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Abstract. Lecture notes for a mini-course at the University of
Houston in May 2016.

1. Motivation

This mini-course is about:

• The sub-additive ergodic theorem;
• Lyapunov exponents;
• Multiplicative ergodic theorems;

This section aims to motivate these theorems.

1.1. Sub-additive ergodic theorems. Kingman (in 1968, following
earlier work of Hammersley and Welsh) proved the Sub-additive ergodic
theorem.

If σ : Σ→ Σ is a measure-preserving transformation1, a sequence of
functions (fn)n≥1 is sub-additive (with respect to σ) if

fn+m(ω) ≤ fn(ω) + fm(σnω).

Examples of sequences of functions satisfying this condition?

(1) (Fekete’s lemma) Let (an) be a sequence of real numbers such
that an+m ≤ an + am. (Here the functions (fn) are constant
functions(!)). Then amk+r ≤ mak + ar, so that lim sup an/n ≤
ak/k for each k. Now lim sup an/n ≤ infk ak/k ≤ lim inf an/n ≤
lim sup an/n. Hence an/n converges to a value a = inf ak/k ∈
[−∞,∞).

(2) (Birkhoff averages) If f is an L1 function on Ω, then fn(ω) =
f(ω) + . . .+ f(σn−1ω) is an additive sequence:

fn+m(ω) = fn(ω) + fm(σnω).

(3) (First passage percolation) Let E denote the collection of edges
in the Z2 lattice. Let ν be a probability measure on (0,∞)
(with

∫
x dν(x) <∞).

1all invariant measures will be probability measures
1
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Let Ω = (0,∞)E be the collection of all weightings of E and
equip X with the probability measure νE (so that in a realiza-
tion ω ∈ Ω, each edge is assigned a weight from the distribution
ν independently of all other edges). Define a Z2 action, τv on
Ω that translates the pattern of edge weightings through −v.

Now for v ∈ Z2, define Fv(ω) to be the length of the shortest
path from 0 to v (where the length of a path is the sum of the
weights of the edges). Then

Fu+v(ω) ≤ Fu(ω) + Fv(τu(ω)).

In particular, if v is any non-zero integer vector, then defining
σ = τv and fn(ω) = Fnv(ω), (fn) is a sub-additive sequence for
the ergodic dynamical system σ : (0,∞)E → (0,∞)E .

Hammersley and Welsh interpreted this as a ‘wetting time’:
a rock is modelled by Z2. ‘Water’ is in contact with the rock
at 0. The edge label determines the time it takes water to pass
from one vertex to its neighbour. They were interested in the
geometry of {v : Fv(ω) < T}.

(image due to Jéremie Bettinelli)

(4) (Matrix products) If σ : (Ω,P)→ (Ω,P) is a measure-preserving
transformation, and A : (Ω,P)→ Md×d(R) is measurable, then
one can form the matrix cocycle:

A(n)(ω) = A(σn−1ω) · · ·A(ω) for n ∈ N and ω ∈ Ω.

Notice that

A(n+m)(ω) = A(m)(σnω)A(n)(ω) (the cocycle relation).

defining fn(ω) = log ‖A(n)(ω)‖, you obtain

fn+m(ω) ≤ fn(ω) + fm(σnω)

(providing ‖ ·‖ satisfies ‖AB‖ ≤ ‖A‖‖B‖ (e.g. operator norm))
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Theorem 1 (Kingman Sub-additive ergodic theorem, 1968). Let σ : (Ω,P)→
(Ω,P) be an ergodic measure-preserving transformation. Let (fn)n≥1 be
a sub-additive sequence of integrable functions. Then

(1) limn→∞
1
n

∫
fn(ω)P(ω) converges to a constant c ∈ [−∞,∞).

(2) For P-a.e. ω ∈ Ω, 1
n
fn(ω)→ c.

Theorem 2 (Birkhoff ergodic theorem, 1931). Let σ : (Ω,P)→ (Ω,P)
be an ergodic measure-preserving transformation. Let f : (Ω,P) → R
be an integrable function. Then

1

n

n−1∑
i=0

f(σix)→
∫
f dP for P-a.e. x.

Theorem 3 (Furstenberg, Kesten, 1960). Let σ : (Ω,P) → (Ω,P) be
an ergodic measure-preserving transformation. Let A : Ω → Md×d(R)
be a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) <∞. Then

1
n

log ‖A(σn−1ω) · · ·A(ω)‖ → E for a.e. ω,

where E = limn→∞
1
n

∫
log ‖A(σn−1ω) · · ·A(ω)‖ dP(ω).

