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Diffusion in (straight) channels

Idealized diffusion experiment. Channel inner surface has micro-structure.
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‘ How does the micro-structure influence diffusivity?
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Surface scattering operators (definition of P)

]H[n velocity space (upper-half space)

\\:i) Vrandom scattered velocity

surface

Scattering characteristics of gas-surface interaction encoded in operator P.

[(PF)(v) = Ef(V)|V]|

where f is any test function on H" and E[-|v] is conditional expectation given

1 ifveu
initial velocity v. If F(V) = § o ff vay then
|

’(Pf)(v) = probability that V lies in U given initial v.




Standard model | - Knudsen cosine law

1 1
| dpoc(V) = Coscosf dVol (V)| Coo = —T (n; )
sz

probability density of scattered directions o¢ cOS @
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Standard model |l - Maxwellian at temperature T

n+l

dug(V) =2 <52/7\j> ’ cos 6 exp ('Bé\/IWQ) dVol(V)

where B =1/kT.

probability density of scattered directions o< cOS @




Natural requirements on a general P

We say that P is natural if

> | up is a stationary probability distribution ‘ for the velocity Markov chain.

> The stationary process defined by P and pg is

l.e., in the stationary regime, all V; have the surface Maxwellian distribution pg
and the process satisfies

| P(dVa] Vi) dig(Vr) = P(dV4|Va)dug(Vs) |

Time reversibility a.k.a. reciprocity a.k.a. detailed balance.




Deriving P from microstructure: general idea

molecu-l-e system scattermg process mole;:;.;l‘c’: system
before collision DY after collision
wall system with fixed
Gibbs state, 3., = 1/xT

» Sample pre-collision condition of wall system from fixed Gibbs state
» Compute trajectory of deterministic Hamiltonian system

» Obtain post-collision state of molecule system.

Theorem (Cook-F, Nonlinearity 2012)

Resulting P is natural. The stationary distribution is given by Gibbs state of
molecule system with same parameter 3 as the wall system.




Purely geometric microstructures
V is | billiard scattering ‘ of initial v with ‘ random initial point g ‘ over period cell.

V .
[

F " _— uniformly distributed random point
_ ;

cell of periodic microstructure

Theorem (F-Yablonsky, CES 2004)

The resulting scattering operator is natural with stationary distribution fs..

» The stationary probability distribution is ‘ Knudsen cosine Iaw‘

nt1
‘C/Moo(V) = C, €050 dVipnere( V) ‘ C, = r (i) |\/l|n

» No energy exchange: |v| = |V/|



Microstructures with moving parts

\%4 Jm

L . v
random initial velocity of wall v X
random entrance point

/\_\—TUO\/% £ fi
™o ___———— | range of free

motion of wall

random initial height

Assumptions:

> \Hidden variables | are initialized prior to each scattering event so that:

» random displacements are uniformly distributed in their range;
» initial hidden velocities are Gaussian satisfying energy equipartition.

» Statistical state of wall is kept .

Theorem (Thermal equilibrium. Cook-F, Nonlinearity 2012)

Resulting operator P is . The stationary probability distribution is pg,
where B = 1/kT and T is the mean kinetic energy of each moving part.




Cylindrical channels

B+ n=3k=1 .
] T

Define for the random flight of a particle starting in the middle of cylinder:

» s.. root-mean square velocity of gas molecules

> 7 =7(L, r, Sms) expected exit time of random flight in channel
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CLT and Diffusion in channels (anomalous diffusion)

Theorem (Chumley, F., Zhang, Transactions of AMS, 2014)

Let P be quasi-compact (has spectral gap) natural operator. Then

a3 if n—k>2
o ifn—k=1

T(L, r, Sims) ~ {

where D = C(P)rs,ns. Values of C(P) are described next.

Useful for comparison to obtain values of diffusion constant D for the i.i.d.
velocity process before looking at specific micro-structures. We call these
reference values Dy.
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Values of Dg for reference (Trans. AMS, 2014)

For any direction u in R¥ diffusivities for the i.i.d. processes are:
4 n—k _ =
Wmeﬁ When n k22 and l/—/J,ﬁ

2 (5 (n_”k_)’;_lrs when n—k > 2 and v = s

AT()

Dy =
4 = _
\/mrsﬁ when n—k=1and v = pug
%rz(é))rs when n—k=1and v =

where sg = (n+ 1)/B8M and M is particle mass. We are, therefore, interested in

‘n“(P) = I)L,Q/Do‘ (coefficient of diffusivity in direction u)

a signature of the surface’s scattering properties. (u is a unit vector in RX.)



Numerical example (F-Yablonsky, CES 2006)

A=0.7
A=04
A=0.1

g—lgml.?)(l—l—%)

Diffusivity increases with the radius of probing molecule.
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Examples in 2-D (C. F. Z., Trans. AMS, 2014)

h=1/2r

Top: D is smaller then in i.i.d. (perfectly diffusive) case.
Middle and bottom: D increases by adding flat top.
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Examples in 2-D (C. F. Z., Trans. AMS, 2014)

Diffusivity can be discontinuous on geometric parameters:

—1log3 .
—1% ifh< i
h) 1+Zlog3
77( B 1+ % log 3 if h = 1
—1.= ! =3

ALALA AL

h=1/(+2r)

Peculiar effects when n — k = 1

1+8h 1—h |q 3+h
n(h) = = Ch=—% 17 108 1= =
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Diffusivity and the spectrum of P

Consider the Hilbert space L?(H", ug) of square-integrable functions on velocity
space with respect to the stationary measure ug (0 < 8 < 00).

