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Notation.
e R? is endowed with the standard inner product (-,-) and Euclidean norm || - ||.
e Myy4(R) denotes the space of n x n real matrices.

e When RY = E @ F is a splitting of R? into complementary subspaces, we let 7g yF denote
the projection onto E, parallel to F'; that is, the range of 7/ is E, g poTr r = Tg)F,
and keI"ZTE//F =F.

e For a subspace E C RY, let 7 denote the orthogonal projection onto E.
e For a subspace E C R%, let E+ denote the orthogonal complement to E.

e For 1 < k < d and a linear operator A € My.q(R), let o;(A) denote the k-th singular value
of A.

e Here, (wq, - ,wy) denotes the subspace spanned by the vectors wy, - -+, wg C R,

1 Preliminaries from linear algebra

1.1 The Singular Value Decomposition (SVD)
Definition 1. Let A € Miy4(R). The singular values 01(A),- - ,04(A) of A may be defined by

U,(A) =4/ )\l(A*A) ,

where \;(A*A) denotes the i-th highest eigenvalue of A*A. Note that A*A is positive semidefinite,
and so A\j(A*A) > - > N\g(A%A) > 0.

Problem 2. Let S € Myy4(R) be a symmetric matrix (i.e. AT = A, where T denotes the
transpose). Show that there is an orthogonal basis {v; }1<;<4 of R? consisting of eigenvectors for S.

Problem 3 (Proof of the SVD). Assume that A € My.4(R) is invertible.
(a) Show that A\p(A*A) = A\ (AA*) for each 1 < i < d.

(b) Let {v;}1<i<q be an orthonormal eigenbasis for A*A as in Problem [2 ordered so that A* Av; =
Xi(A*A)v; for each 1 < i < d. Let {w; }1<i<q be an analogous orthonormal eigenbasis for AA*,
ordered the same way. Prove that Av; = +0;(A)w; for each 1 < i < d.

Problem 4. Show that if the invertible matrix A has singular values o1 > ... > o4, then A~! has

singular values 0';1 > > Jfl.



Problem 5. Let A, B € Myx4(R) and assume both A, B are invertible. Prove that there exists a
basis {v1, -+ ,vq} of R? for which {Av;}1<;<q4 is orthogonal and {Bwv;}1<;<q4 is orthogonal.

Problem 6. Let A € Mi«q(R), and do not assume that A is invertible.

(a) Prove that
0i(A) = min{||A|p|| : F ¢ RY, codim F =i — 1}

for each 1 <4 < d. Recall that codim F' = d — dim F' for a subspace F' C R4,
(b) Prove that
0i(A) = max{m(A|g) : E c RY, dim E = i},

where

ey = min {20 oy} = a1

loll
Note that m(A|g) = 0 if A|g is not injective.
(¢) Prove that

k
Hai(A) = max{det(A|w) : W Cc RY, dim W = k}
i=1

foreach 1 < k <d.

Problem 7. Let A € Myyy. Let A have singular vectors vy,...,v;. Prove that v is a vector in
(v1,...,v5_1)" that is maximally expanded by A, i.e.,
[Avk]| = [|Af oy - gy I -

1.2 Angles
Problem 8. Let E C R? be a proper subspace. For v € R?, define the minimal distance
dist(v, E) :== min{||v —e|| : e € E}.

Prove that
dist(v, FE) = gl

o]
when v # 0.

Definition 9. The angle /(v,w) € [0,7/2] between two vectors v,w € R? is defined by

(v, w)
/ =7
e T

For a subspace F C R? and a nonzero vector v € R?, we define the minimal angle /(v, E) =
min{Z(v,e) : e € E, |le]| = 1}.

Problem 10. Prove that
sin Z(v, F) = dist(v, E) ,

where E C R? is a subspace and v € R?\ {0}.