The Birkhoff and Furstenberg–Kesten theorems are immediate corol-
laries of Kingman’s theorem.

1.2. Lyapunov Exponents and Multiplicative ergodic theorem.

If T : I → I is a differentiable self-map of the interval, then the chain
rule gives (T n)′(x) = T ′(T n−1x) · T ′(T n−2x) · · ·T ′(x). The nth root of
(T n)′(x) is a ‘geometric average stretching rate’ over n steps.

The Lyapunov exponent for the one-dimensional map, T at x is the
logarithm of the limit of these rates: λ(T, x) = limn→∞

1
n

log |(T n)′(x)|
(if it exists). That is: the derivative of T n should be (logarithmically)
close to enλ (where ‘logarithmically close’ means between en(λ−ε) and
en(λ+ε) for large n.)

We have

λ(T, x) = lim
n→∞

1

n

n−1∑
i=0

log |T ′(T ix)|,

a Birkhoff sum.
In the particular case, I = [0, 1] and T (x) = 4x(1 − x), |T ′|(x) =

4|1 − 2x|. T has an ergodic absolutely continuous invariant measure,

µ with density 1/(π
√
x(1− x)).
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Now we can apply Birkhoff’s theorem (writing φ(x) = log |T ′(x)| =
log 4 + log |1− 2x|) to get

λ(T, x) = lim
n→∞

1

n

n−1∑
0

φ(T ix)

=

∫ 1

0

φ(x) dµ(x)

= log 4 +

∫ 1

0

log |1− 2x|
π
√
x(1− x)

dx

= log 2

for µ-a.e. x ∈ [0, 1].
We therefore expect |T 50(0.3 + 10−30)− T 50(0.3)| to be of the order

of e50λ · 10−30 = 25010−30 ≈ 1.13 × 10−15. In fact, |T 50(0.3 + 10−30) −
T 50(0.3)| ≈ 3.44× 10−16 (so the prediction was correct to one order of
magnitude).

A positive Lyapunov exponent is one of the (many and inequivalent)
definitions of ‘chaos’.

Now we’ll consider the case of a differentiable map, T , from a sub-
set of Rd to itself (or a differentiable map from a manifold to itself).
Writing DT (x) for the Jacobian matrix of T at x, the Chain rule gives

DT n(x) = DT (T n−1x) · · ·DT (T (x)) ·DT (x).

We’d like to make sense of how fast these matrices grow. We can
apply the Furstenberg-Kesten theorem as soon as we have an invariant
measure for T .

On the other hand, if A is a single matrix ‖Anv‖ grows at different
rates depending on the eigenvectors that make up v. This suggests we
might expect DT n(x)v to grow at different rates for different subspaces
of Rd. Also: the matrix DT n(x) depends on x, so we might expect the
subspaces to depend on the point x.

Theorem 4 (Oseledets – non-invertible, 1965). Let σ be an ergodic
measure-preserving transformation of (Ω,P). Let A : Ω→ Md×d(R) be
a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) < ∞. Then there

exist ∞ > λ1 > . . . > λk ≥ −∞; m1, . . . ,mk ∈ N satisfying m1 + . . .+
mk = d and a measurable family of subspaces F1(ω), F2(ω), . . .Fk(ω)
such that

(1) filtration: Rd = F1(ω) ⊃ F2(ω) ⊃ . . . ⊃ Fk(ω) ⊃ Fk+1(ω) =
{0};

(2) dimension: dimFi(ω) = mi + . . .+mk; for a.e. ω
(3) equivariance: A(ω)Fi(ω) ⊂ Fi(σ(ω)) for a.e. ω
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(4) growth: If v ∈ Fi(ω) \ Fi+1(ω) then 1
n

log ‖A(n)
ω v‖ → λi for a.e.

ω, where A
(n)
ω = A(σn−1ω) · · ·A(ω).

The quantities λi are called Lyapunov exponents and the subspaces
Fi(ω) are the collection of vectors expanding at rate λi or less.

The sequence of subspaces F1(ω) ⊃ F2(ω) ⊃ . . . ⊃ Fk(ω) is called a
flag.

