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Notation.

• Rd is endowed with the standard inner product (·, ·) and Euclidean norm ‖ · ‖.

• Md×d(R) denotes the space of n× n real matrices.

• When Rd = E ⊕ F is a splitting of Rd into complementary subspaces, we let πE//F denote
the projection onto E, parallel to F ; that is, the range of πE//F is E, πE//F ◦ πE//F = πE//F ,
and kerπE//F = F .

• For a subspace E ⊂ Rd, let πE denote the orthogonal projection onto E.

• For a subspace E ⊂ Rd, let E⊥ denote the orthogonal complement to E.

• For 1 ≤ k ≤ d and a linear operator A ∈ Md×d(R), let σk(A) denote the k-th singular value
of A.

• Here, 〈w1, · · · , wk〉 denotes the subspace spanned by the vectors w1, · · · , wk ⊂ Rd.

1 Preliminaries from linear algebra

1.1 The Singular Value Decomposition (SVD)

Definition 1. Let A ∈Md×d(R). The singular values σ1(A), · · · , σd(A) of A may be defined by

σi(A) =
√
λi(A∗A) ,

where λi(A
∗A) denotes the i-th highest eigenvalue of A∗A. Note that A∗A is positive semidefinite,

and so λ1(A∗A) ≥ · · · ≥ λd(A∗A) ≥ 0.

Problem 2. Let S ∈ Md×d(R) be a symmetric matrix (i.e. AT = A, where T denotes the
transpose). Show that there is an orthogonal basis {vi}1≤i≤d of Rd consisting of eigenvectors for S.

Problem 3 (Proof of the SVD). Assume that A ∈Md×d(R) is invertible.

(a) Show that λk(A
∗A) = λk(AA

∗) for each 1 ≤ i ≤ d.

(b) Let {vi}1≤i≤d be an orthonormal eigenbasis for A∗A as in Problem 2, ordered so that A∗Avi =
λi(A

∗A)vi for each 1 ≤ i ≤ d. Let {wi}1≤i≤d be an analogous orthonormal eigenbasis for AA∗,
ordered the same way. Prove that Avi = ±σi(A)wi for each 1 ≤ i ≤ d.

Problem 4. Show that if the invertible matrix A has singular values σ1 > . . . > σd, then A−1 has
singular values σ−1

d > . . . > σ−1
1 .
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Problem 5. Let A,B ∈ Md×d(R) and assume both A,B are invertible. Prove that there exists a
basis {v1, · · · , vd} of Rd for which {Avi}1≤i≤d is orthogonal and {Bvi}1≤i≤d is orthogonal.

Problem 6. Let A ∈Md×d(R), and do not assume that A is invertible.

(a) Prove that
σi(A) = min{‖A|F ‖ : F ⊂ Rd, codimF = i− 1}

for each 1 ≤ i ≤ d. Recall that codimF = d− dimF for a subspace F ⊂ Rd.

(b) Prove that

σi(A) = max{m(A|E) : E ⊂ Rd,dimE = i} ,

where

m(A|E) := min

{
‖Av‖
‖v‖

: v ∈ E \ {0}
}

=
∥∥(A|E)−1

∥∥−1
.

Note that m(A|E) = 0 if A|E is not injective.

(c) Prove that
k∏
i=1

σi(A) = max{det(A|W ) : W ⊂ Rd, dimW = k}

for each 1 ≤ k ≤ d.

Problem 7. Let A ∈ Md×d. Let A have singular vectors v1, . . . , vk. Prove that vk is a vector in
〈v1, . . . , vk−1〉⊥ that is maximally expanded by A, i.e.,

‖Avk‖ = ‖A|〈v1,··· ,vk−1〉⊥‖ .

1.2 Angles

Problem 8. Let E ( Rd be a proper subspace. For v ∈ Rd, define the minimal distance

dist(v,E) := min{‖v − e‖ : e ∈ E} .

Prove that

dist(v,E) =
‖πE⊥v‖
‖v‖

when v 6= 0.

Definition 9. The angle ∠(v, w) ∈ [0, π/2] between two vectors v, w ∈ Rd is defined by

cos∠(v, w) =
(v, w)

‖v‖‖w‖
.

For a subspace E ⊂ Rd and a nonzero vector v ∈ Rd, we define the minimal angle ∠(v,E) =
min{∠(v, e) : e ∈ E, ‖e‖ = 1}.