1.3 Grassmanian on R

Definition 11. For 1 < k < d, the Grassmanian Gr(d, k) is the set of all k-dimensional subspaces
of R%. We endow Gr(d) := U¢_, Gr(d, k) with the following metric: for Fy, B2 € Gr(d) we define

dH(ElaE2) = HTrEl - 7TE2” :

Problem 12. The ‘H’ stands for Hausdorff: the metric dg is known as the Hausdorff distance, and
is in broader generality a metric on the space of compact subsets of R%: for two compact subsets
A, B C R?, we define

dHaus(A, B) = max{rgleaj( dist(a, B), max dist(b, A)} .

For E1, Es € Gr(d, k), define Bg, = {v € E; : ||v|]| < 1}. Compare dg(E1, E2) to dgaus(Bg,, Be,).

Problem 13. Prove that dy is a complete metric on Gr(d), and that each Gr(d, k),1 < k <d, is
connected.

Problem 14. Prove that Gr(d,2) is sequentially compact.

Problem 15. Let E, E' € Gr(d) be such that dy(FE, E’) < 1. Show that £’ and E+ are comple-
ments.

Problem 16 (Harder). Let RY = E@ F be a splitting of R? into complementary subspaces, and let
7y r denote the projection onto E parallel to F'. Show that if E’ c R? is a subspace sufficiently
close to F in the dy metric, then then E’, F' are complementary in R%. Can you find an estimate
in terms of ||wg /|7 Is it optimal?

Problem 17 (Harder - for those that like manifolds). For a fixed k-codimensional subspace, W,
of R%, let U denote those elements of Gr(d, k) that have a trivial intersection with .
(a) Prove that U is an open subset of Gr(d, k).

(b) Fix an element Vy € U, a basis eq,..., e for Vj and a basis fi,..., fq_x for W. For an element
V elU, since V@ W = R? each e; may be expressed uniquely as v; +w; with v; € V and w; € W.
Form a matrix, ®(V') whose ith column is the coefficients of w; in the (f;) basis.

(¢) Prove that ® is a bijection from U to R(@—F)xk,
(d) Prove that the collection of (U, ®) (as W varies over Gr(d,d — k), V{ varies over U and the bases

vary over bases for W and Vj) forms a smooth manifold structure on Gr(d, k).

1.4 Volumes and wedges

Problem 18. Verify that:
e VA AVA- - AVA- AV ==V A AU A A A Ao and
e A Alev+ V)N Avg=v1 A AVA-Avg+ v A AV A Ay
o Ife1,...,eqis a basis for V, then {e;, A---Aes: i1 <...<iy} spans \*V.

Problem 19. Let V be a k-dimensional subspace of R%. Let two bases for V be e,..., e, and

Jioooo fee

Prove that fi A--+ A fx =ce1 A--- Aeg, where ¢ is the determinant of the matrix of coefficients
of the f vectors in terms of the e vectors.



Problem 20. Prove that there is a linear map A* A from A* V' to itself such that A® A(vy A--- A
vg) = (Avi) A -+ A (Avg) for all vy, ... v, € V.

Problem 21. Let u, v and w be three orthonormal vectors in R®. Prove that u A v, u A w and
v A w are orthonormal.

Problem 22. Let vy, ---,vg C R? be a basis. Write P = {37, av; : a; € [0,1],1 < < d}. Show

that
d—1

Leb(P) = [|vall - [ ] dist(vi, (vig1,- -+ ,va)) -

=1

Problem 23. Let R? = E @ F be a splitting into complementary subspaces E, F, and let A €
Mgy q(R) be an invertible matrix. Using Problem [22] estimate det(A|g) det(A|r) in terms of det(A)
and the quantities |7z rl, |Tapyarll. What happens if E, F' are subspaces spanned by singular
vectors for A?

2 Subadditivity and the Kingman Subadditive Ergodic Theorem

2.1 Subadditive sequences
Problem 24. Let {ay},>1 be a subadditive sequence of reals, i.e., for any m,n > 1, we have that
Amin < Qm + an .

Prove that lim,, o, 7~ 'a, converges (perhaps to —oc), and prove that it the limiting value coincides

with inf,, > n " Lla,.

Problem 25. Let {an}n>1, {bn}n>1 be sequences of reals for which
Am+n S Am + an + bn

for each m,n > 1. Formulate conditions on {b,} under which lim, n~'a,, converges.

