Statistical mechanics of random billiard systems

Renato Feres

Washington University, St. Louis

U. Houston, Summer Course, 2014

Diffusion in (straight) channels

Idealized diffusion experiment. Channel inner surface has micro-structure.

How does the micro-structure influence diffusivity?

Surface scattering operators (definition of P)

Scattering characteristics of gas-surface interaction encoded in operator P.

$$(Pf)(v) = \mathbb{E}[f(V)|v]$$

where f is any test function on \mathbb{H}^n and $\mathbb{E}[\cdot|v]$ is conditional expectation given initial velocity v. If $f(V) = \begin{cases} 1 & \text{if } V \in \mathcal{U} \\ 0 & \text{if } V \notin \mathcal{U} \end{cases}$ then

(Pf)(v) = probability that V lies in \mathcal{U} given initial v.

Standard model I - Knudsen cosine law

$$d\mu_{\infty}(V) = C_{n,s} \cos\theta \, d\text{Vol}^{s}(V) \qquad C_{n,s} = \frac{1}{s^{n} \pi^{\frac{n-1}{2}}} \Gamma\left(\frac{n+1}{2}\right)$$

$$(Pf)(v) = \int_{\mathbb{H}^n} f(V) \, d\mu_\infty(V)$$
 independent of v

Standard model II - Maxwellian at temperature T

$$d\mu_{\beta}(V) = 2\pi \left(\frac{\beta M}{2\pi}\right)^{\frac{n+1}{2}} \cos\theta \exp\left(-\frac{\beta M}{2}|V|^{2}\right) d\text{Vol}(V)$$

where $\beta = 1/\kappa T$.

Natural requirements on a general P

We say that P is <u>natural</u> if

- $|\mu_{\beta}|$ is a stationary probability distribution for the velocity Markov chain.
- The stationary process defined by *P* and μ_{β} is time reversible.

I.e., in the stationary regime, all V_j have the surface Maxwellian distribution μ_β and the process satisfies

$$P(dV_2|V_1)d\mu_{\beta}(V_1) = P(dV_1|V_2)d\mu_{\beta}(V_2)$$

Time reversibility a.k.a. reciprocity a.k.a. detailed balance.

Deriving P from microstructure: general idea

- ► Sample pre-collision condition of wall system from fixed Gibbs state
- Compute trajectory of <u>deterministic</u> Hamiltonian system
- Obtain post-collision state of molecule system.

Theorem (Cook-F, Nonlinearity 2012)

Resulting *P* is <u>natural</u>. The stationary distribution is given by Gibbs state of molecule system with <u>same</u> parameter β as the wall system.

Purely geometric microstructures

V is billiard scattering of initial v with random initial point q over period cell.

Theorem (F-Yablonsky, CES 2004)

The resulting scattering operator is <u>natural</u> with stationary distribution μ_{∞} .

• The stationary probability distribution is Knudsen cosine law

$$d\mu_{\infty}(V) = C_n \cos\theta \, dV_{\text{sphere}}(V), \quad C_n = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n-1}{2}}} \frac{1}{|V|^n}$$

• No energy exchange: |v| = |V|

Microstructures with moving parts

Assumptions:

- Hidden variables are initialized prior to each scattering event so that:
 - random displacements are uniformly distributed in their range;
 - initial hidden velocities are Gaussian satisfying energy equipartition.
- Statistical state of wall is kept constant.

Theorem (Thermal equilibrium. Cook-F, Nonlinearity 2012)

Resulting operator P is natural. The stationary probability distribution is μ_{β} , where $\beta = 1/\kappa T$ and T is the mean kinetic energy of each moving part.

Cylindrical channels

Define for the random flight of a particle starting in the middle of cylinder:

- ► *s*_{rms} root-mean square velocity of gas molecules
- $\tau = \tau(L, r, s_{rms})$ expected exit time of random flight in channel

CLT and Diffusion in channels (anomalous diffusion)

Theorem (Chumley, F., Zhang, Transactions of AMS, 2014) Let *P* be quasi-compact (has spectral gap) natural operator. Then

$$\tau(L, r, s_{\rm rms}) \sim \begin{cases} \frac{1}{\mathcal{D}} \frac{L^2}{k} & \text{if } n-k \ge 2\\ \frac{1}{\mathcal{D}} \frac{L^2}{k \ln(L/r)} & \text{if } n-k=1 \end{cases}$$

where $\mathcal{D} = C(P)rs_{rms}$. Values of C(P) are described next.

Useful for comparison to obtain values of diffusion constant \mathcal{D} for the i.i.d. velocity process before looking at specific micro-structures. We call these reference values \mathcal{D}_0 .

