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Today I want to tell you about some interactions among the subjects of
Dynamical Systems, Algebra, and Functional Analysis.
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The common connection among these subjects will be directed graphs.

Dynamical Systems: Shift Spaces

Shifts of finite type may be considered as shift spaces coming from graphs.

Algebra: Algebras over a Field

Leavitt path algebras are algebras constructed from directed graphs.

Functional Analysis: C ∗-algebras

Graph C ∗-algebras are C ∗-algebras constructed from directed graphs.
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Dynamical Systems (Shift Spaces)
Begin with a finite set of symbols A := {1, 2, . . . , n}. Form the set of all
infinite sequences

AN := {x1x2x3 . . . | xi ∈ A}

and all bi-infinite sequences

AZ := {. . . x−2x−1.x0x1x2 . . . | xi ∈ A}.

We have a one-sided shift map σ : AN → AN given by

σ(x1x2x3 . . .) = x2x3x4 . . .

and a two-sided shift map σ : AZ → AZ given by

σ(. . . x−2x−1.x0x1x2 . . .) = . . . x−1x0.x1x2x3 . . .

(AN, σ) is the full one-sided shift
(AZ, σ) is the full two-sided shift
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Give A := {1, . . . , n} the discrete topology.

If we give AN the product topology, then AN has a basis of cylinder sets of
the form

[a1 . . . an] := {x1x2x3 . . . ∈ AN : x1 = a1, . . . , xn = an}

and AN is compact by Tychonoff’s theorem. Moreover, σ : AN → AN is
continuous map (in fact, a local homeomorphism). Thus (AN, σ) is a
discrete dynamical system.

Similarly, if we give AZ the product topology, then AZ has a basis of
cylinder sets of the form

[a1 . . . an]t := {. . . x−1.x0x1 . . . ∈ AZ : xt+1 = a1, xt+2 = a2, . . . , xt+n = an}

and AZ is compact by Tychonoff’s theorem. Moreover, σ : AZ → AZ is
homeomorphism. Thus (AZ, σ) is a discrete dynamical system.

Topology Fun Fact: The cylinder sets are clopen. Both AN and AZ are
perfect, compact, Hausdorff, and have countable basis of clopen sets.
Thus they are each homeomorphic to the Cantor set.
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We seek closed subsets X ⊆ AN with σ(X ) = X . Then (X , σ|X ) is a
sub-system of (AN, σ). We call such (X , σ|X ) a one-sided shift space.

Likewise, we seek closed subsets X ⊆ AZ with σ(X ) = X . Then (X , σ|X ) is
a sub-system of (AN, σ). We call such a (X , σ|X ) a two-sided shift space.

Let F be a set of finite sequences of elements from {1, . . . , n}. Define

XF := {x1x2 . . . ∈ AN : no sub-block xk . . . xk+n is in F for any k , n}
XF := {. . . x−1.x0x1 . . . ∈ AZ : no sub-block xk . . . xk+n is in F for any k , n}
We call F the forbidden blocks.

Theorem

A set X ⊆ AN is a one-sided shift space iff X = XF for some set F .
(We call X a shift of finite type if F can be chosen to be a finite set.)

Theorem

A set X ⊆ AZ is a two-sided shift space iff X = XF for some set F .
(We call X a shift of finite type if F can be chosen to be a finite set.)
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Let A = {0, 1}.

Example 1: (The Golden Mean Shift)
Let F = {11}.
Then XF is all sequences in AN where no consecutive 1’s occur.

Example 2: (The Even Shift)
Let F = {101, 10001, 1000001, . . .} = {102n+11 : n ∈ N ∪ {0}} .
Then XF is all sequences in AN where there are an even number of 0’s
between any two 1’s.

Example 3:
Let F = {10, 100, 1000, . . .} = {10n : n ∈ N} .
Then XF is all sequences in AN where a 0 does not follow a 1.

Example 1 gives a shift of finite type.
Example 3 also gives shift of finite type (use F = {10}).
Example 2 is not a shift of finite type.

Mark Tomforde (University of Houston) Using dynamical systems for classification May 15, 2014 7 / 46



Isomorphism of Shift Spaces

Definition

If X and Y are one-sided shifts of finite type, we say X is conjugate to Y
if there is a homeomorphism φ : X → Y such that σ ◦ φ = φ ◦ σ.