2.2 Kingman Subadditive Ergodic Theorem (KSET)

For the ensuing exercises, let us assume the KSET in the following form.

Theorem 26 (KSET). Let (Q,F,u) be a measure space and let T : Q — Q be a p-invariant
measurable transformation. Let {f, : Q@ — R} be a subadditive sequence of measurable functions
for the mpt (Q, F,u, T), i.e., for each m,n > 1 and for p-almost every x € 2,

fmin (@) < fin(2) + fo ().

Assume that fi7 € L'(u). Then, the limits

fi(@) = lim —fu(2) €[00, 00)
exist for p-almost every x € Q, and

/f*(:c)du(:z): lim fn(x)du(:c) = inf /fnT(Lm)d,u(az)

n—00 n n—o0




For the next two problems, assume the setting and conclusions of the KSET as posed above.
Problem 27. Prove that f* is p-almost surely T-invariant.

Problem 28. Let T be an invertible ergodic measure-preserving transformation. Let (f,) be a
sub-additive sequence of functions over T fy,1m(w) < frn(w) + fin(T"w).

e Let gy(w) = fno(T7"w). Prove that (g,) is sub-additive over o' g im(w) < gn(w) +
gm (T "w).

e Prove that lim,,_, %gn(w) exists a.e. and has the same limit as f* a.e.

e What if T is not ergodic?

2.3 First passage percolation

Let £ denote the collection of edges in the Z? lattice. Let v be a probability measure on (0, 00)
(with [z dv(z) < 00).

Let © = (0,00)¢ be the collection of all weightings of £ and equip X with the probability
measure v (so that in a realization w € €, each edge is assigned a weight from the distribution v
independently of all other edges). Define a Z? action, 7v on €2 that translates the pattern of edge
weightings through —v.

Now for v € Z2, define Fy(w) to be the length of the shortest path from 0 to v (where the
length of a path is the sum of the weights of the edges).

Problem 29. In this problem, we develop the application of the Kingman subbadditive ergodic
theorem to the problem of first passage percolation on Z2.

(a) For u,v € Z2, w € Q, prove that
Fu—l—v(w) < Fu(w) + FV(TU(W))'

In particular, if v is any non-zero integer vector, then defining o = 7, and f,(w) = Fuv(w),
(fn) is a sub-additive sequence for the ergodic dynamical system o:  — Q.

(b) Show that [(fi(w))tdr(w) < co.
(c) Show that v is an ergodic invariant measure for o : Q — Q.

(d) Applying (b) and (c), verify that the Kingman subadditive ergodic theorem implies that the

limit

n—oo  n

exists and converges v-almost surely to the constant g(v) € R U {—oo}, where

g(v):= lim l/QFm,(w)du(w).

n—oo n

(e) Check that g(v) > 0 for any v € Z?\ {0}.
In the next problem, we prove some properties of the function g.

Problem 30.



(a) For k € Z,v € Z?, show that g(kv) = |k|g(Vv).

(b) Extend g to Q? by defining g(v) = n~'g(nv) when nv € Z?. Conclude from part (a) that
this extension of g is well-defined, and that g(cv) = |¢|g(v) for ¢ € Q,v € Q2.

(c¢) Prove that g(v +w) < g(v) + g(w).

(d) Conclude that g is continuous on Q?, hence admits a unique continuous continuation to all
of R2. Check that g is positive-valued on all of R2.

2.4 Lyapunov exponents

Problem 31. Check using Problem [4] and the Kingman sub-additive ergodic theorem that the

Lyapunov exponents for the inverse cocycle B(w) = A(c~'w)~! over o~! are —\g, ..., —\1, with

multiplicities my, ..., m1.

Problem 32. Check from the previous exercise and the Kingman sub-additive ergodic theorem

that the Lyapunov exponents for the dual cocycle C™ (w) over ¢!, where C(w) = A(o—'w)T over

o~ ! are the same as those for the cocycle Agl) over o.

