ≤ rk‖ϕ‖BV + R̄‖ϕ‖1. (3.16)

In particular, we conclude that the sequence ϕn is uniformly bounded in BV ,
since

‖ϕn‖BV ≤ rn + R̄ ≤ 1 + R̄.

As discussed above, Helly’s theorem shows that there is ϕ ∈ BV such that

ϕnj
L1

−→ ϕ for some subsequence nj, and the measure µ defined by dµ = ϕdx
is an acip for T .

Note that this proves the existence of an acip for T , but it does not prove
uniqueness. For the doubling map there is only one acip, Lebesgue measure,
but for other piecewise expanding interval maps there may be more than
one. For example, the map shown in Figure 3.5 has two ergodic acips, one
supported on [0, 1/2] and the other supported on [1/2, 1].

Figure 3.5: Non-uniqueness of an acip.

3.3.5 The spectrum of the transfer operator

The Lasota–Yorke inequality (3.15) also lets us deduce spectral information
about PT . First we observe that by the spectral radius formula and the
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iterated inequality (3.16), the spectral radius of PT : BV → BV is bounded
above by the inequality

ρ(PT ) = lim
n→∞

‖P n
T ‖1/n ≤ lim

n→∞
(rn + R̄)1/n = 1,

where we use the fact that ‖ϕ‖1 ≤ ‖ϕ‖BV . The previous section shows that
1 ∈ σ(PT ), and we conclude that ρ(PT ) = 1.

In fact, one can also use the Lasota–Yorke inequality to show that the
essential spectral radius of PT is ≤ r < 1, so that σ(PT ) only has finitely
many elements outside of B(0, r). Once it is shown that the only element of
the spectrum lying on the unit circle is 1, and that 1 is a simple eigenvalue,
it follows that we have exponential decay of correlations.
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Chapter 4

Cones

4.1 Non-equilibrium dynamics

Let T : X → X be a map. It induces a map T∗ on probability measures
defined by (T∗µ)(A) = µ(T−1A) for measurable sets A ⊂ X.

Example 4.1.1. µ = δp, T∗µ = δT (p).

Example 4.1.2. µ = 1
k

∑k
i=1 δpi then T∗µ = 1

k

∑k
i=1 δT (pi) provided that T is

one-to-one.

An invariant measure is some kind of equilibrium state. Does T admit
any invariant probability measures? Yes— if X is a compact metric space
and if T is continuous. (This is a consequence on the Krylov-Bogoliubov
theorem.) If T is continuous then it is possible that there is no invariant
Borel probability measures.

Within the class of invariant measures, one can ask whether T admits
any “important” measures? By “important,” we mean measures with some
physicality property, which leads to the Sinai-Ruelle-Bowen (SRB) measures
considered in the hyperbolicity lectures.

Rather than considering iterates of a single map, we could also consider
a situation where the dynamics change with time. That is, we let {fi}∞i=1 be
a sequence of maps on X and study the compositions fn ◦ · · · ◦ f1.

In this case it is not clear what “invariant measure” should mean, and
so rather than search for invariant measures we try to characterise the cor-
relation decay properties discussed earlier in an alternate way. The object

57
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of study is the memory loss from the “time-dependent” dynamics. Trajec-
tories coalesce (in the case of contractive systems) or we may use statistical
properties, in the case of systems with hyperbolic or expanding behavior.

Recall that when we consider iterates of a single map, density functions
ρ are transformed according to the Perron–Frobenius operator (the transfer
operator) PT . Thus given a density function ρ0 at time 0, the density function
at time n is ρn = P n

T ρ0. In the time-dependent (non-equilibrium) case one
defines ρn by

ρn = Pfn ◦ · · · ◦ Pf1ρ0

where Pfi is the Perron-Frobenius operator associated with the map fi.

Definition 4.1.3. We say that the time-dependent dynamical system {fi}∞i=1

exhibits exponential loss of memory in the statistical sense if there exists an
α > 0 such that ∫

|ρn − ρ̂n|dm ≤ Ce−αn

for all probability density functions ρ0, ρ̂0 in some suitable class and abso-
lutely continuous with respect to the reference measure m.

4.2 Convex cones

A useful tool for establishing memory loss are the notions of ‘convex cones’
and ‘Hilbert metric’, which we now introduce. Let V be a vector space over
the reals. Ultimately we will be most interested in the case when V is a
function space, such as L1 or BV , but for now we make the definitions in the
general context.

Definition 4.2.1. A subset C ⊂ V is a convex cone (or positive cone) if

1. C ∩ (−C) = ∅;

2. λC = C for each λ > 0;

3. C is convex; and

4. for all f, g ∈ C and α ∈ R, we have the following property: if αn → α
and g − αnf ∈ C for every n, then g − αf ∈ C ∪ {0}.
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The first three conditions are very geometric and in some sense guarantee
that C “looks like a cone should look”. The last condition is more topological;
if V is a topological vector space and C ∪ {0} is a closed subset of V , then
this condition holds, but we stress that the condition itself is actually weaker
than this and is phrased without reference to any topology on V .

Remark 4.2.2. The relation ≤ on V defined by φ ≤ ψ if and only if ψ−φ ∈
C ∪ {0} is a partial order that is compatible with the algebraic structure on
V .