Definition

If X and Y are two-sided shifts of finite type, we say X is conjugate to Y
if there is a homeomorphism φ : X → Y such that σ ◦ φ = φ ◦ σ.

Shifts of finite type may be described (up to conjugacy) using graphs.

Mark Tomforde (University of Houston) Using dynamical systems for classification May 15, 2014 8 / 46



Graphs
A (directed) graph E = (E 0,E 1, r , s) consists of a set of vertices E 0, a set
of edges E 1, and maps r : E 1 → E 0 and s : E 1 → E 0 identifying the range
and source of each edge.
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E 0 = {v ,w , x}
E 1 = {a, b, c , d , e, f , g , h}
s(e) = w and r(e) = x
s(f ) = x and r(f ) = x

For now, we’ll assume our graphs are finite (i.e., E 0 and E 1 are finite sets).
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Edge Shifts of Graphs

If E = (E 0,E 1, r , s) is a graph, we define the one-sided edge shift

XE := {e1e2e3 . . . : ei ∈ E 1 and r(ei ) = s(ei+1) for all i ∈ N}

and the two-sided edge shift

XE := {. . . e−1.e0e1 . . . : ei ∈ E 1 and r(ei ) = s(ei+1) for all i ∈ Z}.

Theorem

A one-sided shift X is a shift of finite type if and only if there exists a
graph E such that X is conjugate to the edge shift XE .

Theorem

A two-sided shift X is a shift of finite type if and only if there exists a
graph E such that X is conjugate to the edge shift XE .
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Algebras of Graphs
If K is a field, a K -algebra is a vector space over K with a product that is
associative and K -bilinear (i.e., distributive and scalars pull out).

Two K -algebras A and B are isomorphic if there is a bijection φ : A→ B
that is K -linear and multiplicative.

Definition (Leavitt path algebra)

If E = (E 0,E 1, r , s) is a finite graph with no sinks and K is a field, we
define the Leavitt path algebra LK (E ) to be the universal algebra
generated by elements {pv : v ∈ E 0} ∪ {se , s∗e : e ∈ E 1} satisfying the
following relations:

1 pvpw = 0 when v 6= w , and p2v = pv for all v ∈ E 0.

2 s∗e sf = 0 when e 6= f and s∗e se = pr(e) for all e ∈ E 1.

3 se = sepr(e) = ps(e)se and s∗e = s∗e ps(e) = pr(e)s
∗
e for all e ∈ E 1.

4 pv =
∑

s(e)=v ses
∗
e for all v ∈ E 0.
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C ∗-algebras of Graphs

H is separable infinite-dimensional Hilbert space.

B(H) = {T : H → H : ‖T‖ <∞}

B(H) is a C-algebra, but it also has the operator norm ‖ · ‖, and in
addition there is an adjoint operation ∗ on B(H): If T ∈ B(H) there
exists a unique T ∗ ∈ B(H) such that 〈Tx , y〉 = 〈x ,T ∗y〉 for all x , y ∈ H.

An operator algebra is a subalgebra of B(H) that is closed in the topology
coming from ‖ · ‖.

A C ∗-algebra is a subalgebra of B(H) that is closed in the topology
coming from ‖ · ‖ and is closed under the ∗-operation.

Two C ∗-algebras A and B are ∗-isomorphic if there is a bijection
φ : A→ B that is C-linear, multiplicative, and φ(a∗) = φ(a)∗ for all a ∈ A.
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C ∗-algebras of Graphs

Definition (Graph C ∗-algebra)

If E = (E 0,E 1, r , s) is a finite graph with no sinks, we define the graph
C ∗-algebra C ∗(E ) to be the universal C ∗-algebra generated by elements
{pv : v ∈ E 0} ∪ {se : e ∈ E 1} satisfying the following relations:

1 pvpw = 0 when v 6= w , and p∗v = p2v = pv for all v ∈ E 0.

2 s∗e sf = 0 when e 6= f and s∗e se = pr(e) for all e ∈ E 1.

3 se = sepr(e) = ps(e)se for all e ∈ E 1.

4 pv =
∑

s(e)=v ses
∗
e for all v ∈ E 0.