Values of \mathcal{D}_0 for reference (Trans. AMS, 2014)

For any direction u in \mathbb{R}^k diffusivities for the i.i.d. processes are:

$$\mathcal{D}_{0} = \begin{cases} \frac{4}{\sqrt{2\pi(n+1)}} \frac{n-k}{(n-k)^{2}-1} r s_{\beta} & \text{when } n-k \geq 2 \text{ and } \nu = \mu_{\beta} \\\\ \frac{2}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \frac{n-k}{(n-k)^{2}-1} r s & \text{when } n-k \geq 2 \text{ and } \nu = \mu_{\infty} \\\\ \frac{4}{\sqrt{2\pi(n+1)}} r s_{\beta} & \text{when } n-k = 1 \text{ and } \nu = \mu_{\beta} \\\\ \frac{2}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} r s & \text{when } n-k = 1 \text{ and } \nu = \mu_{\infty} \end{cases}$$

where $s_{\beta} = (n+1)/\beta M$ and M is particle mass. We are, therefore, interested in

$$\eta^u(P) := \mathcal{D}_P^u/\mathcal{D}_0$$
 (coefficient of diffusivity in direction u)

a signature of the surface's scattering properties. (*u* is a unit vector in \mathbb{R}^k .)

Numerical example (F-Yablonsky, CES 2006)

Diffusivity increases with the radius of probing molecule.

Top: \mathcal{D} is <u>smaller</u> then in i.i.d. (perfectly diffusive) case. Middle and bottom: \mathcal{D} <u>increases</u> by adding flat top.

Examples in 2-D (C. F. Z., Trans. AMS, 2014)

Diffusivity can be discontinuous on geometric parameters:

$$\eta(h) = \begin{cases} \frac{1 - \frac{1}{4} \log 3}{1 + \frac{1}{4} \log 3} & \text{if } h < \frac{1}{2} \\ \frac{1 + \frac{1}{4} \log 3}{1 - \frac{1}{4} \log 3} & \text{if } h = \frac{1}{2} \end{cases}$$
Peculiar effects when $n - k = 1$

$$\int h = l/(l + 2r)$$

$$\eta(h) = \frac{1 + \zeta_h}{1 - \zeta_h} \quad \zeta_h = -\frac{1 + 3h}{4} \frac{1 - h}{1 + h} \log \frac{3 + h}{1 - h}$$

Diffusivity and the spectrum of P

Consider the Hilbert space $L^2(\mathbb{H}^n, \mu_\beta)$ of square-integrable functions on velocity space with respect to the stationary measure μ_β ($0 < \beta \leq \infty$).

Proposition (F-Zhang, Comm. Math. Physics, 2012)

The natural operator P is a <u>self-adjoint operator</u> on $L^2(\mathbb{H}^n, \mu_\beta)$ with norm 1. In particular, it has real spectrum in the interval [-1, 1]. In many special cases we have computed, P has discrete spectrum (eigenvalues) or at least a spectral gap.

Let $\left| \Pi^{u}_{Z}(d\lambda) := \|Z^{u}\|^{-2} \langle Z^{u}, \Pi(d\lambda)Z^{u} \rangle \right|$, Π the spectral measure of P. Then

$$\eta^{u}(P) = \int_{-1}^{1} \frac{1+\lambda}{1-\lambda} \Pi^{u}(d\lambda).$$

Example: <u>Maxwell-Smolukowski</u> model: $\eta = \frac{1+\lambda}{1-\lambda}$, $\lambda = \text{prob. of specular reflec.}$

Remarks about diffusivity and spectrum

From random flight determined by $P \Rightarrow$ Brownian motion limit via C.L.T.

 V_{i-1}

- \blacktriangleright D determined by rate of decay of time correlations (Green-Kubo relation)
- All the information needed for \mathcal{D} is contained in the spectrum of P
- It is difficult to obtain detailed information about the spectrum of P; would like to find approximation more amenable to analysis.

Weak scattering and diffusion in velocity space

Assume weakly scattering microstructure: P is close to specular reflection. In example below small $h \Rightarrow \text{small ratio} m/M$ and small surface curvature.

In such cases, the sequence V_0, V_1, V_2, \ldots of post-collision velocities can be approximated by a diffusion process in velocity space. If $\rho(v, t)$ is the probability density of velocity distribution

$$\frac{\partial \rho}{\partial t} = \mathsf{Div}^{\mathsf{MB}}\mathsf{Grad}^{\mathsf{MB}}\rho$$

where MB stands for "Maxwell-Boltzmann."

Weak scattering and diffusion in velocity space

- Λ square matrix of (first derivatives in perturbation parameter of) <u>mass-ratios</u> and <u>curvatures</u>.
- ► *C* is a <u>covariance matrix</u> of velocity distributions of wall-system.