3 Guided proof of MET for a single 2 x 2 matrix.

Problem 33 (A warmup). Why is the unstable manifold defined as W"(p) = {x: d(T""x,p) —

0 as m — oco}? (that is: why are inverse powers of 7 used?) (Think about the map 7T'(x) = <§ (1)> x
2
for a concrete example).

Problem 34. In this exercise, we will prove, in a roundabout way, the ‘one-sided” Multiplicative
Ergodic Theorem for a matrix A € Mayo(R).

(a) Show that the limits
1
Ly = lim —log o (A™) (1)
non

exist for each 1 < k < 2. Hint: use Problem[6], part (¢) and Fekete’s Lemma.

(b) Assume that L; > Ls. For each n, let F,, denote the singular subspace corresponding to
o2(A™), i.e., F, is the (unique) 1-dimensional subspace of R? for which

[A"|F, || = o2(A") .
Show that the sequence of subspaces { F;, } is Cauchy by obtaining a bound on ||(Id -7 £, ., )|F, ||-

(c) Let F denote the limiting subspace as in (b). Show the following:
1
For any v € F'\ {0}, lim —log|A™v|| = Lo, and
n—oo N
1
for any v € R\ F, lim —log|A™v| = L.
n—oo n

In particular, observe that F' is invariant, i.e., AF C F.



(d) Identify the collection of limits Lj, Lo in terms of the eigenvalues of A. Identify F' in terms
of the eigenvectors of A.

At this point, we have proved the following.

Proposition 35 (One-sided MET for a single 2 x 2 matrix). Let A € Myx2(R), and let Ly, Lo
be as in Problem . If L1 > Lo, then there ewists a subspace F' C R? for which (i) AF C F,
(ii) for any v € F\ {0}, we have lim, o 2 log||A™0| = Lg, and for any v € R? \ F, we have
limy, o0 = log [|A™|| = L.

Problem 36. Let A € May2(R) (i.e., A is a two-by-two matrix with real entries), and assume that
A has two distinct eigenvalues A1, Ay for which [A] > |A2] > 0.

a) Determine lim,,_,o = log ||[A"v|| for each v € R*. Does your result change if || - || is replace
D ine li Llog [|A™v| fi h R2. D It ch if i laced
with any norm | - | on R™?

(b) Let Ej, Ey denote the eigenspaces corresponding to Aj, Ag, respectively, and assume that
v € R?\ Ey. Show that
lim Z(A"v, E1) =0.

n—oo

(¢) Determine the value of

1
lim —log Z(A™v, Ey) .

n—oo N

Problem 37. In this exercise, we prove, again in a roundabout way, the ‘two-sided’ MET for a
matrix A € Myyo(R). Let us assume that L; > Lo, where L, Ly are as in Problem For now,
let us assume that A is invertible.

(a) Let Ly, Ly denote the limits as in with A~! replacing A, and show that L, = —Lo and

Lo=—1Lj.
(b) Apply Problem item (b) with A~! replacing A, and let £ denote the limiting subspace.

Show that

1

For any v € E'\ {0}, lim —log|A™"v|| = —L;, and
n—oo n
1
for any v € R*\ E, lim —log| A "v| = —Ls.
n—oo n

In particular, observe that E is invariant, i.e., AE = E.

(c) Identify the subspace E in terms of the eigenvectors of A.

Problem 38. In this exercise, we prove in an alternative way the two-sided MET for a matrix
A € Msyo(R), this time without explicitly using the fact that A is invertible.

(a) Let Ly, Lo denote the (possibly —oo) limits as in with AT, the transpose of A, replacing
A. Show that L1 = Ll, L2 = LQ.

(b) Apply Problem item (b) with A” replacing A, and let F denote the limiting subspace.
Note that automatically, F* is invariant under A. Show that F- complements I (as in

Problem .



(c) In the case when A is invertible, show that F = F* with F as in Problem

Problem 39. In this exercise, we show yet another way of obtaining the two-sided MET for a
matrix A € May2(R), again not explicitly using the fact that A is invertible.