It turns out LC(E ) ⊆ C ∗(E ) and LC(E ) = C ∗(E ).

Graph C ∗-algebras are also sometimes called “Cuntz-Krieger algebras”
(especially when the graph is finite).

Mark Tomforde (University of Houston) Using dynamical systems for classification May 15, 2014 13 / 46



Sorting It All Out
If E is a finite graph with no sinks, we have various objects and notions of
equivalence.

one-sided edge shift XE (one-sided conjugacy)

two-sided shifts edge XE (two-sided conjugacy)

Leavitt path algebra LK (E ) (isomorphism)

graph C ∗-algebra C ∗(E ) (∗-isomorphism)

Question 1: What are the relationships among these various notions?

It is often difficult to determine when two Leavitt path algebras are
isomorphic, or when two graph C ∗-algebras are ∗-isomorphic. However,
there are well-known theorems describing conjugacy for one-sided and
two-sided shifts of finite type.

Question 2: Can the shift spaces help us to determine when two Leavitt
path algebras are isomorphic?

Question 3: Can the shift spaces help us to determine when two graph
C ∗-algebras are ∗-isomorphic?
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Irreducible Shifts
A shift space X is irreducible if whenever u and w are allowed blocks, there
is a “connecting block” v such that uvw is allowed. Equivalently, there is
point x ∈ X whose forward orbit (i.e., {x , σ(x), σ2(x), . . .} in the one-sided
case, or {x , σ(x), σ2(x), . . .} in the two-sided case) is dense in X .

A finite graph graph with no sinks is called irreducible if there is a path
from each vertex to every other vertex and the graph does not consist of a
single cycle.

Theorem

Let E be a finite graph with no sinks. Then the following are equivalent.

E is irreducible.

XE is irreducible.

XE is irreducible.

LK (E ) is simple for every field K (simple = no two-sided ideals)

C ∗(E ) is simple (simple = no closed two-sided ideals)
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Move (O): Outsplitting
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s−1(v) = {e, f } ∪ {g} ∪ {h}

The inverse operation is called Outamalgamation.
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Theorem (conjugacy for one-sided irreducible shifts of finite type)

Let E and F be finite irreducible graphs. Then the one-sided shifts XE and
XF are conjugate if and only if E can be turned into F through a finite
number of outsplittings and outamalgamations.

One can prove that if E is a graph and E ′ is formed by performing an
outsplitting to E ′, then LK (E ) is isomorphic to LK (E ′) for all fields K and
C ∗(E ) is ∗-isomorphic to C ∗(E ′). Thus, we get the following . . .

Theorem

Let E and F be finite irreducible graphs. If the one-sided shifts XE and XF

are conjugate, then LK (E ) is isomorphic to LK (F ) for every field K .

Theorem

Let E and F be finite irreducible graphs. If the one-sided shifts XE and XF

are conjugate, then C ∗(E ) is ∗-isomorphic to C ∗(F ).

Unfortunately, neither converse holds.
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When we perform outsplittings on a graph, the isomorphism of the Leavitt
path algebras and ∗-isomorphism of the graph C ∗-algebras is of a
particular type.

If E is a graph, and K is a field, then inside LK (E ) we have a subalgebra

DE := spanK{se1 . . . sens∗en . . . s
∗
e1 : n ∈ N and e1, . . . , en ∈ E 1}

called the Cartan subalgebra of LK (E ).

Also, inside C ∗(E ) we have a closed subalgebra

DE := spanC{se1 . . . sens∗en . . . s
∗
e1 : n ∈ N and e1, . . . , en ∈ E 1}

called the Cartan subalgebra of C ∗(E ).

When we outsplit a graph the isomorphism (respectively ∗-isomorphism)
obtained between the associated Leavitt path algebras (respectively, graph
C ∗-algebra) preserves the Cartan subalgebras.
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Theorem (conjugacy for one-sided irreducible shifts of finite type)

Let E and F be finite irreducible graphs. Then the one-sided shifts XE and
XF are conjugate if and only if E can be turned into F through a finite
number of outsplittings and outamalgamations.

Some better theorems for algebras and C ∗-algebras . . .

Theorem

Let E and F be finite irreducible graphs. If the one-sided shifts XE and XF

are conjugate, then for any field K there exists an isomorphism
φ : LK (E )→ LK (F ) with φ(DE ) = DF .