Example 4.2.3. Let V = BV ([0, 1],R) be the space of all real-valued func-
tions on the unit interval with bounded variation, and let C = {ϕ ∈ V | ϕ ≥
0, ϕ 6≡ 0}. Then C is a convex cone.

We see immediately from this example that the notion of convex cone is
relevant to the sorts of questions we want to ask about invariant measures of
a dynamical system, because this set C is exactly the set of density functions
that arises when we are searching for an absolutely continuous invariant
measure.

This suggests that we will ultimately want to consider the action of some
operator L : C → C, and in particular may want to find a fixed point of this
action (for a suitable operator L). One of the most powerful methods for
finding a fixed point is to find a metric in which L acts as a contraction, and
this is accomplished by the Hilbert metric, which we now introduce.

Definition 4.2.4. Fix a convex cone C ⊂ V . Given ϕ, ψ ∈ C, let

β(ϕ, ψ) = inf{µ > 0 | µϕ− ψ ∈ C},
α(ϕ, ψ) = sup{λ > 0 | ψ − λϕ ∈ C},

(4.1)

with α = 0 and/or β = ∞ if the corresponding set is empty. The cone
distance between ϕ and ψ is

dC(ϕ, ψ) = log

(
β(ϕ, ψ)

α(ϕ, ψ)

)
. (4.2)

The distance dC is also called the Hilbert (projective) metric.

Several remarks are now in order. First we observe that although V may
be infinite-dimensional, the distance dC(ϕ, ψ) is completely determined in
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terms of the two-dimensional subspace spanned by ϕ and ψ, and in particular
by the points shown in Figure 4.1 – in the figure, the lines 0A and 0B are
the boundary of this two-dimensional cross-section of C. The lines 0X and
Y ψ are parallel, as are the lines 0A and ψX; then we have

α =
|ψY |
|0ϕ|

and β =
|0X|
|0ϕ|

.

Figure 4.1: Determining the cone distance between ϕ and ψ.

An alternate description of dC is available in terms of this more geometric
description. Let ` be the line through ϕ and ψ, and let A,B be the points
where this line intersects the boundary of C. We see from Figure 4.1 that
the triangles BY ψ and B0ϕ are similar, so

α =
|ψY |
|0ϕ|

=
|Bψ|
|Bϕ|

.

Furthermore, ϕ0A and ϕXψ are similar, so

β =
|0X|
|0ϕ|

= 1 +
|ϕX|
|0ϕ|

= 1 +
|ψϕ|
|Aϕ|

=
|Aψ|
|Aϕ|

.
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Thus dC can be given in terms of the cross-ratio of the points ϕ, ψ,A,B:

β

α
=
|Aψ|
|Aϕ|

|Bϕ|
|Bψ|

= (ϕ, ψ;A,B).

We have
dC(ϕ, ψ) = log(ϕ, ψ;A,B). (4.3)

Note that it is possible that the line ` does not intersect the boundary of C
twice; this corresponds to the case when either α = 0 or β =∞ (or both) in
(4.1), and in this case dC(ϕ, ψ) =∞.

This situation occurs, for example, when we take V = BV ([0, 1],R) and
C as in the example above, and consider ϕ, ψ ∈ C with disjoint supports –
that is, ϕ(x)ψ(x) = 0 for all x. In this case α = 0 and β = ∞ so the cone
distance between ϕ and ψ is infinite.

Because of this phenomenon, dC is not a true metric. Moreover, we
observe that dC is projective: dC(ϕ, λϕ) = 0 for every λ > 0.

An important property of the Hilbert metric is the following theorem, due
to Birkhoff, which states that a linear map from one convex cone to another
is a contraction whenever its image has finite diameter.

Theorem 4.2.5. Let C1 ⊂ V1 and C2 ⊂ V2 be convex cones, and let L : V1 →
V2 be a linear map such that L(C1) ⊂ C2. (This is a sort of ‘positivity’
condition.) Let

∆ = sup
ϕ̂,ψ̂∈L(C1)

dC2(ϕ̂, ψ̂).

Then for all ϕ, ψ ∈ C1, we have

dC2(Lϕ,Lψ) ≤ tanh

(
∆

4

)
dC1(ϕ, ψ), (4.4)

where we use the convention that tanh∞ = 1.

We also want to relate dC to a more familiar norm. Say that a norm ‖ · ‖
on V is adapted if the following is true: whenever ϕ, ψ ∈ V are such that
ϕ− ψ ∈ C and ϕ+ ψ ∈ C, we have ‖ψ‖ ≤ ‖ϕ‖.

Example 4.2.6. On BV , the L1 norm is adapted, but the BV norm is not.