Proposition (F-Zhang, Comm. Math. Physics, 2012)

The natural operator P is a self-adjoint operator on L2(H”,p,5) with norm 1. In
particular, it has real spectrum in the interval [—1, 1]. In many special cases we
have computed, P has discrete spectrum (eigenvalues) or at least a spectral gap.

Let \ NY(dX) = [|2¢]|-2(Z¥, N(dA) Z¥)

, I the spectral measure of P. Then

(P = [ e,

Example: Maxwell-Smolukowski model: |1 = % , A = prob. of specular reflec.
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Remarks about diffusivity and spectrum

» From random flight determined by P = Brownian motion limit via C.L.T.

.. ‘/j—l
( / N .
Vi 4 ) v
P4 j+1
[V ]
Random flight in channel Random walk in velocity space H"

> D determined by rate of decay of time correlations (Green-Kubo relation)

» All the information needed for D is contained in the spectrum of P

» |t is difficult to obtain detailed information about the spectrum of P; would
like to find approximation more amenable to analysis.



Weak scattering and diffusion in velocity space

Assume weakly scattering microstructure: P is close to specular reflection.
In example below small h = small ratio m/M and small surface curvature.

08

0.4

08 —04 0 0.4 0.8

In such cases, the sequence Vg, Vi, V5, ... of post-collision velocities can be
approximated by a diffusion process in velocity space. If p(v, t) is the probability
density of velocity distribution
op
at
where MB stands for “Maxwell-Boltzmann.”

= DivMBGrad“®p



Weak scattering and diffusion in velocity space

» A square matrix of (first derivatives in perturbation parameter of)
mass-ratios and curvatures.

» C is a covariance matrix of velocity distributions of wall-system.

Definition (MB-grad, MB-div, MB-Laplacian )

» On ® € C(H™) N L2(H™, ug) (smooth, comp. supported) define

(Grad“Bd)(v) := /2 [/\1/2 (vmgrad,® — & ,,(v)v) + Tr(C/\)l/Qd)mem}

where e, = (0, .. ., 0,1) and &, is derivative in direction ep,.

» On the pre-Hilbert space of smooth, compactly supported square-integrable

vector fields on H™ with inner product (£1, &) := me &1 - & dug, define
Div™® as the negative of the formal adjoint of Grad“®.

» Maxwell-Boltzmann Laplacian: ‘LMBQD = Div™BGrad"® ¢ ‘
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Weak scattering limit

Theorem (F.-Ng-Zhang, Comm. Math. Phys. 2013)

Let & be a probability measure on R* with mean 0, covariant matrix C and
finite 2nd and 3rd moments. Let Pj be the collision operator of a family of
microstructures parametrized by flatness parameter h. Then

» Lyp is second order, essent. self-adjoint, elliptic on Co(H™) N L2(H™, ug).

> The limit Lys® = limp_0 224=2 holds uniformly for each ® € C5°(H™).

> The Markov chain defined by (P, ug) converges to an It6 diffusion with

diffusion PDE
Op

2 — B
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Example: 1-D billiard thermostat

wall-bound mass my

\ gas molecule my

0 l

Define v = mp/my. Py is operator on L?((0, c0), ).

Theorem (Speed of convergence to thermal equilibrium)
The following assertions hold for vy < 1/3:

1. P, is a Hilbert-Schmidt; u is the unique stationary distribution. Its density
relative to Lebesgue measure on (0, ) is

2
_ ot v
p(v) =0 "vexp ( 202) .

2. For arbitrary initial @ and small y

lwoPy — pllrv < C (1 - 49%)" = 0.




Approach to thermal equilibrium

initial velocity distribution

limit Maxwe

lian

probability density

speed



Velocity diffusion for 1-dim billiard thermostat

wall-bound mass m
gas molecule my

Nk — o e %

Proposition
For v := my/my < 1/3, if ¢ is a function of class C3 on (0, 00), the MB-billiard
Laplacian has the form
. (P v) — (v 1
(L(P)(V) — lim ( 'Y(p)( ) (p( ) = ( _ V) (p,(V)+(p/,(V).

=0 2y v

Equivalently, £ can be written in Sturm-Liouville form as

,d ( dop
Lo=p 1@ (p>,

which is a densily defined self-adjoint operator on L2((0, c0), u).

L is Laguerre differential operator.



Example 2: no moving parts

Projecting orthogonally from spherical shell to unit disc, cosine law becomes the
uniform probability on the disc. Choose a basis of R” that diagonalizes A.

Proposition (Generalized Legendre operator in dim n)
When k = 0, the MB-Laplacian on the unit disc in R" is

(Lme®)(v _2Zx (1—v]?) ),




Sample path of Legendre diffusion




Ongoing work: Knudsen stochastic thermodynamics

Diffusion in the Euclidian group SE(n) of Brownian particle with non-uniform
temperature distribution.
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A linear billiard heat engine

billiar
at tem
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Back to transport in channels

Study of the random dynamics of such billiard heat engines reduces to study of
Knudsen diffusion in channels (but in higher dimensions).

gTZ
N
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Drift velocity

translation of Brownian particle

time

Velocity drift against load if temperature differential

s
s
£

0.02f

translation of Brownian particle

o

CE
time

is great enough.
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mean velocity X 10

Mean speed

against load
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efficiency

0.1

Efficiency

force
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