Theorem

Let E and F be finite irreducible graphs. If the one-sided shifts XE and XF

are conjugate, then there exists a ∗-isomorphism φ : C ∗(E )→ C ∗(F ) with
φ(DE ) = DF .

Unfortunately, it is still the case that neither converse holds.
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However, if we work backward from isomorphism (or ∗-isomorphism) we
can get a weaker notion of equivalence of one-sided shift spaces.
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If x = e1e2 . . . ∈ XE , we define the orbit of x to the the set

orb(x) :=
∞⋃
k=0

∞⋃
l=0

σ−k(σl(x)).

Definition

Let XE and XF be two one-sided edge shifts. If there is a homeomorphism
h : XE → XF such that h(orb(x)) = orb(h(x)) for all x ∈ XE , then XE and
XF are said to be topologically orbit equivalent.
In this case, there exists k1, l1 : XE → N ∪ {0} such that

σk1(x)(h(σ(x))) = σl1(x)(h(x)) for all x ∈ XE .

Similarly, there exists k2, l2 : XF → N ∪ {0} such that

σk2(x)(h−1(σ(x))) = σl2(x)(h−1(x)) for all x ∈ XF .

If we can choose k1, l1 : XE → N ∪ {0} and k2, l2 : XF → N ∪ {0}
continuous, we say XE and XF are continuously orbit equivalent.
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Theorem

Let E and F be finite irreducible graphs. Then the following are equivalent

1 The one-sided shifts XE and XF are continuously orbit equivalent.

2 For any field K there exists an isomorphism φ : LK (E )→ LK (F ) with
φ(DE ) = DF .

3 There exists a ∗-isomorphism φ : C ∗(E )→ C ∗(F ) with φ(DE ) = DF .

Furthermore, there is an algebraic characterization of when two edge shifts
are continuously orbit equivalent.
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If E is a graph, define the vertex matrix to be the E 0 × E 0 matrix with

AE (v ,w) := the number of edges from v to w .

The Bowen Franks group of an n × n matrix M is

BF(M) := coker{I −M : Zn → Zn} = Zn/(I −M)Zn.

For a graph E , we will be concerned with

BF (At
E ) = ZE0

/(I − At
E )ZE0

and uE = [(1, 1, . . . , 1)t ]

Theorem

Let E and F be finite irreducible graphs. The one-sided shifts XE and XF

are continuously orbit equivalent if and only if there is an isomorphism
ψ : BF (At

E )→ BF (At
F ) such that ψ(uE ) = uF and

sgn det(I − At
E ) = sgn det(I − At

F ).
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Theorem

Let E and F be finite irreducible graphs. The following are equivalent.

1 The one-sided shifts XE and XF are continuously orbit equivalent.

2 For any field K there exists an isomorphism φ : LK (E )→ LK (F ) with
φ(DE ) = DF .

3 There exists a ∗-isomorphism φ : C ∗(E )→ C ∗(F ) with φ(DE ) = DF .

4 There is an isomorphism ψ : BF (At
E )→ BF (At

F ) such that
ψ(uE ) = uF and sgn det(I − At

E ) = sgn det(I − At
F ).

Fact: In operator algebra K -theory (K0(C ∗(E )), [1]) ∼= (BF (At
E ), uE ), and

in algebraic K -theory (K0(LK (E )), [1]) ∼= (BF (At
E ), uE ).

Good: Relates notion of equivalence for one-sided shifts to a kind of
isomorphism for Leavitt path algebras and a kind of ∗-isomorphism for
graph C ∗-algebras. It also describes this in terms of an algebraic invariant
that can be computed.

Bad: Doesn’t characterize isomorphism / ∗-isomorphism.
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We will come back to these issues later with a better answer. But first, we
need to consider two-sided edge shifts.
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Move (O): Outsplitting
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Theorem (Williams) (conjugacy for two-sided shifts of finite type)

Let E and F be finite irreducible graphs. Then the two-sided shifts XE

and X F are conjugate if and only if E can be turned into F through a
finite number of outsplittings, insplittings, outamalgamations, and
inamalgamations.

Outsplitting preserves isomorphism (respectively, ∗-isomorphism) of the
Leavitt path algebra (respectively, graph C ∗-algebra).

