Houston Summer School on Dynamical Systems

Problem set: Dynamical systems with hyperbolic behaviour

1. Let X be a separable metric space and $T: X \rightarrow X$ be continuous. Given $x \in X$ and $n \in \mathbb{N}$, let $\mathcal{E}_{x, n}=\frac{1}{n} \sum_{k=0}^{n-1} \delta_{T^{k} x}$ be the nth empirical measure for x. That is, the measure $\mathcal{E}_{x, n}$ is defined by

$$
\int \phi(y) d \mathcal{E}_{x, n}(y)=\frac{1}{n} \sum_{k=0}^{n-1} \phi\left(T^{k} x\right)
$$

for every continuous $\phi: X \rightarrow \mathbb{R}$. Suppose $n_{j} \rightarrow \infty$ and $\mu \in \mathcal{M}(X)$ are such that $\mathcal{E}_{x, n_{j}} \rightarrow \mu$.
(a) Show that μ is T-invariant.
(b) Give an example to show that this may fail if T is not continuous.
(c) Say that x is generic for μ if $\mathcal{E}_{x, n} \rightarrow \mu$ (without passing to a subsequence). Birkhoff's ergodic theorem says that if μ is ergodic and G_{μ} is the set of generic points for μ, then $\mu\left(G_{\mu}\right)=1$. Give an example showing that G_{μ} may be empty if μ is invariant but not ergodic.
(d) Let Σ be the full shift on two symbols and let μ be any σ-invariant measure (not necessarily ergodic). Show that μ has a generic point.
2. Let A be a finite alphabet and $\Sigma \subset A^{\mathbb{Z}}$ (or $A^{\mathbb{N}}$) be a closed σ-invariant subset. Given $n \in \mathbb{N}$, let

$$
\begin{aligned}
& L_{n}=\left\{w=w_{1} \cdots w_{n} \mid w_{i} \in A \text { for each } 1 \leq i \leq n,\right. \\
& \\
& \quad \text { and } w \text { appears as a subword of some } x \in \Sigma\} .
\end{aligned}
$$

(a) Let $a_{n}=\log \# L_{n}$ and show that

$$
a_{n+m} \leq a_{n}+a_{m} \text { for every } n, m \in \mathbb{N} .
$$

(b) A sequence satisfying (\star) is called subadditive. Prove Fekete's lemma: if a_{n} is a subadditive sequence, then $\lim \frac{1}{n} a_{n}$ exists and is equal to $\inf \frac{1}{n} a_{n}$ (which may be $-\infty$).
(c) Deduce that $h(\Sigma)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \# L_{n}(\Sigma)$ exists for every shift Σ. This limit is called the topological entropy of the shift Σ.
(d) Let Σ be the SFT on two symbols $\{0,1\}$ where the only forbidden word is 11 . Show that $\# L_{n}(\Sigma)$ is the Fibonacci sequence.
(e) Let Σ be a topological Markov chain with transition matrix M that is, a sequence x is in Σ if and only if $M_{x_{n}, x_{n+1}}=1$ for every n. Show that $\# L_{n}$ is the sum of all the entries of M^{n-1}.
(f) Let λ be a positive real eigenvalue of M with the property that $|\chi| \leq \lambda$ for all eigenvalues χ. (Existence of such an eigenvalue is part of the Perron-Frobenius theorem.) Prove that $h(\Sigma)=\log \lambda$.
3. The Dyck shift Σ is the two-sided shift on the four-symbol alphabet A whose letters are the brackets (, [,], and), and whose allowable sequences are precisely those in which the brackets are opened and closed in the right order. That is, the word ([]) is allowable, but the word ([)] is not. Similarly, ((([is allowable, but (] ((is not. Say two symbols $a, b \in A$ are a matched pair if $a=($ and $b=)$, or if $a=[$ and $b=]$, and write $a \multimap b$. Given $x \in \Sigma$, use the same notation for the following binary relation on \mathbb{N} :
$\diamond n \multimap n+1$ if $x_{n} \multimap x_{n+1}$;
$\diamond m \circ \multimap n$ if there is $m<i<n$ such that $m \circ \multimap i$ and $i+1 \circ n n$;
$\diamond m \circ-n$ if $x_{m} \circ x_{n}$ and $m+1 \circ \multimap n-1$.
Heuristically, $m \circ \square n$ in x if every bracket that is opened at or after position m has been closed by position n. Consider the subsets

