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Diffusion in (straight) channels

Idealized diffusion experiment. Channel inner surface has micro-structure.
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How does the micro-structure influence diffusivity?
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Surface scattering operators (definition of P)

surface

velocity space (upper-half space)

random scattered velocity

Scattering characteristics of gas-surface interaction encoded in operator P.

(Pf )(v) = E[f (V )|v ]

where f is any test function on Hn and E[·|v ] is conditional expectation given

initial velocity v . If f (V ) =

{
1 if V ∈ U

0 if V /∈ U
then

(Pf )(v) = probability that V lies in U given initial v .
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Standard model I - Knudsen cosine law

dµ∞(V ) = Cn,s cos θ dVols(V ) Cn,s =
1

snπ
n−1
2

Γ

(
n + 1
2

)

probability density of scattered directions 

(Pf )(v) =

∫
Hn

f (V ) dµ∞(V ) independent of v
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Standard model II - Maxwellian at temperature T

dµβ(V ) = 2π
(
βM
2π

) n+1
2

cos θ exp
(
−
βM
2
|V |2

)
dVol(V )

where β = 1/κT .

probability density of scattered directions 

(Pf )(v) =

∫
Hn

f (V ) dµβ(V ) independent of v
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Natural requirements on a general P

We say that P is natural if

I µβ is a stationary probability distribution for the velocity Markov chain.

I The stationary process defined by P and µβ is time reversible.

I.e., in the stationary regime, all Vj have the surface Maxwellian distribution µβ
and the process satisfies

P(dV2|V1)dµβ(V1) = P(dV1|V2)dµβ(V2)

Time reversibility a.k.a. reciprocity a.k.a. detailed balance.
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Deriving P from microstructure: general idea

molecule system

before collision

wall system with fixed

Gibbs state, 

molecule system

after collision

scattering process

I Sample pre-collision condition of wall system from fixed Gibbs state

I Compute trajectory of deterministic Hamiltonian system

I Obtain post-collision state of molecule system.

Theorem (Cook-F, Nonlinearity 2012)
Resulting P is natural. The stationary distribution is given by Gibbs state of
molecule system with same parameter β as the wall system.
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Purely geometric microstructures
V is billiard scattering of initial v with random initial point q over period cell.

cell of periodic microstructure

uniformly distributed random point

Theorem (F-Yablonsky, CES 2004)
The resulting scattering operator is natural with stationary distribution µ∞.

I The stationary probability distribution is Knudsen cosine law

dµ∞(V ) = Cn cos θ dVsphere(V ) , Cn =
Γ
( n+1

2

)
π

n−1
2

1
|V |n

I No energy exchange: |v | = |V |
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Microstructures with moving parts

range of free 

motion of wall

random entrance point
random initial velocity of wall

random initial height

Assumptions:

I Hidden variables are initialized prior to each scattering event so that:
I random displacements are uniformly distributed in their range;
I initial hidden velocities are Gaussian satisfying energy equipartition.

I Statistical state of wall is kept constant .

Theorem (Thermal equilibrium. Cook-F, Nonlinearity 2012)

Resulting operator P is natural . The stationary probability distribution is µβ,
where β = 1/κT and T is the mean kinetic energy of each moving part.
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Cylindrical channels

Define for the random flight of a particle starting in the middle of cylinder:

I srms root-mean square velocity of gas molecules

I τ = τ(L, r , srms) expected exit time of random flight in channel
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CLT and Diffusion in channels (anomalous diffusion)

Theorem (Chumley, F., Zhang, Transactions of AMS, 2014)
Let P be quasi-compact (has spectral gap) natural operator. Then

τ(L, r , srms) ∼

{
1
D

L2

k if n − k ≥ 2
1
D

L2

k ln(L/r) if n − k = 1

where D = C (P)rsrms. Values of C (P) are described next.

Useful for comparison to obtain values of diffusion constant D for the i.i.d.
velocity process before looking at specific micro-structures. We call these
reference values D0.
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Values of D0 for reference (Trans. AMS, 2014)

For any direction u in Rk diffusivities for the i.i.d. processes are:

D0 =



4√
2π(n+1)

n−k
(n−k)2−1 rsβ when n − k ≥ 2 and ν = µβ

2√
π

Γ( n
2 )

Γ( n+1
2 )

n−k
(n−k)2−1 rs when n − k ≥ 2 and ν = µ∞

4√
2π(n+1)

rsβ when n − k = 1 and ν = µβ

2√
π

Γ( n
2 )

Γ( n+1
2 )

rs when n − k = 1 and ν = µ∞

where sβ = (n + 1)/βM and M is particle mass. We are, therefore, interested in

ηu(P) := Du
P/D0 (coefficient of diffusivity in direction u)

a signature of the surface’s scattering properties. (u is a unit vector in Rk .)
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Numerical example (F-Yablonsky, CES 2006)

R = 1

A = 0.7

A = 0.4

A = 0.1

A = molecular radius

Diffusivity increases with the radius of probing molecule.
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Examples in 2-D (C. F. Z., Trans. AMS, 2014)

Top: D is smaller then in i.i.d. (perfectly diffusive) case.
Middle and bottom: D increases by adding flat top.
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Examples in 2-D (C. F. Z., Trans. AMS, 2014)

Diffusivity can be discontinuous on geometric parameters:

Peculiar effects when
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Diffusivity and the spectrum of P
Consider the Hilbert space L2(Hn, µβ) of square-integrable functions on velocity
space with respect to the stationary measure µβ (0 < β ≤ ∞).