However, insplitting does not.

Rather than isomorphism / ∗-isomorphism, we need to consider a weaker
notion of equivalence for algebras and C ∗-algebras:

Morita equivalence.
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Two rings R and S are defined to be Morita equivalent if their categories
of left modules are equivalent. There are various ways to characterize this.
One conceptually useful way is . . .

If R is a ring, let M∞(R) denote the set of countably infinite matrices with
only a finite number of nonzero entries. Note: M∞(R) =

⋃∞
n=1Mn(R).

Two rings R and S are Morita equivalent if and only if M∞(R) ∼= M∞(S).

Two C ∗-algebras A and B are Morita equivalent if M∞(A) ∼= M∞(B).

Note that Mn(A) ∼= A⊗Mn(C), and so M∞(A) ∼= A⊗M∞(C). Thus

M∞(A) ∼= A⊗M∞(C) ∼= A⊗M∞(C) = A⊗K.

Two C ∗-algebras A and B are Morita equivalent if and only if

A⊗K ∼= B ⊗K.

Mark Tomforde (University of Houston) Using dynamical systems for classification May 15, 2014 28 / 46



Two algebras / C ∗-algebras that are Morita equivalent have the same ideal
structure, same representation theory, and many of the same properties
and invariants.

In particular, if A and B are both algebras or C ∗-algebras that are Morita
equivalent, then K0(A) ∼= K0(B).

If E and F are graphs and LK (E ) is Morita equivalent to LK (F ), then
BF (At

E ) = BF (At
F ).

If E and F are graphs and C ∗(E ) is Morita equivalent to C ∗(F ), then
BF (At

E ) = BF (At
F ).

However: The sign of det(I − At
E ) need not be preserved!
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Theorem (Williams)(conjugacy for two-sided shifts of finite type)

Let E and F be finite irreducible graphs. Then the two-sided shifts XE and
XF are conjugate if and only if E can be turned into F through a finite
number of outsplittings, insplittings, outamalgamations, and
inamalgamations.

Outsplitting and insplitting both preserve Morita equivalence.

Theorem

Let E and F be finite irreducible graphs. If the two-sided shifts XE and X F

are conjugate, then LK (E ) is Morita equivalent to LK (F ) for every field K .

Theorem

Let E and F be finite irreducible graphs. If the two-sided shifts XE and X F

are conjugate, then C ∗(E ) is Morita equivalent to C ∗(F ).

Unfortunately, neither converse holds.
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Again, we need a weaker notion of equivalence for two-sided shifts.

Definition

If XE is a shift space, the suspension flow is the quotient space

SXE := (XE × R)/{(x , t) ∼ (σE (x), t − 1)}.

There is a flow on SXE induced by the flow φt on XE × R given by
φt(x , s) = (x , s + t). The shift spaces (XE , σE ) and (XF , σF ) are said to
be flow equivalent if there is a homeomorphism h : SXE → SXF carrying
orbits of the flow on SXE to orbits of the flow on SXF and preserving the
orientation.

Parry and Sullivan have given a characterization of flow equivalence in
terms of moves on the graph. In addition to outsplitting and insplitting,
we need one more move . . .
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Move (R): Reduction
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s−1(w) is a single edge f

s(r−1(w)) is a single vertex v

Move (R) is also sometimes called the “Parry-Sullivan Move”.

The Inverse of Reduction is called Delay.
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Theorem (Parry and Sullivan)

Let E and F be finite irreducible graphs. The following are equivalent

(1) The two-sided shifts XE and X F are flow equivalent.

(2) E can be transformed into F via moves (O), (I), (R), and their
inverses

(Franks) The two above statements are also equivalent to

(3) BF(At
E ) ∼= BF(At

F ) and sgn(det(I − At
E )) = sgn(det(I − At

F ))

Thus we have a characterization of flow equivalence in terms of moves,
and in terms of a (computable) algebraic invariant.
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Since moves (O), (I), and (R) preserve Morita equivalence, we obtain

Theorem

Let E and F be finite irreducible graphs. If the two-sided shifts XE and
X F are flow equivalent, then for every field K the Leavitt path algebra
LK (E ) is Morita equivalent to LK (F ).