The following lemma, due to Liverani, Saussol, and Vaienti, relates the
cone metric to an adapted norm.
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Lemma 4.2.7. Let ‖·‖ be an adapted norm on V and C ⊂ V a convex cone.
Then for all ϕ, ψ ∈ C with ‖ϕ‖ = ‖ψ‖ > 0, we have

‖ϕ− ψ‖ ≤
(
edC(ϕ,ψ) − 1

)
‖ϕ‖. (4.5)

Proof. If dC(φ, ψ) = ∞, we are done. Otherwise, dC(φ, ψ) is finite, and in
that case, dC(φ, ψ) = log β

α
, where αφ ≤ ψ ≤ βφ. This implies that

α||φ|| ≤ ||ψ|| ≤ β||φ||

since || · || is adapted. This gives us that α ≤ 1 ≤ β. We therefore have

(α− β)φ ≤ (α− 1)φ ≤ ψ − φ ≤ (β − 1)φ ≤ (β − α)φ.

Since the norm is adapted, ||ψ − φ|| ≤ ||(β − α)φ||. Just pull out the β − α
and exponentiate in order to obtain the inequality.

4.3 Perron–Frobenius theorem

Before returning to our discussion of dynamical systems and density func-
tions, we see how convex cones and the Hilbert metric can be used to obtain
an explicit estimate on the rate of convergence in the Perron–Frobenius the-
orem.

4.3.1 The theorem

We start by recalling the statement of the Perron–Frobenius theorem. Let A
be a d×d stochastic matrix, where here we use this to mean that the entries
of A are non-negative, and every column sums to 1: Aij ∈ [0, 1] for all i, j,

and
∑d

i=1Aij = 1 for all j. Thus the columns of A are probability vectors.
Such a matrix A describes a weighted random walk on d sites: if the

walker is presently at site j, then Aij gives the probability that he will move
to site i at the next step. Thus if we interpret a probability vector v as giving
the probability of the walker being at site j with probability vj, then v 7→ Av
gives the evolution of this probability under one step of the random walk.

Now one version of the Perron–Frobenius theorem is as follows: If A is
a stochastic matrix with A > 0 (that is, Aij > 0 for all i, j), then there is
exactly one probability vector π that is an eigenvector for A. Moreover, the
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eigenvalue associated to this eigenvector is 1, the eigenvalue 1 is simple, and
all other eigenvalues have modulus < 1. In particular, given any v ∈ [0,∞)2

we have Anv → π exponentially quickly.

The eigenvector π is the stationary distribution for the random walk
(Markov chain) given by A, and the convergence result states that any initial
distribution converges to the stationary distribution under iteration of the
process.

The assumption that A > 0 is quite strong: for the random walk, this
says that the walker can get from any site to any other site in a single step.
A more general condition is that A is primitive: that is, there exists N ∈ N
such that AN > 0. This says that there is a time N such that by taking N
steps, the walker can get from any site to any other site. The same result as
above holds in this case too.

In fact, the result holds in the even more general case when A is irre-
ducible: for every i, j there exists N such that (AN)ij > 0. This says that
the walker can get from every site to every other site, but removes the as-
sumption that there is a single time N that works for all site. For example,
consider a random walk on a chessboard, where the walker is allowed to move
one square horizontally or vertically at each step. Then for a sufficiently large
even value of N , the walker can get from any white square to any other white
square, but to get to a black square requires an odd value of N .

4.3.2 A cone and a metric

As stated above, the Perron–Frobenius theorem does not give any result on
the rate with which Anv converges to π. One way to give an estimate on this
rate is to use convex cones and the Hilbert metric (this also gives a proof of
the theorem).

Let C be the convex cone [0,∞)d ⊂ Rd. We want an estimate on the
diameter of A(C) in the Hilbert metric dC. Recall that this metric is given
by dC(v, w) = log(β/α), where

β = inf{µ > 0 | µv − w ∈ C},
α = sup{λ > 0 | w − λv ∈ C}.

Another way of interpreting the cone C is in terms of the partial order it
places on V , which is given by v � w ⇔ w− v ∈ C ∪ {0}. We see that β and
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α can be characterised as

α = sup{λ | λw � v}, β = inf{µ | v � µw}.

In our present example, we see that the cone C = [0,∞)d induces the partial
order v � w ⇔ vi ≤ wi ∀i. Thus

α = sup{λ | λwi ≤ vi ∀i} = min
1≤i≤d

vi
wi
, (4.6)

and similarly β = max1≤i≤d
vi
wi

.

4.3.3 Diameter of A(C)
Now we need to determine the diameter ∆ of A(C) in the Hilbert metric dC.
If ∆ < ∞, then the theorem of Birkhoff from the previous post will imply
that dC contracts distances by a factor of tanh(∆/4) < 1.

Let ei be the standard basis vectors in Rd. Because dC is projective we
can compute ∆ by considering dC(Av,Aw) where

∑
vi =

∑
wj = 1. Using

the triangle inequality, we have

dC(Av,Aw) = dC

(
A
∑

viei, A
∑

wjej

)
= dC

(∑
vi(Aei),

∑
wj(Aej)

)
≤
∑
i,j

viwjdC(Aei, Aej) ≤ max
i,j

dC(Aei, Aej),

so it suffices to consider dC(Aei, Aej) for 1 ≤ i, j ≤ d. But Aei is just the
ith column of the matrix A, so writing A = [v1 · · · vn], where vi is the ith
column vector, we see that

∆ ≤ max
i,j

dC(v
i, vj). (4.7)