Proposition (F-Zhang, Comm. Math. Physics, 2012)
The natural operator P is a self-adjoint operator on L2(Hn, µβ) with norm 1. In
particular, it has real spectrum in the interval [−1, 1]. In many special cases we
have computed, P has discrete spectrum (eigenvalues) or at least a spectral gap.

Let Πu
Z (dλ) := ‖Z u‖−2〈Z u,Π(dλ)Z u〉 , Π the spectral measure of P. Then

ηu(P) =

∫ 1

−1

1 + λ

1− λΠu(dλ).

Example: Maxwell-Smolukowski model: η = 1+λ
1−λ , λ = prob. of specular reflec.
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Remarks about diffusivity and spectrum

I From random flight determined by P ⇒ Brownian motion limit via C.L.T.

Random flight in channel Random walk in velocity space

I D determined by rate of decay of time correlations (Green-Kubo relation)

I All the information needed for D is contained in the spectrum of P

I It is difficult to obtain detailed information about the spectrum of P; would
like to find approximation more amenable to analysis.
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Weak scattering and diffusion in velocity space
Assume weakly scattering microstructure: P is close to specular reflection.
In example below small h ⇒ small ratio m/M and small surface curvature.

In such cases, the sequence V0,V1,V2, . . . of post-collision velocities can be
approximated by a diffusion process in velocity space. If ρ(v , t) is the probability
density of velocity distribution

∂ρ

∂t
= DivMBGradMBρ

where MB stands for “Maxwell-Boltzmann.”
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Weak scattering and diffusion in velocity space

I Λ square matrix of (first derivatives in perturbation parameter of)
mass-ratios and curvatures.

I C is a covariance matrix of velocity distributions of wall-system.

Definition (MB-grad, MB-div, MB-Laplacian )

I On Φ ∈ C∞0 (Hm) ∩ L2(Hm, µβ) (smooth, comp. supported) define

(GradMBΦ)(v) :=
√
2
[
Λ1/2 (vmgradv Φ− Φm(v)v) + Tr(CΛ)1/2Φmem

]
where em = (0, . . . , 0, 1) and Φm is derivative in direction em.

I On the pre-Hilbert space of smooth, compactly supported square-integrable
vector fields on Hm with inner product 〈ξ1, ξ2〉 :=

∫
Hm ξ1 · ξ2 dµβ, define

DivMB as the negative of the formal adjoint of GradMB.

I Maxwell-Boltzmann Laplacian: LMBΦ = DivMBGradMB Φ .
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Weak scattering limit

Theorem (F.-Ng-Zhang, Comm. Math. Phys. 2013)

Let µ be a probability measure on Rk with mean 0, covariant matrix C and
finite 2nd and 3rd moments. Let Ph be the collision operator of a family of
microstructures parametrized by flatness parameter h. Then

I LMB is second order, essent. self-adjoint, elliptic on C0(Hm) ∩ L2(Hm, µβ).

I The limit LMBΦ = limh→0
PhΦ−Φ

h holds uniformly for each Φ ∈ C∞0 (Hm).

I The Markov chain defined by (Ph, µβ) converges to an Itô diffusion with
diffusion PDE

∂ρ

∂t
= LMBρ
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Example: 1-D billiard thermostat

Define γ = m2/m1. Pγ is operator on L2((0,∞), µ).

Theorem (Speed of convergence to thermal equilibrium)
The following assertions hold for γ < 1/3:

1. Pγ is a Hilbert-Schmidt; µ is the unique stationary distribution. Its density
relative to Lebesgue measure on (0,∞) is

ρ(v) = σ−1v exp
(
−

v2

2σ2

)
.

2. For arbitrary initial µ0 and small γ

‖µ0Pn
γ − µ‖TV ≤ C

(
1− 4γ2)n → 0.
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Approach to thermal equilibrium

initial velocity distribution
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Velocity diffusion for 1-dim billiard thermostat

Proposition
For γ := m2/m1 < 1/3, if ϕ is a function of class C 3 on (0,∞), the MB-billiard
Laplacian has the form

(Lϕ)(v) = lim
γ→0

(Pγϕ) (v)− ϕ(v)

2γ
:=

(
1
v
− v
)
ϕ′(v) + ϕ′′(v).

Equivalently, L can be written in Sturm-Liouville form as

Lϕ = ρ−1 d
dv

(
ρ
dϕ
dv

)
,

which is a densily defined self-adjoint operator on L2((0,∞), µ).

L is Laguerre differential operator.
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Example 2: no moving parts

Projecting orthogonally from spherical shell to unit disc, cosine law becomes the
uniform probability on the disc. Choose a basis of Rn that diagonalizes Λ.

Proposition (Generalized Legendre operator in dim n)
When k = 0, the MB-Laplacian on the unit disc in Rn is

(LMBΦ)(v) = 2
n∑

i=1

λi
((
1− |v |2

)
Φi
)
i
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Sample path of Legendre diffusion
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Ongoing work: Knudsen stochastic thermodynamics

thermally active particle

Diffusion in the Euclidian group SE (n) of Brownian particle with non-uniform
temperature distribution.
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A linear billiard heat engine

billiard thermostat

at temperature

billiard thermostat

at temperature
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Back to transport in channels

Study of the random dynamics of such billiard heat engines reduces to study of
Knudsen diffusion in channels (but in higher dimensions).
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Drift velocity
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Velocity drift against load if temperature differential is great enough.
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Mean speed against load
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Efficiency
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