Theorem

Let E and F be finite irreducible graphs. If the two-sided shifts XE and
X F are flow equivalent, then C ∗(E ) is Morita equivalent to C ∗(F ).

The converse of the second theorem does not hold. There are E and F
such that C ∗(E ) is Morita equivalent to C ∗(F ) but
sgn(det(I − At

E )) 6= sgn(det(I − At
F )). Thus XE and X F are not flow

equivalent.

No one knows whether or not there are converses to the second theorem.
This is a major open question in the subject of Leavitt path algebras.
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For now, let’s focus our attention on graph C ∗-algebras.
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Work of Parry and Sullivan together with work of Franks shows that if E
and F are irreducible, then

XE is flow equivalent to X F

Parry-Sullivan

⇐⇒ E can be transformed into F via

Moves (O), (I), (R), and their inverses ⇐⇒ E can be transformed into F
Franks

⇐⇒ coker(I − AE ) ∼= coker(I − AF ) and

sgn(det(I − At
E )) = sgn(det(I − At

F )) ⇐⇒ E can be transformed into F
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Move (CS): Cuntz Splice

•
%% ))

vhh
Cuntz Splice

=⇒ •
%% ))

vhh
**
v1ii

**��
v2jj gg

Theorem (Rørdam)

Theorem: For irreducible graphs, the Cuntz splice preserves Morita
equivalence of the associated graph C ∗-algebra.

Let E be a graph, and perform the Cuntz splice to obtain F .

AF =


1 1 0 0 · · ·
1 1 1 0 · · ·
0 1
0 0 AE
...

...


Then BF(At

E ) ∼= BF(At
F ), but det(I − At

F ) = − det(I − At
E ).
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Theorem (Cuntz and Krieger)

Suppose E and F are finite irreducible graphs. Then C ∗(E ) is Morita
equivalent to C ∗(F ) if and only if BF(At

E ) ∼= BF(At
F ).

Moreover, in this case one can transform E into F using Moves (O), (I),
(R), their inverse moves, and Move (CS).

Proof:
BF(At

E ) ∼= BF(At
F ) =⇒ BF(At

E ) ∼= BF (At
F )

(If sgn det(I − At
E ) = sgn(det(I − At

F )), great.
If not, apply Cuntz Splice.)

=⇒ BF(At
E ) ∼= BF(At

F ) and
sgn det(I − At

E ) = sgn(det(I − At
F ))

=⇒ (Franks) XE flow equivalent to X F

=⇒ (Parry and Sullivan) E can be turned into F via
Moves(O), (I), (R) and their inverses

=⇒ C ∗(E ) Morita equivalent to C ∗(F ).
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For Leavitt path algebras, we cannot determine if the Cuntz splice affects
the Morita equivalence class of the associated Leavitt path algebra.

We cannot even answer this in the simplest case:

E2 •
��

YY E−2 •
��

MM

(( •hh
((��
•hh ee

Is LK (E2) Morita equivalent to LK (E−2 )? No one knows.
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Therefore the best we can do is the following.

Theorem (Abrams, Louly, Pardo, and Smith)

Suppose E and F are finite irreducible graphs. If BF(At
E ) ∼= BF(At

F ) and
sgn(det(I − At

E )) = sgn(det(I − At
F )) , then for any field K we have that

LK (E ) is Morita equivalent LK (F ).
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Let’s return to our isomorphism theorems from one-sided shifts.

Theorem

Let E and F be finite irreducible graphs. The following are equivalent:

1 The one-sided shifts XE and XF are continuously orbit equivalent.

2 For any field K there exists an isomorphism φ : LK (E )→ LK (F ) with
φ(DE ) = DF .

3 There exists a ∗-isomorphism φ : C ∗(E )→ C ∗(F ) with φ(DE ) = DF .

4 There is an isomorphism ψ : BF (At
E )→ BF (At

F ) such that
ψ(uE ) = uF and sgn det(I − At

E ) = sgn det(I − At
F ).

If there is an isomorphism ψ : BF (At
E )→ BF (At

F ) such that ψ(uE ) = uF ,
then C ∗(E ) is Morita equivalent to C ∗(F ), and one can use the fact that
ψ(uE ) = uF to prove that C ∗(E ) and C ∗(F ) are actually ∗-isomorphic.
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Thus we have . . .