4.3.4 Contraction under multiplication by A

Now we have a very concrete procedure for estimating the amount of con-
traction in the dC metric under multiplication by A:

1. estimate ∆ using (4.7) and the expression for dC in (4.6) and the dis-
cussion preceding it;

2. get a contraction rate of tanh(∆/4) < 1.
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From (4.6) and the discussion preceding it, the distance dC(v
i, vj) is given as

dC(v
i, vj) = log β − logα = log

(
max
1≤k≤d

vik
vjk
· max

1≤k≤d

vjk
vik

)
. (4.8)

Let Λ = tanh(∆/4). To write an explicit estimate for Λ, we use

Λ =
e∆/4 − e−∆/4

e∆/4 + e−∆/4
=

1− e−∆/2

1 + e−∆/2
≤ 1− s

1 + s
, (4.9)

where s < 1 is any estimate we can obtain satisfying e−∆/2 ≥ s. From (4.8)
and (4.7), we have

e−∆/2 ≥ max
i,j

√√√√min
k

(
vik
vjk

)
min
k

(
vjk
vik

)
=: s. (4.10)

This allows us to obtain estimates on dC(A
nv, Anw). However, we want to

estimate d(Anv,Anw) in a more familiar metric, such as one coming from a
norm. We can relate the two by observing that if v, w ∈ (0, 1]d, then

dC(v, w) = log max
k

(
vk
wk

)
+ log max

k

(
wk
vk

)
≥ max

k
| log vk − logwk| ≥ max

k
|vk − wk| = ‖v − w‖L∞ ,

where the last inequality uses the fact that log has derivative ≥ 1 on (0, 1].
Since A maps the unit simplex to itself (because A is stochastic), we see that

‖Anv − Anw‖L∞ ≤ dC(A
nv, Anw) ≤ CΛn, (4.11)

where Λ is given by (4.9) and (4.10), and where we can take either C =
dC(v, w) or C = ∆/Λ (since dC(Av,Aw) ≤ ∆), whichever gives the better
bound. Since all norms on Rd are equivalent, we have a similar bound in any
norm.

4.3.5 Nonnegative matrices

The analysis in the previous section required A to be positive (Aij > 0 for all
i, j). A more general condition is that A is nonnegative and primitive: that
is, Aij ≥ 0 for all i, j, and moreover there exists N such that AN > 0.
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If Aij = 0 for some i, j, then it is easy to see from the calculations in the
previous section that A(C) has infinite diameter in the Hilbert metric, so the
above arguments do not apply directly. However, they do apply to AN when
AN > 0, and so we fix N for which this is true, and we obtain Λ < 1 such
that dC(A

Nv,ANw) ≤ ΛdC(v, w) for all v, w ∈ C.
Moreover, let L ∈ R be such that ‖Ar‖ ≤ L for all 0 ≤ r < N . Then for

any n ∈ N we can write An = AkN+r for some 0 ≤ r < N , so that

‖Anv − Anw‖ = ‖Ar(AkNv − AkNw)‖ ≤ LCΛk,

where C is as in (4.11). Thus we conclude that asymptotically, Anv ap-
proaches the eigenvector with contraction rate Λ1/N .

To see this in action, consider a Markov chain with transition matrix

A =

(
1
2

1
1
2

0

)
.

That is, from the first state the walker transitions to either state with prob-
ability 1/2, while from the second state the walker always returns to the first
state. Since the transition from the second state to itself is forbidden, A(C)
has infinite diameter. However, the two-step transition matrix is

A2 =

(
3
4

1
2

1
4

1
2

)
,

for which we can compute

s =

√
1/4

1/2
· 1/2

3/4
=

1√
6
⇒ Λ ≤

√
6− 1√
6 + 1

.

Thus the estimate on A2 gives us a definite rate of contraction, which the
estimate from A does not.

It can be useful to use the estimate on AN even when A > 0. For example,
if we consider the Markov chain with transition matrix

A =

(
1
5

9
10

4
5

1
10

)
,

then we have

s =

√
1/5

9/10
· 1/10

4/5
=

√
2

9
· 1

8
=

1

6
⇒ Λ ≤ 5

7
≈ .714
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as the rate of contraction, while considering

A2 =

(
19
25

27
100

6
25

73
100

)
gives

s =

√
27/100

19/25
· 6/25

73/100
≈ .3418 ⇒ Λ ≤ .6582

1.3418
≈ .4906 ≈ (.7)2,

a better estimate than we obtained from considering A itself.

4.4 Non-equilibrium open systems

Convex cones and the Hilbert metric are well suited to studying nonequilib-
rium open systems. Consider the following setting. Let X be a Riemannian
manifold, λ volume on X, and f̂i : X → X a diffeomorphism. For m ∈ N, let
F̂m = f̂m ◦ · · · ◦ f̂1. This is a nonequilibrium closed system. (Nonequilibrium
because the map changes at each time step, closed because every point can
be iterated arbitrarily many times.)

Now consider sets Hj ⊂ X, which we interpret as a “hole” at time j. The
time-m survivor set is

Sm = X \
m⋃
i=1

F̂−1
i (Hi),

the set of points that do not fall into a hole before time m. Let Fm = F̂m|Sm .
We refer to the pair (Fm, Hm) as a nonequilibrium open dynamical system.