Problem 10. Prove that
sin∠(v,E) = dist(v,E) ,

where E ⊂ Rd is a subspace and v ∈ Rd \ {0}.
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1.3 Grassmanian on Rd

Definition 11. For 1 ≤ k ≤ d, the Grassmanian Gr(d, k) is the set of all k-dimensional subspaces
of Rd. We endow Gr(d) := ∪dk=1 Gr(d, k) with the following metric: for E1, E2 ∈ Gr(d) we define

dH(E1, E2) := ‖πE1 − πE2‖ .

Problem 12. The ‘H’ stands for Hausdorff: the metric dH is known as the Hausdorff distance, and
is in broader generality a metric on the space of compact subsets of Rd: for two compact subsets
A,B ⊂ Rd, we define

dHaus(A,B) = max{max
a∈A

dist(a,B),max
b∈B

dist(b, A)} .

For E1, E2 ∈ Gr(d, k), define BEi = {v ∈ Ei : ‖v‖ ≤ 1}. Compare dH(E1, E2) to dHaus(BE1 , BE2).

Problem 13. Prove that dH is a complete metric on Gr(d), and that each Gr(d, k), 1 ≤ k ≤ d, is
connected.

Problem 14. Prove that Gr(d, 2) is sequentially compact.

Problem 15. Let E,E′ ∈ Gr(d) be such that dH(E,E′) < 1. Show that E′ and E⊥ are comple-
ments.

Problem 16 (Harder). Let Rd = E⊕F be a splitting of Rd into complementary subspaces, and let
πE//F denote the projection onto E parallel to F . Show that if E′ ⊂ Rd is a subspace sufficiently

close to E in the dH metric, then then E′, F are complementary in Rd. Can you find an estimate
in terms of ‖πE//F ‖? Is it optimal?

Problem 17 (Harder - for those that like manifolds). For a fixed k-codimensional subspace, W ,
of Rd, let U denote those elements of Gr(d, k) that have a trivial intersection with W .

(a) Prove that U is an open subset of Gr(d, k).

(b) Fix an element V0 ∈ U , a basis e1, . . . , ek for V0 and a basis f1, . . . , fd−k for W . For an element
V ∈ U , since V ⊕W = Rd, each ei may be expressed uniquely as vi +wi with vi ∈ V and wi ∈W .
Form a matrix, Φ(V ) whose ith column is the coefficients of wi in the (fj) basis.

(c) Prove that Φ is a bijection from U to R(d−k)×k.

(d) Prove that the collection of (U ,Φ) (as W varies over Gr(d, d−k), V0 varies over U and the bases
vary over bases for W and V0) forms a smooth manifold structure on Gr(d, k).

1.4 Volumes and wedges

Problem 18. Verify that:

• v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vk = −v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vk; and

• v1 ∧ · · · ∧ (cv + c′v′) ∧ · · · ∧ vk = v1 ∧ · · · ∧ v ∧ · · · ∧ vk + c′v1 ∧ · · · ∧ v′ ∧ · · · ∧ vk

• If e1, . . . , ed is a basis for V , then {ei1 ∧ · · · ∧ eik : i1 < . . . < ik} spans
∧k V .

Problem 19. Let V be a k-dimensional subspace of Rd. Let two bases for V be e1, . . . , ek and
f1, . . . , fk.

Prove that f1 ∧ · · · ∧ fk = c e1 ∧ · · · ∧ ek, where c is the determinant of the matrix of coefficients
of the f vectors in terms of the e vectors.
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Problem 20. Prove that there is a linear map
∧k A from

∧k V to itself such that
∧k A(v1 ∧ · · · ∧

vk) = (Av1) ∧ · · · ∧ (Avk) for all v1, . . . , vk ∈ V .

Problem 21. Let u, v and w be three orthonormal vectors in R3. Prove that u ∧ v, u ∧ w and
v ∧ w are orthonormal.

Problem 22. Let v1, · · · , vd ⊂ Rd be a basis. Write P = {
∑d

i=1 αivi : αi ∈ [0, 1], 1 ≤ i ≤ d}. Show
that

Leb(P) = ‖vd‖ ·
d−1∏
i=1

dist(vi, 〈vi+1, · · · , vd〉) .

Problem 23. Let Rd = E ⊕ F be a splitting into complementary subspaces E,F , and let A ∈
Md×d(R) be an invertible matrix. Using Problem 22, estimate det(A|E) det(A|F ) in terms of det(A)
and the quantities ‖πE//F ‖, ‖πAE//AF ‖. What happens if E,F are subspaces spanned by singular
vectors for A?

2 Subadditivity and the Kingman Subadditive Ergodic Theorem

2.1 Subadditive sequences

Problem 24. Let {an}n≥1 be a subadditive sequence of reals, i.e., for any m,n ≥ 1, we have that

am+n ≤ am + an .