(a) Let Ly > Lo be as in Problem and for each n let E),, denote the one-dimensional subspace
corresponding to o1(A™)- i.e., E, is the unique one-dimenisonal subspace with the property
that m(A™|g,) = min{|A"| : e € E,, |le| = 1} = 01(A"™). Letting E/ = A"E,,, show that
{E!} is a Cauchy sequence.

(b) Let E denote the limiting subspace from part (a). Show that E, F are complements, and that
AFE =FE.
(c) Show that E coincides with the subspace E as in Problem [37] when A is invertible.

4 The projective Markov chain and Lyapunov exponents

Throughout these exercises we refer to the following construction.

Definition 40. Let 7" be an almost-surely invertible random variable on Msy2(R) and consider the
IID matrix product {7} distributed like T". Let {1}, denote the Markov chain on the projective
space P! 2 [0, 7) of R? for which

ﬂ¢n+1 = TnUu,n ;

Here, we write uy, = (cos,sin), and for v € R?\ {0} we write o € P! for the equivalence class
of v. The Markov chain {1, },, is referred to as the projective Markov chain for the matrix product

{Tn}-

The transition probabilities P(¢),-) for ¢» € P! = [0,7) for the projective Markov chain are
given by
Py, A) =P(Tuy € A).

for Borel A C P'. Recall that a probability measure v on P! is stationary when
v(4) = [ v, 4)
P

for any Borel A C P!.

Problem 41. Let {t¢,} be the projective Markov chain for an IID matrix product {7, }. Prove
the following Lemma.

Lemma 42.

(a) Let v be any stationary measure for the Markov chain {1,} on P!, which we regard as a
measure on [0,7). Then,

Mz [ log|[Tuyldv(v)B(T).
(b) If v is absolutely continuous with respect to Lebesque measure on P, then
M= [ 1og|Tuydv(v)aB(T).

Hint: for (a), use the Birkhoff ergodic theorem. For (b), use the Multiplicative Ergodic Theorem.



5 Computing LE of simple matrix cocycles

L 0
HL_(O L—1>

Ry — < cos —sinéb )

Below, for L > 0, we set

and for 6 € [0, 27),

sinf@ cosf

Problem 43. Define the random matrix 7' by setting 7" = R/, with probability p € (0,1], and
T = Hy with probability 1 — p. Let {7},} be an IID sequence with the same law as 7. Show that
the Lyapunov exponents of this random matrix product are both zero.

Problem 44. Define the random matrix 7' by setting 7' = Ry, /3 with probability p € (0, 1], and
T = Hy with probability 1 — p. Let {T,,} be an IID sequence with the same law as T". Show that
the top Lyapunov exponent of this random matrix product is positive when p is sufficiently small.
Hint: look for an invariant subset of projective space under the actions of both Ryr/3 and Hy.

Problem 45. Define the random matrix T by setting 7' = Ry with probability p € (0, 1], where 0
is distributed uniformly in [0, 27), and T' = Ha with probability 1 —p. Let {7}, } be an IID sequence
with the same law as T. Show that for p sufficiently small, the top Lyapunov exponent of this
random matrix product is positive. Hint: consider the orientation of the vector T™(1,0) after each
time a rotation is sampled.

Problem 46. Consider the random matrix product of the form T' = RgHy, where L > 0 is a
large fixed constant and 6 is distributed according to an absolutely continuous law on [0, 27) with
a bounded density p.

(a) Let v be any stationary measure for the associated projective Markov chain. Show that v is
absolutely continuous, and bound the density of v in terms of the bound on the density of p.

(b) Apply Lemma 42| to obtain a lower bound for \; in terms of L. Conclude that A; > 0 for L
sufficiently large. Hint: P' = {[¢) — /2| > e} U{|y — /2| < €}.

Problem 47. Let f : S' — S! denote rotation by an irrational angle «/2; parametrizing S' =
[0,1), this means that f(z) = = + a(mod 1). Define the cocycle A : St — Myy2(R) by Ay = Rons
for 2 € [0,1). Does there exist an equivariant subspace of R? for this cocycle?
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