We would like an analogue of decay of correlations for such systems. Let
ϕ0, ψ0 be two probability density functions on X, and evolve these under
(Fm, Hm). We expect that ‖ϕt‖L1(λ) < 1 because there is a positive proba-
bility of falling into a hole.

Let P̂j be the Perron–Frobenius operator for the closed system f̂j (with
respect to λ). Then to the open system fj we can associate the operator

Pj(ϕ) = P̂j(ϕ)1X\Hj .

Definition 4.4.1. We say that (Fm, Hm) exhibits conditional memory loss
in the statistical sense if for all suitably chosen ϕ0, ψ0, we have

lim
t→∞

∥∥∥∥ ϕt
‖ϕt‖L1(λ)

− ψt
‖ψt‖L1(λ)

∥∥∥∥
L1(λ)

= 0.
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The idea of this definition is that before comparing the probabilities, we
need to first condition on the event that the trajectory survives.

In the one-dimensional case, our space is [0, 1] and λ Lebesgue is our
reference measure.

Definition 4.4.2. An underlying closed system M consists of maps ĝ on
[0, 1] such that there exists a finite partition A(ĝ) of [0, 1] into subintervals
such that for each interval J ∈ A(ĝ), ĝ is C2 on J and extends to a C2 map
on J , and

max
J∈A(ĝ)

sup
x∈J
|(ĝ′)−1| ≤ s < 1.

There are no Markov assumptions on A. Note that expansion alone is not
enough for memory loss— two subsystems that never “communicate” are an
example. Such a system is not ergodic for Lebesgue measure.

Definition 4.4.3. (a type of mixing) Let z1 ∈ (0, 1) and z2 ∈ (1,∞). We
say a map ĝ : [0, 1] → [0, 1] belongs to E(z1, z2) if for every partition Q of
[0, 1] into equal subintervals there exists a time Tmix(Q, z1, z2) such that for
Ji, Jj ∈ Q

z1 ≤
λ(Ji ∩ ĝ−kJi)
λ(Ji)λ(Jj)

≤ z2

for all k ≥ Tmix(Q, z1, z2).

Definition 4.4.4. We say f̂ ∈M is a δ-perturbation of ĝ ∈M and we write
f̂ ∈ N(ĝ, δ) if δ < 1

4
(min1≤i≤j−1 xi+1 − xi) where xi are partition points

associated with the base map ĝ; if {0 = y1, . . . , yk = 1} is the set of partition
points associated with f̂ , then |yi − xi| < δ for all i = 1, 2, . . . , k; and if ξf̂ĝ
maps each [xi, xi+1] onto [yi, yi+1] in an affine way; then we have∣∣∣∣∣∣f̂ ◦ ξf̂ĝ − ĝ∣∣∣∣∣∣C2(J)

< δ

for all J ∈ A(ĝ).

Why the restriction on δ? It defines the basis for a topology.
Let our space of densities D be non-negative functions that integrate

to one. What should holes look like? We need to constrain the complexity
somehow. Say each Hj is a finite union of open intervals and that the number
is uniformly bounded in j.
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Theorem 4.4.5. (Mohapatra, Ott 2014) Let ĝ ∈ M ∩ E(z1, z2), L ∈ N.

There exists a δ0 > 0, ε > 0 and Λ < 1 such that for any sequence {f̂i}
in N(ĝ, δ0) and sequence of holes {Hj} where each Hj consists of at most L
open subintervals, and λ(Hj) ≤ ε0. Then there exists a convex cone Ca in
BV ([0, 1],R) and a constant C1 > 0 such that for all φ, ψ ∈ Ca ∩D we have

||RFm(φ)−RFm(ψ)||L1(λ) ≤ C1Λm.

The theorem uses the notation that F̂m = f̂m◦· · ·◦ f̂1. Taking the hats off
takes into account the loss of trajectories due to holes. We must also define
the operators L and R. L gives the evolution of densities under the open
dynamics Fm:

LFm(φ)x =
∑

z:Fm(z)=x

φ(z)

|F ′m(z)|
.

This is an “open transfer operator” analogous to the Perron-Frobenius oper-
ator. RFm is given by renormalizing:

RFm(φ) =
LFm

||LFm(φ)||L1(λ)

.

RFm is not linear, a fact that we must juggle in the results to come.
Note that the theorem does not hold for all BV densities one ε0 is fixed

(since BV functions can be supported on arbitrarily small sets).

Proof. Define a good cone and show it contracts.

Ca = {φ ∈ BV : φ ≥ 0, φ 6= 0, V ar(φ) ≤ aE[φ|Q]}

where

E[φ|Q](x) =
1

λ(J)

∫
J

φdλ

for x ∈ J . We want to show that for some time T , LFT takes Ca strictly
into itself: for some σ < 1, LFTCa ⊂ Cσa. We control variation using a
Lasota-Yorke-type inequality: V ar(LFT (φ)) ≤ θTV ar(φ) + KLY ||φ||L1(λ) for
some θ < 1 and all φ ≥ 0, φ ∈ BV .