Prove that limn→∞ n
−1an converges (perhaps to −∞), and prove that it the limiting value coincides

with infn≥1 n
−1an.

Problem 25. Let {an}n≥1, {bn}n≥1 be sequences of reals for which

am+n ≤ am + an + bn

for each m,n ≥ 1. Formulate conditions on {bn} under which limn n
−1an converges.

2.2 Kingman Subadditive Ergodic Theorem (KSET)

For the ensuing exercises, let us assume the KSET in the following form.

Theorem 26 (KSET). Let (Ω,F , µ) be a measure space and let T : Ω → Ω be a µ-invariant
measurable transformation. Let {fn : Ω → R} be a subadditive sequence of measurable functions
for the mpt (Ω,F , µ, T ), i.e., for each m,n ≥ 1 and for µ-almost every x ∈ Ω,

fm+n(x) ≤ fm(x) + fn(x) .

Assume that f+
1 ∈ L1(µ). Then, the limits

f∗(x) = lim
n→∞

1

n
fn(x) ∈ [−∞,∞)

exist for µ-almost every x ∈ Ω, and∫
f∗(x)dµ(x) = lim

n→∞

∫
fn(x)

n
dµ(x) = inf

n→∞

∫
fn(x)

n
dµ(x) .
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For the next two problems, assume the setting and conclusions of the KSET as posed above.

Problem 27. Prove that f∗ is µ-almost surely T -invariant.

Problem 28. Let T be an invertible ergodic measure-preserving transformation. Let (fn) be a
sub-additive sequence of functions over T : fn+m(ω) ≤ fn(ω) + fm(Tnω).

• Let gn(ω) = fn(T−nω). Prove that (gn) is sub-additive over σ−1: gn+m(ω) ≤ gn(ω) +
gm(T−nω).

• Prove that limn→∞
1
ngn(ω) exists a.e. and has the same limit as f∗ a.e.

• What if T is not ergodic?

2.3 First passage percolation

Let E denote the collection of edges in the Z2 lattice. Let ν be a probability measure on (0,∞)
(with

∫
x dν(x) <∞).

Let Ω = (0,∞)E be the collection of all weightings of E and equip X with the probability
measure νE (so that in a realization ω ∈ Ω, each edge is assigned a weight from the distribution ν
independently of all other edges). Define a Z2 action, τv on Ω that translates the pattern of edge
weightings through −v.

Now for v ∈ Z2, define Fv(ω) to be the length of the shortest path from 0 to v (where the
length of a path is the sum of the weights of the edges).

Problem 29. In this problem, we develop the application of the Kingman subbadditive ergodic
theorem to the problem of first passage percolation on Z2.

(a) For u,v ∈ Z2, ω ∈ Ω, prove that

Fu+v(ω) ≤ Fu(ω) + Fv(τu(ω)).

In particular, if v is any non-zero integer vector, then defining σ = τv and fn(ω) = Fnv(ω),
(fn) is a sub-additive sequence for the ergodic dynamical system σ : Ω→ Ω.

(b) Show that
∫

(f1(ω))+dν(ω) <∞.

(c) Show that ν is an ergodic invariant measure for σ : Ω→ Ω.

(d) Applying (b) and (c), verify that the Kingman subadditive ergodic theorem implies that the
limit

lim
n→∞

fn(ω)

n

exists and converges ν-almost surely to the constant g(v) ∈ R ∪ {−∞}, where

g(v) := lim
n→∞

1

n

∫
Ω
Fnv(ω)dν(ω) .

(e) Check that g(v) > 0 for any v ∈ Z2 \ {0}.

In the next problem, we prove some properties of the function g.

Problem 30.
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(a) For k ∈ Z,v ∈ Z2, show that g(kv) = |k|g(v).

(b) Extend g to Q2 by defining g(v) = n−1g(nv) when nv ∈ Z2. Conclude from part (a) that
this extension of g is well-defined, and that g(cv) = |c|g(v) for c ∈ Q,v ∈ Q2.

(c) Prove that g(v + w) ≤ g(v) + g(w).

(d) Conclude that g is continuous on Q2, hence admits a unique continuous continuation to all
of R2. Check that g is positive-valued on all of R2.

2.4 Lyapunov exponents

Problem 31. Check using Problem 4 and the Kingman sub-additive ergodic theorem that the
Lyapunov exponents for the inverse cocycle B(ω) = A(σ−1ω)−1 over σ−1 are −λk, . . . ,−λ1, with
multiplicities mk, . . . ,m1.