Definition (MB-grad, MB-div, MB-Laplacian)

▶ On $\Phi \in C_0^{\infty}(\mathbb{H}^m) \cap L^2(\mathbb{H}^m, \mu_\beta)$ (smooth, comp. supported) define

$$(\operatorname{Grad}^{\operatorname{MB}} \Phi)(v) := \sqrt{2} \left[\Lambda^{1/2} \left(v_m \operatorname{grad}_v \Phi - \Phi_m(v) v \right) + \operatorname{Tr}(C\Lambda)^{1/2} \Phi_m e_m \right]$$

where $e_m = (0, ..., 0, 1)$ and Φ_m is derivative in direction e_m .

- On the pre-Hilbert space of smooth, compactly supported square-integrable vector fields on \mathbb{H}^m with inner product $\langle \xi_1, \xi_2 \rangle := \int_{\mathbb{H}^m} \xi_1 \cdot \xi_2 \, d\mu_\beta$, define Div^{MB} as the negative of the formal adjoint of Grad^{MB}.
- Maxwell-Boltzmann Laplacian: $\mathcal{L}_{MB}\Phi = \text{Div}^{MB}\text{Grad}^{MB}\Phi$

Weak scattering limit

Theorem (F.-Ng-Zhang, Comm. Math. Phys. 2013)

Let μ be a probability measure on \mathbb{R}^k with mean 0, covariant matrix *C* and finite 2nd and 3rd moments. Let P_h be the collision operator of a family of microstructures parametrized by flatness parameter *h*. Then

- ▶ \mathcal{L}_{MB} is second order, essent. self-adjoint, elliptic on $C_0(\mathbb{H}^m) \cap L^2(\mathbb{H}^m, \mu_\beta)$.
- ► The limit $\mathcal{L}_{MB}\Phi = \lim_{h\to 0} \frac{P_h\Phi \Phi}{h}$ holds uniformly for each $\Phi \in C_0^{\infty}(\mathbb{H}^m)$.
- The Markov chain defined by (P_h, μ_β) converges to an Itô diffusion with diffusion PDE

$$\frac{\partial \rho}{\partial t} = \mathcal{L}_{\rm MB} \rho$$

Example: 1-D billiard thermostat

Define $\gamma = m_2/m_1$. P_{γ} is operator on $L^2((0, \infty), \mu)$.

Theorem (Speed of convergence to thermal equilibrium) The following assertions hold for $\gamma < 1/3$:

1. P_{γ} is a Hilbert-Schmidt; μ is the unique stationary distribution. Its density relative to Lebesgue measure on $(0, \infty)$ is

$$\rho(v) = \sigma^{-1} v \exp\left(-\frac{v^2}{2\sigma^2}\right).$$

2. For arbitrary initial μ_0 and small γ

$$\|\mu_0 \mathcal{P}_{\gamma}^n - \mu\|_{TV} \leq C \left(1 - 4\gamma^2\right)^n \to 0.$$

Approach to thermal equilibrium

Velocity diffusion for 1-dim billiard thermostat

Proposition

For $\gamma := m_2/m_1 < 1/3$, if φ is a function of class C^3 on $(0, \infty)$, the MB-billiard Laplacian has the form

$$(\mathcal{L}\varphi)(v) = \lim_{\gamma \to 0} \frac{(P_{\gamma}\varphi)(v) - \varphi(v)}{2\gamma} := \left(\frac{1}{v} - v\right)\varphi'(v) + \varphi''(v).$$

Equivalently, $\ensuremath{\mathcal{L}}$ can be written in Sturm-Liouville form as

$$\mathcal{L}\varphi = \rho^{-1} \frac{d}{dv} \left(\rho \frac{d\varphi}{dv} \right),$$

which is a densily defined self-adjoint operator on $L^2((0, \infty), \mu)$.

 $\ensuremath{\mathcal{L}}$ is Laguerre differential operator.

Example 2: no moving parts

Projecting orthogonally from spherical shell to unit disc, cosine law becomes the uniform probability on the disc. Choose a basis of \mathbb{R}^n that diagonalizes Λ .

Proposition (Generalized Legendre operator in dim n) When k = 0, the MB-Laplacian on the unit disc in \mathbb{R}^n is

$$(\mathcal{L}_{MB}\Phi)(v) = 2\sum_{i=1}^{n} \lambda_i \left(\left(1 - |v|^2\right) \Phi_i \right)_i$$

Sample path of Legendre diffusion

Ongoing work: Knudsen stochastic thermodynamics

Diffusion in the Euclidian group SE(n) of Brownian particle with non-uniform temperature distribution.

A linear billiard heat engine

Back to transport in channels

Study of the random dynamics of such billiard heat engines reduces to study of <u>Knudsen diffusion in channels</u> (but in higher dimensions).

Drift velocity

Velocity drift against load if temperature differential is great enough.

Mean speed against load

Efficiency