Bound E[LFT |Q] from below for φ ∈ Ca by using the mixing assumption
on ĝ. Bound the diameter of LFT (Ca). By the Birkhoff theorem, this implies
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LFT contracts Ca. || · ||L1(λ) is adapted to Ca so contractions may be carried
over. In addition,

dCa(LFT (φ), LFT (ψ)) = dCa(RFT (φ), RFT (ψ))

by the projectivity of the cone.



Chapter 5

Statistical Physics

Some supplemental material to these notes is found in the slides for Renato
Feres’s talks, which are on the summer school website at

http://www.math.uh.edu/∼climenha/2014-school.html

5.1 Deterministic mechanical systems

Definition 5.1.1. A mechanical system consists of

1. a body B together with a distribution of mass given by a measure µ
on B;

2. a configuration manifold M such that every configuration of the body
B corresponds to some point q ∈M ;

3. a position map φ : M ×B → R3 such that φ(q, b) gives the position in
R3 of the point b ∈ B when the system is in configuration q.

Given a tangent vector v ∈ TqM , say that a curve γ in M represents v if
γ(0) = q and γ′(0) = v. Then given b ∈ B, we write

v(b) =
d

ds

∣∣∣∣
s=0

Φ(γ(s), b).

Define the inner product 〈v, w〉q =
∫
B
v(b)w(b)dµ(b), and interpret 1

2
||v||2q

as the kinetic energy of the system in state q. Non-collision movement is just
geodesic motion on M . Assume in the gas case that particles only interact
with the boundary, and not with one another.

71
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Example 5.1.2. A one-dimensional billiard system with two masses has
B = {1, 2}, µ(1) = m1, µ(2) = m2. M = {(x1, x2) ∈ [0, L]2 : x1 ≤ x2}
is a triangle (a “manifold with corners”) where each boundary represents a
different type of collision. Define the metric using 〈u, v〉 = m1u1v1 +m2u2v2.
The energy of the system in state q is E(q, v) = 1

2
||v||2q = 1

2
m1v

2
1 + 1

2
m2v

2
2.

Assume energy and momentum are conserved in collisions. The collision
map Cq : TqM → TqM preserves the norm (the energy) and the momentum
(the inner product); thus if we write v̂ = Cq(v), we get

m1v
2
1 +m2v

2
2 = m1v̂

2
1 +m2v̂

2
2,

m1v1 +m2v2 = m1v̂1 +m2v̂2.

By rescaling the triangle one can assume that m1 = m2 = 1 and thus the
collision map gives a new velocity reflected across the normal line of the
boundary.

Example 5.1.3. Consider two particles moving on a semi-infinite line [0,∞).
Let m1 < m2 be the masses, with mass m1 closer to 0 and both masses
moving left, towards the wall at 0. Question: How many collisions oc-
cur? One can show that the total number of collisions is bounded above
by d(arctan

√
m1/m2)−1πe.

5.2 Billiard systems

We will be mostly interested in Euclidean billiard systems, where we fix a
region M ⊂ Rn in which a particle moves freely, with its velocity reflecting
around TqM when it hits the boundary ∂M . We will be particularly inter-
ested in open billiards: An open system is one for which part of the boundary
Γ ⊂ ∂M is “open to the world,” (as opposed to topologically open). We are
looking for the return map for Γ: how long does a particle spend inside the
system?

To describe the reflection at the boundary more precisely, let nq be the
inward-pointing normal at q ∈ ∂M , and then consider the set N+ = {(q, v) :
q ∈ ∂M, |v| = 1, v · nq > 0} of inward-pointing vectors, and the set N− =
{(q, v) : q ∈ ∂M, |v| = 1, v ·nq < 0} of outward-pointing vectors. Identify N+

and N− via reflection over the TqM ; that is, identify N− with N+ for the
continuation of a particle path. Let NΓ be the tangent vectors corresponding
to the escaping region Γ ⊂ ∂M .
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Example 5.2.1. Cook’s billiard In two dimensions, a particle with mass m1

and a barrier with mass m2 � m1; the barrier moves up and down in a
limited vertical range (held by a perfectly flexible string). The top is open
to particles moving in and out.

Let x, y be the coordinates of m1 and z the height of m2. Under proper
rescaling we obtain a configuration manifold where the dynamics are regular
billiard dynamics as a subset of R3: this is a cube with open top and a
diagonal running from one top edge to the opposite bottom edge, representing
the different positions of the bottom mass.

One can consider a particle moving in a channel (R × [0, 1]) with ran-
dom scattering off the boundaries by putting copies of the Cook billiard at
microscopic scale along the boundary.

Example 5.2.2. Equilateral triangle with circular scatterers (centered at
vertices of triangle, taking ‘bites’ out of the corners), and one edge open.
“Trapped” paths form a Cantor set: one way of seeing this is to consider a
light ray entering through the open edge, and consider the region illuminated
it after 1 reflection, 2 reflections, etc.

Definition 5.2.3. The Knudsen measure on ∂M is invariant under the bil-
liard map, and is defined

dµ(q, v) = cv · nqdV oln−1(q)dV ol2n−2(v),

where V olk denotes k-dimensional volume.