Theorem 5 (Oseledets – invertible, 1965). Let σ be an invertible er-
godic measure-preserving transformation of (Ω,P). Let A : Ω→ GL(d,R)
be a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) <∞ and

∫
‖(A(ω))−1‖ dP(ω) <

∞. Then there exist ∞ > λ1 > . . . > λk > −∞; m1, . . . ,mk ∈ N sat-
isfying m1 + . . .+mk = d and measurable families of subspaces V1(ω),
V2(ω), . . . , Vk(ω) such that

(1) decomposition: Rd = V1(ω)⊕ V2(ω)⊕ · · · ⊕ Vk(ω);
(2) dimension: dimVi(ω) = mi for a.e. ω;
(3) equivariance: A(ω)Vi(ω) = Vi(σ(ω)) for a.e. ω
(4) growth: If v ∈ Vi(ω) \ {0} then

1
n

log ‖A(n)
ω v‖ → λi and 1

n
log ‖A(−n)

ω v‖ → −λi as n→∞ for a.e. ω,

where

A(n)
ω = A(σn−1ω) · · ·A(ω) for n ≥ 0; and

A(−n)
ω = A(σ−nω)−1 · · ·A(σ−1ω)−1 for n > 0.

The Vi(ω) are the vectors expanding at rate λi. These are the
Oseledets subspaces.

2. Deducing Oseledets from Kingman: Preliminaries

In the next section, we’ll sketch an argument of Raghunathan, giving
a proof of the non-invertible form of Oseledets’ theorem from the sub-
additive ergodic theorem.

As a warm-up, we need some reminders about the singular value
decomposition of a matrix; and definition of the Grassmannian of a
vector space; and the exterior algebra of a vector space.
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ω

σ(ω)

A(ω)

V (ω)

V (σ(ω))

Figure 1. The Multiplicative Ergodic Theorem gives
“A dynamical Jordan normal form decomposition.”

2.1. Singular Value Decomposition.

Theorem 6 (Singular Value Decomposition). Let A ∈Md×d(R). Then
there exist orthogonal matrices O1 and O2 and a diagonal matrix D with
non-negative entries such that A = O1DO2.

Proof. The matrix A∗A is symmetric, and so there is an orthonor-
mal basis of Rd consisting of eigenvectors. If A∗Av = cv, then c =
〈A∗Av, v〉 = 〈Av,Av〉 ≥ 0, so that all eigenvalues are non-negative. Let
the eigenvalues be λ21 ≥ λ22 ≥ . . . ≥ λ2d with corresponding orthonormal
eigenvectors v1, . . . , vd. Let O2 be the matrix with rows consisting of
v1, . . . , vd; D be the diagonal matrix with entries λ1, . . . , λd. Let k be
the largest index such that λk > 0. For i ≤ k, let ui = Avi/λi. If
k < d, let uk+1, . . . ud be an orthonormal basis for A(Rd)⊥. Let O1 be
the matrix whose columns are u1, . . . , ud.

Since the rows ofO2 are orthonormal, we see that (O2O
∗
2)ij = 〈vi, vj〉 =

δij, so that O2 is orthogonal. We have O1DO2vi = O1Dei = O1λiei =
λiui = Avi, so that O1DO2 = A. Finally, notice that for i < j ≤ k,
λiλj〈ui, uj〉 = 〈Avi, Avj〉 = 〈vi, AAvj〉 = λ2j〈vi, vj〉 = 0 for i 6= j, so
that the first k columns of O1 are orthonormal (and so are the rest by
construction), so O∗1O1 = I as required. �

The singular values of A, σ1(A) ≥ . . . ≥ σd(A), are the entries of D.
The singular vectors are the rows of O2 and their images are multiples
of the columns of O1, so that Avi = σi(A)ui.

Remark. Singular value decomposition (SVD) also makes sense for non-
square matrices.
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Lemma 7. Let the singular values of A be σ1 ≥ . . . ≥ σd. Then for
1 ≤ k ≤ d,

σk = max
dimV=k

(
min

x∈V :‖x‖=1
‖Ax‖

)
; and

σk = min
codimV=k−1

(
max

x∈V : ‖x‖=1
‖Ax‖

)
.

Proof. (Exercise) �

In particular, from this characterization, you can see that σ1(A) is
max‖x‖=1 ‖Ax‖, the norm of A and the first singular vector is a vector
that is expanded most by A. By continuity, any vector close to v1 is
also expanded a lot by A, but v2 is a vector in lin(v1)

⊥ that is expanded
the most by A. etc.:

Lemma 8. vk is a vector in lin(v1, . . . vk−1)
⊥ that is expanded the most

by A.

Proof. (Exercise) �

2.2. Grassmannian of a vector space. The k-dimensional Grass-
mannian of Rd, Gr(d, k) is the collection of all k-dimensional subspaces
of Rd. This is a very nice space: a compact metric space, a smooth
manifold etc.