Theorem

Let E and F be finite irreducible graphs. Then C ∗(E ) is ∗-isomorphic to
C ∗(F ) if and only if there is an isomorphism ψ : BF (At

E )→ BF (At
F ) such

that ψ(uE ) = uF .

or in C ∗-algebra terms . . .

Theorem

Let E and F be finite graphs with no sinks, and suppose C ∗(E ) and
C ∗(F ) are simple. Then C ∗(E ) is ∗-isomorphic to C ∗(F ) if and only if
there is an isomorphism ψ : K0(C ∗(E ))→ K0(C ∗(F )) such that
ψ([1C∗(E)]) = [1C∗(F )].
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We can obtain a similar result for Leavitt path algebras — but again, our
uncertainty about whether the sign of the determinant is necessary causes
some problems.

Theorem

Let E and F be finite irreducible graphs, and let K be a field. If
sgn det(I − At

E ) = sgn det(I − At
F ) and there is an isomorphism

ψ : BF (At
E )→ BF (At

F ) such that ψ(uE ) = uF , then LK (E ) is isomorphic
to LK (F ).

or in algebra terms . . .

Theorem

Let E and F be finite graphs with no sinks, let K be a field, and suppose
that LK (E ) and LK (F ) are simple. If sgn det(I − At

E ) = sgn det(I − At
F )

and there is an isomorphism ψ : K0(LK (E ))→ K0(LK (F )) such that
ψ([1LK (E)]) = [1LK (F )], then LK (E ) is isomorphic to LK (F ).
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One-Sided Shifts — Summary of Results
Let E and F be finite graphs with no sinks.

Theorem: If E and F are irreducible
XE conjugate to XF ⇐⇒ E ↔ F using Move (O) and its inverse

=⇒ XE and XF are continuously orbit equivalent

Theorem: If E and F are irreducible, TFAE:
1 XE and XF are continuously orbit equivalent.
2 ∀ fields K , ∃ isomorphism φ : LK (E )→ LK (F ) with φ(DE ) = DF .
3 ∃ ∗-isomorphism φ : C ∗(E )→ C ∗(F ) with φ(DE ) = DF .
4 (BF(At

E ), uE ) ∼= (BF(At
F ), uF ) and sgn det(I −At

E ) = sgn det(I −At
F ).

Theorem: If C ∗(E ) and C ∗(F ) are simple,
C ∗(E ) ∼=∗ C ∗(F ) ⇐⇒ (K0(C ∗(E )), [1C∗(E)]) ∼= (K0(C ∗(F )), [1C∗(F )]).

Theorem: If LK (E ) and LK (F ) are simple,
(K0(LK (E )), [1LK (E)]) ∼= (K0(LK (F )), [1LK (F )]) =⇒ LK (E ) ∼= LK (F ).
and sgn det(I − At

E ) = sgn det(I − At
F )

Note: (K0(C ∗(E )), [1C∗(E)]) ∼= (K0(LK (E )), [1LK (E)]) ∼= (BF(At
E ), uE ).
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Two-Sided Shifts — Summary of Results
Let E and F be finite graphs with no sinks.

Theorem: If E and F are irreducible
XE conjugate to X F ⇐⇒ E ↔ F using Moves (O), (I) and their inverses

=⇒ XE and X F are flow equivalent

Theorem: If E and F are irreducible, TFAE:
1 XE and X F are flow equivalent.
2 E ↔ F using Moves (O), (I), (R) and their inverses.
3 BF(At

E ) ∼= BF(At
F ) and sgn det(I − At

E ) = sgn det(I − At
F ).

Theorem: If C ∗(E ) and C ∗(F ) are simple, TFAE
1 C ∗(E ) is Morita equivalent to C ∗(F ).
2 E ↔ F using Moves (O), (I), (R) their inverses, and Move (CS).
3 K0(C ∗(E )) ∼= K0(C ∗(F )).

Theorem: If LK (E ) and LK (F ) are simple,
K0(LK (E )) ∼= K0(LK (F )) and =⇒ LK (E ) Morita equivalent to LK (F ).

sgn det(I − At
E ) = sgn det(I − At

F )

Note: K0(C ∗(E )) ∼= K0(LK (E )) ∼= BF(At
E ).
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