Example 5.2.4. If L is the circumference of a circle and θ the angle of
impact, then Sn−1

+ × ∂M =
[
−π

2
, π

2

]
× [0, L] is a rectangle and dµ(r, θ) =

1
2L

cos θdrdθ.

For flat boundaries, trajectories do not expand, but inside a sphere par-
allel trajectories are scattered.

We now apply the Poincaré recurrence B : NΓ → NΓ for the first return
to Γ. The restriction of µ to NΓ is B-invariant, and B is well-defined for
µ-almost every element. We can, in fact, define the expected number of
collisions before a return and expected time of return for ergodic particles by
L
e

and Aπ
e|v| , respectively, where e is the length of Γ.
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5.3 Statistical properties of billiards

We will not introduce temperature quite yet. We think of the microscopic
scale as completely separate from the macroscopic: once inside a microscopic
cell, the macroscopic knows nothing until it comes out, and the microscopic
cell knows only the particle’s entry position and velocity. This allows the
(macroscopically) smooth boundary to acquire scattering properties using,
for example, Cook’s billiard as a microscopic cell. Thus we will model the
macroscopic process as a Markov chain, where the transition probabilities at
collision times are determined by the microscopic structure of the boundary.

Definition 5.3.1. Let V (r, v) be the exit velocity (for the microsystem)
associated to entering at position r ∈ [0, 1] with direction v. Then the
transition probability operator P is

(Pf)v =

∫ 1

0

f(V (r, v))dr = E[f(V )|v].

where f : Sn−1
+ → R is bounded.

One can check that (P1U)(v) is the probability that the reflected velocity
V is in U given an initial velocity v.

The velocity V of an particle leaving a cell is a random variable V (q, v)
where the entry point q has a uniform distribution. We will use the short-
hand µ(f) =

∫
fdµ and (µP )f = µ(Pf) =

∫
Pfdµ. So δvP gives the

distribution of the scattered trajectories with initial velocity v. General
properties for P are that µ is stationary for P if µP = µ. The measure
dµ(v) = c cos θdV olS

n−1
+ (v) is stationary for P .

Define P on H = L2(Sn−1
+ , µ). P is a self-adjoint operator norm on H:

〈f, g〉 =
∫
Sn−1
+

fgdµ, and 〈Pf, g〉 = 〈f, Pg〉. In particular P has real spectrum

in [−1, 1].

Our model system will be a disk of radius r times an interval, either
R if infinite in both directions of [0, 2L] if finite. Let s be the speed of the
particle. The velocities V0, V1, . . . have the Markov property and the collisions
form a random walk along the z direction, modeled by Brownian motion.
Let Zj be the displacement along the horizontal after collision j. Define
Xt = Z0 + Z1 + · · ·+ ZNt + (small error). Our claim is that, asymptotically
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(for large L) the mean exit time τ is

τ(L, r, s) =

{
L2

D
if n ≥ 3

1
D

L2

ln(Lr )
if n = 2

where D is the diffusion constant: the position of a random walker at time t
follows a distribution N(0, tD).

Let a� 0. Then τ(aL, r, s) = a2τ
(
L, r

a
, as
)
. This is because τ(L, r, s) =

τ(aL, ar, as) and τ(L, r, as) = 1
a
τ(L, r, s). r

a
means a smaller channel, and

as means faster particles. Thus as a scaled random walk, Za
j = 1

a
Zj and

Xa,t = Za
0 + · · · + Za

Na,t
. Note that Na,t is the number of collisions, and it

different from Nt. In fact, Na,t = Na2t.

Theorem 5.3.2. Central Limit Theorem. As a → ∞, Xa,t →dist N(0, tD).
In addition, Xa,t →weak Brownian motion with diffusion constant D.

Here is how to computeD: tD is the variance ofXa,t, so tD = lima→∞E[X2
a,t].

Say D0 is the diffusion constant for the i.i.d. case.

D

D0

=

∫ 1

−1

1 + λ

1− λ
dπz(λ),

the integral over the spectrum with respect to the projection-valued measure
for self-adjoint operators.

πz(U) =
1

||z||2
〈z, π(U)z〉

where π is the orthogonal projection onto the Hilbert space.

Example 5.3.3. For half-circles (concave relative to the particle),

D

D0

=
1− 1

4
ln 3

1 + 1
4

ln 3
< 1.

5.4 Non-equilibrium systems

Under our current model, energy doesn’t change in cells— we should take this
into account in a non-equilibrium system, which is more thermodynamically
interesting. We will alter Cook’s billiard so that the momentum of a particle
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may increase or decrease: v and V (ẋ1, ẋ2) are observable variables in the
upper-half plane. Then x1, x2, x3 and ẋ3 are hidden variables. Construct a
Markov chain that assigns to each hidden variable a fixed probability distri-
bution η. Now NH = Γ × Rm−n where there are n observable and m total
dimensions, and ηH is the probability measure on NH . The observable vari-
ables form NO = Hn, the upper-half plane of Rn. The billiard map B takes
v ∈ NO, z ∈ NH based on η, and produces a new point in N = NH ×NO. V
is the projection of this new point onto NO.

What is the probability distribution of V ?

δV P = (π ◦B)∗δv ⊗ ηH .