Problem 32. Check from the previous exercise and the Kingman sub-additive ergodic theorem
that the Lyapunov exponents for the dual cocycle C(n)(ω) over σ−1, where C(ω) = A(σ−1ω)T over

σ−1 are the same as those for the cocycle A
(n)
ω over σ.

3 Guided proof of MET for a single 2× 2 matrix.

Problem 33 (A warmup). Why is the unstable manifold defined as W u(p) = {x : d(T−nx, p) →

0 as n→∞}? (that is: why are inverse powers of T used?) (Think about the map T (x) =

(
2 0
0 1

2

)
x

for a concrete example).

Problem 34. In this exercise, we will prove, in a roundabout way, the ‘one-sided’ Multiplicative
Ergodic Theorem for a matrix A ∈M2×2(R).

(a) Show that the limits

Lk = lim
n

1

n
log σk(A

n) (1)

exist for each 1 ≤ k ≤ 2. Hint: use Problem 6, part (c) and Fekete’s Lemma.

(b) Assume that L1 > L2. For each n, let Fn denote the singular subspace corresponding to
σ2(An), i.e., Fn is the (unique) 1-dimensional subspace of R2 for which

‖An|Fn‖ = σ2(An) .

Show that the sequence of subspaces {Fn} is Cauchy by obtaining a bound on ‖(Id−πFn+1)|Fn‖.

(c) Let F denote the limiting subspace as in (b). Show the following:

For any v ∈ F \ {0}, lim
n→∞

1

n
log ‖Anv‖ = L2 , and

for any v ∈ R2 \ F , lim
n→∞

1

n
log ‖Anv‖ = L1 .

In particular, observe that F is invariant, i.e., AF ⊂ F .
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(d) Identify the collection of limits L1, L2 in terms of the eigenvalues of A. Identify F in terms
of the eigenvectors of A.

At this point, we have proved the following.

Proposition 35 (One-sided MET for a single 2 × 2 matrix). Let A ∈ M2×2(R), and let L1, L2

be as in Problem 34. If L1 > L2, then there exists a subspace F ⊂ R2 for which (i) AF ⊂ F ,
(ii) for any v ∈ F \ {0}, we have limn→∞

1
n log ‖Anv‖ = L2, and for any v ∈ R2 \ F , we have

limn→∞
1
n log ‖Anv‖ = L1.

Problem 36. Let A ∈M2×2(R) (i.e., A is a two-by-two matrix with real entries), and assume that
A has two distinct eigenvalues λ1, λ2 for which |λ1| > |λ2| > 0.

(a) Determine limn→∞
1
n log ‖Anv‖ for each v ∈ R2. Does your result change if ‖ · ‖ is replaced

with any norm | · | on Rn?

(b) Let E1, E2 denote the eigenspaces corresponding to λ1, λ2, respectively, and assume that
v ∈ R2 \ E2. Show that

lim
n→∞

∠(Anv,E1) = 0 .

(c) Determine the value of

lim
n→∞

1

n
log∠(Anv,E1) .

Problem 37. In this exercise, we prove, again in a roundabout way, the ‘two-sided’ MET for a
matrix A ∈ M2×2(R). Let us assume that L1 > L2, where L1, L2 are as in Problem 34. For now,
let us assume that A is invertible.

(a) Let L̂1, L̂2 denote the limits as in (1) with A−1 replacing A, and show that L̂1 = −L2 and
L̂2 = −L1.

(b) Apply Problem 34, item (b) with A−1 replacing A, and let E denote the limiting subspace.
Show that

For any v ∈ E \ {0}, lim
n→∞

1

n
log ‖A−nv‖ = −L1 , and

for any v ∈ R2 \ E, lim
n→∞

1

n
log ‖A−nv‖ = −L2 .

In particular, observe that E is invariant, i.e., AE = E.

(c) Identify the subspace E in terms of the eigenvectors of A.

Problem 38. In this exercise, we prove in an alternative way the two-sided MET for a matrix
A ∈M2×2(R), this time without explicitly using the fact that A is invertible.

(a) Let L̄1, L̄2 denote the (possibly −∞) limits as in (1) with AT , the transpose of A, replacing
A. Show that L̄1 = L1, L̄2 = L2.

(b) Apply Problem 34, item (b) with AT replacing A, and let F̄ denote the limiting subspace.
Note that automatically, F̄⊥ is invariant under A. Show that F̄⊥ complements F (as in
Problem 34).
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(c) In the case when A is invertible, show that E = F̄⊥ with E as in Problem 37.