To define a metric, we’ll go with the most intuitive one: dGr(V, V
′) =

dH(V ∩S, V ′∩S), where S is the unit ball and dH is the Hausdorff dis-
tance: for two non-empty compact sets, their Hausdorff distance is de-
fined by dH(K,K ′) = max

(
maxx∈K miny∈K′ d(x, y),maxy∈K′ minx∈K d(x, y)

)
.

Exercise. Prove that Gr(d, 2) is sequentially compact.

Exercise (Harder - for those that like manifolds). For a fixed k-codimensional
subspace, W , of Rd, let U denote those elements of Gr(d, k) that have
a trivial intersection with W .

Prove that U is an open subset of Gr(d, k).
Fix an element V0 ∈ U , a basis e1, . . . , ek for V0 and a basis f1, . . . , fd−k

for W . For an element V ∈ U , since V ⊕W = Rd, each ei may be
expressed uniquely as vi +wi with vi ∈ V and wi ∈ W . Form a matrix,
Φ(V ) whose ith column is the coefficients of wi in the (fj) basis.

Prove that Φ is a bijection from U to R(d−k)×k.
Prove that the collection of (U ,Φ) (as W varies over Gr(d, d − k),

V0 varies over U and the bases vary over bases for W and V0) forms a
smooth manifold structure on Gr(d, k).
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2.3. Exterior power of a vector space. A very useful construction
in multiplicative ergodic theory is that of an exterior power of a vector
space. For the formal construction of the kth exterior power, if V is a
vector space, you form the free vector space F with basis consisting of
all elements of the form ev1,...,vk for (v1, . . . , vk) ∈ V k (so that a typical
element is 17ev1,...,vk + 2e24v1,v2,...,vk + 12e0,v2,...,vk). We then let Z be a
subspace of elements of F that we want to identify with 0: Z is the
subspace of F spanned by elements of the form

ev1,...,cv+c′v′,...,vk − cev1,...,v,...,vk − c′ev1,...,v′,...,vk (multilinearity)

ev1,...,vi,...,vj ,...,vk + ev1,...,vj ,...,vi,...,vk (antisymmetry)

The kth exterior power of V ,
∧k V is then F/Z. We write v1∧· · ·∧vk

for ev1,...,vk + Z.

Exercise. Verify that:

• v1∧· · ·∧vi∧· · ·∧vj∧· · ·∧vk = −v1∧· · ·∧vj∧· · ·∧vi∧· · ·∧vk;
and
• v1 ∧ · · · ∧ (cv + c′v′) ∧ · · · ∧ vk = v1 ∧ · · · ∧ v ∧ · · · ∧ vk + c′v1 ∧
· · · ∧ v′ ∧ · · · ∧ vk
• If e1, . . . , ed is a basis for V , then {ei1 ∧ · · · ∧ eik : i1 < . . . < ik}

spans
∧k V .

In fact, if e1, . . . , ed is a basis for V then {ei1 ∧ · · · ∧ eik : i1 < . . . <

ik} forms a basis for
∧k V , but proving this goes through a universal

algebraic property of
∧k V .

Some elements of
∧k V may be expressed in the form v1 ∧ · · · ∧ vk.

Others can only be expressed as a sum of elements of this form (cf
matrices expressed as sums of rank 1 matrices). A ‘pure’ vector v1 ∧
· · · ∧ vk can be roughly thought of as defining an element of Gr(d, k)
(i.e. lin(v1, . . . , vk)) and a magnitude.

Exercise. Let V be a k-dimensional subspace of Rd. Let two bases for
V be e1, . . . , ek and f1, . . . , fk.

Prove that f1 ∧ · · · ∧ fk = c e1 ∧ · · · ∧ ek, where c is the determinant
of the matrix of coefficients of the f vectors in terms of the e vectors.

If A is a linear self-map of V , then
∧k A is a self-map of

∧k V

satisfying
(∧k A

)
(v1∧· · ·∧vk) = (Av1)∧· · · (Avk) for each v1∧· · ·∧vk.

Exercise. Prove that there is a linear map,
∧k A satisfying the above.
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The space
∧k Rd can be turned into a Euclidean space by letting

{ei1 ∧· · ·∧eik : i1 < . . . < ik} be an orthonormal basis, where e1, . . . , ed
is the standard basis.

It’s completely non-obvious that if f1, . . . , fd is any orthonormal ba-
sis, then {fi1∧· · ·∧fik : i1 < i2 < . . . < ik} is orthonormal with respect
to this inner product. But it’s true!

Exercise. Let u, v and w be three orthonormal vectors in R3. Prove
that u ∧ v, u ∧ w and v ∧ w are orthonormal.