This formula relies on the assumption that ηH is a Gibbs state, which means
E = EO + EH and

dηH(q, w) = ρH(εH)dµεHH (q, w)dεH

where ρH maximizes the Boltzmann entropy for constant εH , (q, w) are the
velocities of the hidden variables, εH is the energy level, and µεHH is a reference
measure. So dηH is constant along observable energy levels. The Boltzmann
entropy is

H(ρH) = −
∫∫

ρH(ε) ln ρH(ε)dµεH(q, w)dε.

By Jensen’s inequality, ρ0, ρ1, ρ2, . . . must increase to ρH and, by Lagrange
multipliers, imply that

ρH(ε) = Ce−βHε.

Let P be the scattering operator defined using the (hidden) Gibbs state
ηH with inverse temperature parameter βH = 1

kT
. Let ηO be the Gibbs

state on NO with parameter βO = βH . (This equality characterizes thermal
equilibrium.) Then ηO is stationary for P ; that is, ηO = ηOP .

P is an operator on L2(NO, ηO). Suppose we can prove that P has spectral
gap: there exists a χ < 1 such that for all f ∈ L2(NO, ηO) with

∫
fdηO = 0,

||Pf ||L2 < χ||f ||L2 . Then for arbitrary distributions µ,

||µP n − ηO||TV ≤ Cµχ
n

where the total variation norm ||µ− ν||TV = sup{|µ(A)− ν(A)| : A ∈ F}.
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Example 5.4.1. two-particle, one on string.

dηH(x1, ẋ1) =
I[0,l](x1)

l

√
m1

(m1 +m2)σ22π
e
− 1

2

m1ẋ
2
1

(m1+m2)σ
2 dx1dẋ1

dηO(ẋ2) =
m2

(m1 +m2)σ
ẋ2e
− 1

2

m2ẋ
2
2

(m1+m2)σ
2 dẋ2

in this case, β = 1
(m1+m2)σ2 .

P acting on L∞((0,∞), ηO) is a self-adjoint, norm one compact (Hibert-
Schmidt) operator.

Conj: the spectral gap of the above example is about 4m2

m1
assuming that

m2 � m1. In addition, Pm2
m1

− id can be estimated by the Sturm-Liousville

operator.
Thermodynamics are stationary but irreversible.

Example 5.4.2. Particle is accelerated by TH bumper and slowed by TC
bumper: the particle transfers energy from one side to the other. One can
construct a “motor” that takes advantage of the velocity disparity for each
direction. This motor system is an example of Carnot thermodynamics and
may be modeled by Brownian motion with drift.
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Chapter 6

Symbolic dynamics and C∗

algebras

For slides from the lectures, please see the summer school homepage. Here
we give a list of some of the examples discussed.

Example 6.0.3. Let

M =

 3 −2 3
0 1 0
3 −3 3

 ∼
 3

1
0


which implies that the cokernel of M is Z3 ⊕ Z.

Example 6.0.4. E1

1 2

2

2

A =

(
2 2
1 1

)
, I − AT =

(
−1 −1
−2 0

)
∼
(

1
2

)
so the cokernel is Z2, det(I − AT ) = −2 < 0, and (1, 1)T 6∈ im(I − AT ).

Example 6.0.5. E2

79



80 CHAPTER 6. SYMBOLIC DYNAMICS AND C∗ ALGEBRAS

1

2 3

A =

 1 1 1
1 1 1
1 1 1

 , I − AT ∼

 1
1

2


so the cokernel is Z2 det(I − AT ) = −2 < 0, and (1, 1)T 6∈ im(I − AT ), just
as in E1.

Example 6.0.6. E3

1 22

A =

(
2 1
1 0

)
, I − AT ∼

(
1

2

)
Again, the cokernel is Z2, and the determinant of I − AT is negative, but
(1, 1)T ∈ im(I − AT ), which is not the case in the previous two examples.

Example 6.0.7. E4

1 2

3

4

3
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A =


3 1 0 0
1 1 1 1
0 1 0 0
0 0 1 1

 , I − AT ∼


1

1
1

2


E4 has cokernel Z2 but the determinant of I − AT = 2 > 0 is positive.

Example 6.0.8. E5

1 5

A = (5), I − AT ∼ (4)

The cokernel is Z4 and I − AT = (−4) has negative determinant.

What conclusions can we draw from these examples? XE1 and XE2

are continuously orbit equivalent,
(
C∗(E1), D(E1)

)
∼=∗

(
C∗(E2), D(E2)

)
,

and (Lk(E1), D(E1)) ∼= (Lk(E2), D(E2)). On the other hand, even though(
C∗(E3), D(E3)

)
∼=∗

(
C∗(E4), D(E4)

)
, the signs of the determinants are

different so they are not continuously orbit equivalent. (We know nothing
about (Lk(E3), D(E3)) and (Lk(E4), D(E4)).)

XE1 and XE3 are not continuously orbit equivalent, but they are flow
equivalent, which we can see by transforming E3 by reduction and outsplit-
ting. We know, based on the signs of determinants, that transforming E1

into E4 will require a Cuntz splice— in fact, the sequence of operations is
outamalgamation, Cuntz splice, and outsplitting.
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