Problem 39. In this exercise, we show yet another way of obtaining the two-sided MET for a
matrix A ∈M2×2(R), again not explicitly using the fact that A is invertible.

(a) Let L1 > L2 be as in Problem 34, and for each n let En denote the one-dimensional subspace
corresponding to σ1(An)– i.e., En is the unique one-dimenisonal subspace with the property
that m(An|En) = min{|Ane| : e ∈ En, ‖e‖ = 1} = σ1(An). Letting E′n = AnEn, show that
{E′n} is a Cauchy sequence.

(b) Let Ē denote the limiting subspace from part (a). Show that Ē, F are complements, and that
AĒ = Ē.

(c) Show that Ē coincides with the subspace E as in Problem 37 when A is invertible.

4 The projective Markov chain and Lyapunov exponents

Throughout these exercises we refer to the following construction.

Definition 40. Let T be an almost-surely invertible random variable on M2×2(R) and consider the
IID matrix product {Tn} distributed like T . Let {ψn}n denote the Markov chain on the projective
space P 1 ∼= [0, π) of R2 for which

uψn+1 = Tnuψn ;

Here, we write uψ = (cosψ, sinψ), and for v ∈ R2 \ {0} we write v̄ ∈ P 1 for the equivalence class
of v. The Markov chain {ψn}n is referred to as the projective Markov chain for the matrix product
{Tn}.

The transition probabilities P (ψ, ·) for ψ ∈ P 1 ∼= [0, π) for the projective Markov chain are
given by

P (ψ,A) = P(Tuψ ∈ A) .

for Borel A ⊂ P 1. Recall that a probability measure ν on P 1 is stationary when

ν(A) =

∫
P 1

dν(ψ)P (ψ,A)

for any Borel A ⊂ P 1.

Problem 41. Let {ψn} be the projective Markov chain for an IID matrix product {Tn}. Prove
the following Lemma.

Lemma 42.

(a) Let ν be any stationary measure for the Markov chain {ψn} on P 1, which we regard as a
measure on [0, π). Then,

λ1 ≥
∫

log ‖Tuψ‖dν(ψ)dP(T ) .

(b) If ν is absolutely continuous with respect to Lebesgue measure on P 1, then

λ1 =

∫
log ‖Tuψ‖dν(ψ)dP(T ) .

Hint: for (a), use the Birkhoff ergodic theorem. For (b), use the Multiplicative Ergodic Theorem.
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5 Computing LE of simple matrix cocycles

Below, for L > 0, we set

HL =

(
L 0
0 L−1

)
and for θ ∈ [0, 2π),

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
Problem 43. Define the random matrix T by setting T = Rπ/2 with probability p ∈ (0, 1], and
T = H2 with probability 1 − p. Let {Tn} be an IID sequence with the same law as T . Show that
the Lyapunov exponents of this random matrix product are both zero.

Problem 44. Define the random matrix T by setting T = R2π/3 with probability p ∈ (0, 1], and
T = H4 with probability 1 − p. Let {Tn} be an IID sequence with the same law as T . Show that
the top Lyapunov exponent of this random matrix product is positive when p is sufficiently small.
Hint: look for an invariant subset of projective space under the actions of both R2π/3 and H4.

Problem 45. Define the random matrix T by setting T = Rθ with probability p ∈ (0, 1], where θ
is distributed uniformly in [0, 2π), and T = H2 with probability 1−p. Let {Tn} be an IID sequence
with the same law as T . Show that for p sufficiently small, the top Lyapunov exponent of this
random matrix product is positive. Hint: consider the orientation of the vector Tn(1, 0) after each
time a rotation is sampled.

Problem 46. Consider the random matrix product of the form T = RθHL, where L > 0 is a
large fixed constant and θ is distributed according to an absolutely continuous law on [0, 2π) with
a bounded density ρ.

(a) Let ν be any stationary measure for the associated projective Markov chain. Show that ν is
absolutely continuous, and bound the density of ν in terms of the bound on the density of ρ.

(b) Apply Lemma 42 to obtain a lower bound for λ1 in terms of L. Conclude that λ1 > 0 for L
sufficiently large. Hint: P 1 = {|ψ − π/2| > ε} ∪ {|ψ − π/2| ≤ ε}.

Problem 47. Let f : S1 → S1 denote rotation by an irrational angle α/2π; parametrizing S1 =
[0, 1), this means that f(x) = x + α(mod 1). Define the cocycle A : S1 → M2×2(R) by Ax = R2πx

for x ∈ [0, 1). Does there exist an equivariant subspace of R2 for this cocycle?
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