2.4. SVD of Exterior powers. Singular value decomposition and
exterior powers play extremely nicely together. Let A be a d×d matrix
with singular values σ1 ≥ σ2 ≥ . . . ≥ σd and singular vectors v1, . . . , vd.
Recall that these are orthonormal. By what we just said, {vi1 ∧ · · · ∧
vik : i1 < . . . < ik} forms an orthonormal basis of

∧k Rd.
Recall also that Avi = σiui, where the ui’s are also orthonormal.

This means that∧kA(vi1 ∧ · · · ∧ vik) = (σi1 · · ·σik)ui1 ∧ · · · ∧ uik .

The {ui1 ∧ · · · ∧ uik} are orthonormal also, so that we obtain

Lemma 9. The singular values of
∧k A are {σi1 · · ·σik : i1 < . . . < ik}

and the singular vectors are {vi1 ∧ · · · ∧ vik : i1 < . . . < ik}.
In particular,

(1)
∥∥∥∧k A

∥∥∥ = σ1 · · ·σk.

3. Deducing non-invertible Oseledets from Kingman

3.1. The Raghunathan trick. Recall the notationA
(n)
ω = A(σn−1ω) · · ·A(ω).

For each 1 ≤ k ≤ d, define f∧kn (ω) = log ‖
∧k A

(n)
ω ‖. Since A

(n+m)
ω =

A
(m)
σnωA

(n)
ω and

∧k(AB) =
∧k A

∧k B, we see that

f∧kn+m(ω) ≤ f∧km (σnω) + f∧kn (ω).

Hence the Kingman sub-additive ergodic theorem (or Furstenberg-
Kesten theorem) applies. There exist L1, . . . , Ld such that f∧kn (ω)/n→
Lk for each k and a.e. ω.

Notice also that by (1), f∧kn (ω) = log ‖
∧k A

(n)
ω ‖ =

∑k
i=1 log σi(A

(n)
ω ).

Hence f∧kn (ω) − f∧(k−1)n (ω) = log σk(A
(n)
ω ). Dividing by n and taking

the limit, we obtain

lim
n→∞

1

n
log σk(A

(n)
ω ) = Lk − Lk−1.
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Define µk = Lk − Lk−1. By the above, we have

∞ >

∫
‖ logA(ω)‖ dP(ω) > µ1 ≥ µ2 ≥ . . . ≥ µd ≥ −∞.

These are the Lyapunov exponents. It is useful to group them by mul-
tiplicity:

{λ1, . . . , λk} = {µ1, . . . , µd}
∞ > λ1 > λ2 > . . . > λk ≥ −∞
µm1+...+mi−1+j = λi for 1 ≤ j ≤ mi.

3.2. Equivariant subspaces. That was the easy part! Now we need
the subspaces... We’re trying to find equivariant spaces Fj(ω) of di-
mension md + . . . + mj consisting of vectors expanding at rate λj or
lower, “the jth slow space”. We’ll get at these using the slow singular

vectors of A
(n)
ω .

Let Mj−1 = m1 + . . . + mj−1 for 1 ≤ j ≤ k. This is the dimension
of the “(j − 1)st fast space”, the number of exponents larger than
λj. The jth slow space should be spanned by singular vectors with
exponents λj and below: by the (Mj−1 + 1)st to dth singular vectors.
Let Oj = mj + . . .+mk.

The idea is to define F
(n)
j (ω) to be the space spanned by the (Mj−1+

1)st to dth singular vectors of A
(n)
ω , and prove:

(1) these subspaces converge to a limit, Fj(ω), as n→∞;
(2) Fj(ω) is equivariant: A(ω)Fj(ω) ⊂ Fj(σ(ω));

(3) if v 6∈ Fj(ω), then lim infn→∞
1
n

log ‖A(n)
ω v‖ ≥ λj−1;

(4) if v ∈ Fj(ω), then lim supn→∞
1
n

log ‖A(n)
ω v‖ ≤ λj.

Of these, (1), (2) and (3) are relatively straightforward, while (4) is
the trickiest.

3.3. A sketch of (1). Remember that Gr(d,Oj) is compact metric

(hence complete). The idea is to show that the distance from F
(n)
j (ω)

to F
(n+1)
j (ω) is O(e−n(λj−1−λj−ε)). Then the subspaces form a ‘fast

Cauchy sequence’.