$$
\begin{aligned}
& \Sigma^{R}=\{x \in \Sigma \mid \text { for every } n \in \mathbb{N} \text { there is } m<n \text { with } m \circ n\}, \\
& \Sigma^{L}=\{x \in \Sigma \mid \text { for every } m \in \mathbb{N} \text { there is } n>m \text { with } m \circ n\} .
\end{aligned}
$$

That is, Σ^{R} is the set of sequences where every right bracket has a matching left bracket, and Σ^{L} is the set of sequences where every left bracket has a matching right bracket.
(a) Let $X=\{0,1,2\}^{\mathbb{Z}}$ be the full shift on three symbols and define $h: \Sigma \rightarrow X$ by $h(x)_{n}=H\left(x_{n}\right)$, where $H: A \rightarrow\{0,1,2\}$ maps the symbol (to 1 , the symbol [to 2 , and both symbols),] to 0 . Show that h is 1-1 on Σ^{R}.
(b) Let μ be an σ-invariant probability measure on Σ and show that $\mu\left(\Sigma^{R} \cup \Sigma^{L}\right)=1$.
(c) Consider the directed graph G whose vertices are non-negative integers and which has the following edges:
$\diamond 2$ edges from 0 to 0 ;
$\diamond 2$ edges from n to $n+1$ for every $n \geq 0$;
$\diamond 1$ edge from n to $n-1$ for every $n \geq 1$.
Let a_{n} be the number of paths of length n on this graph that start at 0 . Show that $\# L_{n}(\Sigma)=a_{n}$.

Hint: it may help to label the two edges from 0 to 0 with the right brackets) and], the two edges from n to $n+1$ with (and [, and the edge from n to $n-1$ with ") or]".
(d) Show that $h(\Sigma)=\log 3$.
(e) If you know about measure-theoretic entropy and the variational principle, show that Σ has two ergodic measures of maximal entropy, and that both are fully supported on Σ.
4. Let (X, \mathcal{B}, μ) be a probability space and $T: X \rightarrow X$ a measure-preserving map. Given measurable sets $A, B \subset X$, let

$$
C_{n}(A, B):=\left|\mu\left(A \cap T^{-n} B\right)-\mu(A) \mu(B)\right|
$$

be the nth correlation function of A, B. Similarly, given L^{2} test functions ϕ, ψ, let

$$
C_{n}(\phi, \psi):=\left|\int \phi \cdot\left(\psi \circ T^{n}\right) d \mu-\int \phi d \mu \int \psi d \mu\right| .
$$

(a) Show that $C_{n}(A, B) \rightarrow 0$ for every A, B if and only if $C_{n}(\phi, \psi) \rightarrow 0$ for every ϕ, ψ. In this case the measure is called mixing.
(b) Our results on decay of correlations all involve $C_{n}(\phi, \psi)$ for sufficiently regular test functions, instead of $C_{n}(A, B)$, or $C_{n}(\phi, \psi)$ for arbitrary L^{2} functions. This is because even when $C_{n}(\phi, \psi)$ decays exponentially for Hölder continuous functions (or some other nice class), we may have very slow decay for $C_{n}(A, B)$, or for arbitrary measurable functions.

Demonstrate this phenomenon as follows: let $T:[0,1] \rightarrow[0,1]$ be the doubling map $T(x)=2 x(\bmod 1)$, and let μ be Lebesgue measure on $[0,1]$. Find measurable sets $A, B \subset[0,1]$ such that $C_{n}(A, B)$ only decays polynomially - that is, there are $\gamma, c>0$ such that $C_{n}(A, B) \geq c n^{\gamma}$ for all n.

Note that this is equivalent to answering the same question where X is the full shift on two symbols and μ is $\left(\frac{1}{2}, \frac{1}{2}\right)$-Bernoulli.