How to do this? Take a unit vector, v, in F
(n)
j (ω) and write it as an

orthogonal sum u + w of a part u in F
(n+1)
j (ω) (the span of the slow

singular vectors for n+ 1 step evolution) and w in F
(n+1)
j (ω)⊥ (the fast

singular vectors). Since we know that ‖A(n)v‖ . enλj , 2 it follows that

2I’ll write xn . ean to mean for any ε, xn ≤ e(a+ε)n for large n. That is, the
exponential growth rate is at most a.
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‖A(n+1)v‖ . enλj . But ‖A(n+1)
ω v‖ is the sum of the orthogonal vectors

A
(n+1)
ω u and A

(n+1)
ω w. Hence ‖A(n+1)

ω w‖ . enλj . Since w is in the fast
space (so grows at rate λj−1 or faster), this implies ‖w‖ . en(λj−λj−1).

That is: every unit vector in F
(n)
j (ω) is e−n(λj−1−λj−ε)-close to something

in F
(n+1)
j (ω).

3.4. A sketch of (2). We show that elements of A(ω)(F
(n+1)
j (ω)) are

exponentially close to F
(n)
j (σ(ω)) and take the limit as n → ∞ using

claim (1).

Take v = A(ω)z in the unit ball of A(ω)(F
(n+1)
j (ω)); express it as

u + w with u ∈ F (n)
j (ω) and w ∈ F (n)

j (ω)⊥. The rest of the argument
is like the previous step.

3.5. A sketch of (3). If v is a unit vector not in Fj(ω), it is some
positive distance, δ, from Fj(ω). By the triangle inequality, it is at least
δ
2

from F
(n)
j (ω) for all large n. That means that if v is decomposed into

components in the slow space, F
(n)
j (ω) and the fast space, F

(n)
j (ω)⊥,

there is a vector of length at least δ
2

in the fast space. When you apply

A
(n)
ω , you get a vector of length δ

2
en(λj−1−ε), as required.

3.6. Sketch of a sketch of (4). Write V
(n)
i (ω) for the space spanned

by the (Mi−1 + 1)st to Mith singular vectors of A
(n)
ω . The idea is to

Show that if v is a unit vector in Fj(ω), then the com-

ponent of v in V
(n)
i is of size at most e(λj−λi+ε)n for each

i < j.

Now when you apply A
(n)
ω to v, the vector obtained is of size at most

e(λj+ε)n (as seen working component by component and using the tri-
angle inequality).

Raghunathan shows the above by clever estimates on the inverse of
a matrix.

As an alternative, step (1) already gives the desired estimate in the
case of F2(ω). This is enough to show that elements of F2(ω) grow at
rate λ2 or less. Now, one can look at the restriction of A(ω) to F2(ω)
and deduce that F3(ω) grows at rate λ3 or less and obtain the result
inductively. (This argument is carried out in a Banach space setting
in papers of Alex Blumenthal, and of Cecilia González-Tokman and
myself).



12 ANTHONY QUAS

4. Deducing invertible Oseledets from non-invertible
Oseledets

For this section, we’re assuming that the base dynamics, σ, is invert-
ible, and also that the matrices A(ω) are invertible (and ‖(A(ω))−1‖ is
log-integrable). It turns out that the first condition is crucial, whereas
the second condition is not.

Recall the definition of the stable and unstable manifolds of a fixed
point of an invertible map T

Ws(p) = {x : d(T nx, p)→ 0 as n→∞};
Wu(p) = {x : d(T nx, p)→ 0 as n→ −∞}.

At first sight, the definition of the unstable manifold may be surpris-
ing:

Exercise. Why is the unstable manifold defined this way? (Think about

the map T (x) =

(
2 0
0 1

2

)
x for a concrete example).

Like this, we will obtain fast spaces as the slow spaces of the inverse
system.

Exercise. Show that if the invertible matrix A has singular values σ1 >
. . . > σd, then A−1 has singular values σ−1d > . . . > σ−11 .

4.1. Non-invertible implies invertible using The Inverse sys-
tem. The map σ−1 is another ergodic measure-preserving transforma-
tion of (Ω,P). Define the matrix B(ω) = A(σ−1ω) and build the matrix

cocycle B
(n)
ω = B(σ−(n−1)ω) · · ·B(ω). Notice that B

(n)
ω = (A

(n)

σ−nω)−1.

Exercise. Check from the previous exercise and the Kingman sub-
additive ergodic theorem that the Lyapunov exponents for this cocycle
are −λk, . . . ,−λ1, with multiplicities mk, . . . ,m1.

Applying the one-sided Oseledets theorem to the inverse system, we
obtain a family of subspaces Rd = Ek(ω) ⊃ Ek−1(ω) ⊃ · · ·E1(ω) such
that:

• (dimension): dimEj(ω) = m1 + . . .+mj;
• (equivariance): B(ω)Ej(ω) ⊂ Ej(σ

−1ω);

• (growth): v ∈ Ej(ω) \ Ej+1(ω) implies 1
n

log ‖B(n)
ω v‖ → −λj;

SinceB(ω) = A(σ−1(ω))−1, the equivariance condition can be rephrased
as Ej(ω) ⊂ A(σ−1(ω))Ej(σ

−1ω), or Ej(σ(ω)) ⊂ A(ω)Ej(ω). Since
A(ω) is invertible, and dimEj(ω) = m1 + . . . + mj for a.e. ω, we
deduce Ej(ω) is an equivariant family.
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If v ∈ Ej(ω), then ‖B(n)
ω v‖ . e−(λj−ε)n‖v‖. Since B

(n)
ω = (A

(n)

σ−nω)−1,

it follows that for w ∈ Ej(σ
−nω) (writing w as (A

(n)

σ−nω)−1v), ‖w‖ .
e−(λj−ε)n‖A(n)

σ−nωw‖ or ‖A(n)

σ−nωw‖ & e(λj−ε)n‖w‖.
This (plus a little more work) shows that Ej(ω) is the jth fast space:

the vectors expanding at rate λj or faster.
Now: Vj(ω) = Ej(ω) ∩ Fj(ω) is an equivariant space consisting of

vectors expanding at exactly rate λj. The last thing to check is that it
has the correct dimension, mj. Since dimEj(ω) = m1 + . . . + mj and
dimFj(ω) = mj+ . . .+mk = (d−dimEj(ω))+mj, we see from the for-
mula dim(U ∩V ) = dimU+dimV −dim(U+V ) that dimVj(ω) ≥ mj.
It is not hard to see that the (Vj(ω)) are mutually linearly indepen-
dent: Suppose that that v1 + . . . + vk = 0, where vi ∈ Vi(ω). Sup-
pose for a contradiction that the vi are not all 0. Then let ` be the

smallest index such that v` 6= 0. Now A
(n)
ω v` grows at rate λ`, while

A
(n)
ω (v`+1 + . . . + vk) grows at rate at most λ`+1, so that they cannot

cancel for large n, contradicting the assumption that v1 + . . .+ vk = 0

(hence A
(n)
ω (v1 + . . .+ vk) = 0).

A key observation: The Ej(ω) were the slow spaces for the inverse
system – that is these are determined by (A(σnω))n<0, while the Fj(ω)
are governed by (A(σnω))n≥0.

4.2. Non-invertible implies invertible using duality. In this sub-
section, we’ll prove the same result using duality. It is still important
that σ is invertible, but we never take inverses of the matrices.

Define C(ω) = A(σ−1ω)∗ and build a cocycle over σ−1: C
(n)
ω =

C(σ−(n−1)ω) · · ·C(ω) = (A
(n)
ω )∗.

Theorem 10. Let σ be an ergodic invertible measure-preserving trans-
formation. Let A : Ω→Md×d(R) be such that ‖A(·)‖ is log-integrable.

Let C
(n)
ω be the dual cocycle over σ−1 as above. Then the Lyapunov

exponents of the dual cocycle are the same as those of A
(n)
ω .

Let the slow spaces for the dual cocycle be G1(ω), . . . Gk(ω). Then:

(1) A(ω)Gj(ω)⊥ = Gj(σ(ω))⊥ for a.e. ω;
(2) Gj(ω)⊥ ∩ Fj−1(ω) = Vj−1(ω) for a.e. ω.

Proof. To prove (1), let v ∈ Gj(ω)⊥ and y ∈ Gj(σ(ω)). Then we have

〈A(ω)v, y〉 = 〈v, A(ω)∗y〉 = 〈v, C(σ(ω))y〉.
Since C(σ(ω))Gj(σ(ω)) ⊂ Gj(ω), we have C(σ(ω))y ∈ Gj(ω), so that
〈A(ω)v, y〉 = 0 and A(ω)v ∈ Gj(σ(ω))⊥, as required.

We’ll just sketch the proof of (2). The main idea is to show that
Gj(ω)⊥ has a trivial intersection with Fj(ω). Assuming this for now,
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since they have complementary dimensions (Fj(ω) and Gj(ω) have the
same dimension as the A and C cocycles have the same Lyapunov ex-
ponents), it will then follow that Rd = Fj(ω) ⊕ Gj(ω)⊥. From here
(and (3) of section 3.2), it follows that everything in Gj(ω)⊥ expands
at rate λj−1 or faster. Now we have Gj(ω)⊥∩Fj−1 is an equivariant sub-
space consisting of vectors expanding at rate λj−1. From the formula
dim(U ∩V ) = dimU +dimV −dim(U +V ), we see that Gj(ω)⊥∩Fj−1
is of dimension mj−1.

To prove the trivial intersection, let Z = Fj(ω)⊥. By section 3.2

(3), we have ‖A(n)
ω z‖ & eλj−1n for all z ∈ Z ∩ S. On the other hand,

we have d(A
(n)
ω z,Gj(σ

nω)⊥) = maxy∈Gj(σnω)∩S〈A(n)
ω z, y〉. For any y ∈

Gj(σ
nω) ∩ S, we have 〈A(n)

ω z, y〉 = 〈z, B(n)
σnωy〉 . eλjn. Hence for any

z ∈ Z ∩ S, the component of A
(n)
ω z in the direction perpendicular to

G⊥(σnω) is . eλjn. We deduce ∠(A
(n)
ω Z,G⊥(σnω)) . e−n(λj−1−λj).

To finish, we show that elements of A
(n)
ω Z are forced to lie far from

Fj(σ
nω). One can show (with a little determinant magic) ‖

∧k A
(n)
ω ‖ ≈

‖
∧k A

(n)
ω |∧k Z‖ for all large n and so ‖

∧k A
(n)
ω |∧k Z‖ ≈ en(m1λ1+...+mj−1λj−1).

If an element z of Z had the property that A
(n)
ω z was e−an close (in

angle) to Fj(σ
nω), then the above growth condition is contradicted.

In particular, we deduce A
(n)
ω Z is far (at an exponential scale) in ev-

ery direction from Fj(σ
nω); but A

(n)
ω Z is close to Gj(σ

nω). Hence
Fj(σ

nω) ∩Gj(σ
nω) = {0} for large n. Hence Fj(ω) ∩Gj(ω) = {0} a.e.

by the Poincaré recurrence theorem.
�

Corollary 11 (Oseledets theorem: semi-invertible case). Let σ be
an invertible ergodic measure-preserving transformation of (Ω,P). Let
A : Ω → Md×d be a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) <

∞. Then there exist ∞ > λ1 > . . . > λk ≥ −∞; m1, . . . ,mk ∈ N sat-
isfying m1 + . . .+mk = d and measurable families of subspaces V1(ω),
V2(ω), . . . , Vk(ω) such that

(1) decomposition: Rd = V1(ω)⊕ V2(ω)⊕ · · · ⊕ Vk(ω);
(2) dimension: dimVi(ω) = mi for a.e. ω;
(3) equivariance: A(ω)Vi(ω) = Vi(σ(ω)) for a.e. ω

(4) growth: If v ∈ Vi(ω) \ {0} then 1
n

log ‖A(n)
ω v‖ → λi as n → ∞

for a.e. ω, where A
(n)
ω = A(σn−1ω) · · ·A(ω).
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The hypotheses are a hybrid of the two original Oseledets theorems:
the underlying system must be invertible; there is no invertibility re-
quirement for the matrices. The good news: we can still get a decompo-
sition: Rd = V1⊕ . . .⊕Vk rather than a filtration (Rd = F1 ⊃ . . . ⊃ Fk).
We did lose something though: we have no backwards growth bounds

on ‖A(−n)
ω v‖ – the inverse matrices needn’t even exist.

Theorem 12 (Oseledets theorem: Banach space version). Let σ be
an invertible ergodic measure-preserving transformation of (Ω,P). Let
B be a separable Banach space. Let L : Ω → L(B,B) be an operator-
valued function with

∫
log ‖Lω‖ dP(ω) <∞.

Suppose that 1
n

∫
log ‖L(n)

ω ‖ dP(ω) → λ and 1
n

∫
log κ(L(n)

ω ) dP(ω) →
α < λ, where κ(L) = inf{r : L(B) can be covered by balls of radius r}
and B is the unit ball.

Then there exist 1 ≤ k ≤ ∞, λ1 > λ2 > . . . > λk and equivari-
ant subspaces V1(ω), . . . , Vk(ω) and R(ω) such that B = V1(ω)⊕ . . .⊕
Vk(ω)⊕R(ω) and the growth conditions of the matrix Oseledets theorem
hold.

The proofs are based on defining suitable notions of singular values
(or volume growth) for maps of linear maps on Banach spaces. There
are many possibilities – all giving the same growth rates.


