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Exercises

Exercise 1. Prove that a clopen set is a finite union of cylinders.

Exercise 2. Build an example of an infinite word that is recurrent but not
uniformly recurrent.

Exercise 3. Prove that an infinite word u is recurrent if and only if the shift
map S is onto on O(u).

Exercise 4. Prove that every substitution σ on the alphabet A defines a con-
tinuous map from AN to AN. Give an example of a substitution for which σ is
one-to-one, and an example of a substitution for which σ is not one-to-one.

Exercise 5 (Recognizability). Let σ : A∗ → B∗ be a non-erasing morphism
(the image of any non-empty word is non-empty). Let x ∈ AZ, and let

Cσ(x) = {|σ(x[0,`))| : ` ≥ 0} ∪ {−|σ(x[`,0))| : ` < 0}.

A non-erasing morphism σ is said to be recognizable on x if there exists `
such that, for each m ∈ Cσ(x), m′ ∈ Z, y[m−`,m+`) = y[m′−`,m′+`) implies that
m′ ∈ Cσ(x), with y = σ(x).

Is the Thue-Morse substitution σ : a 7→ ab, b 7→ ba recognizable on σ∞(a)?
Same question for the Fibonacci substitution τ : a 7→ ab, b 7→ a.

Let σ be a primitive morphism that is recognizable on some x and injective
on letters. Let X = O(x) and Y = ∪k∈ZSkσ(X), where S is the shift map.

Prove that the set σ(X) is a clopen subset of Y , that the map σ : X → σ(X)
is a homeomorphism, and that the collection P = {Skσ([a]) : a ∈ A, 0 ≤ k <
|σ(a)|} is a clopen partition of Y .

Let us note that recognizability has been proved by Mossé (1992) for primi-
tive substitutions, and by Bezuglyi, Kwiatkowski and Medynets (2009) for any
aperiodic substitution.

What can be said for the substitution σ : 0 7→ 010, 1 7→ 10 in the case of
one-sided words in AN and one-side recognizability?

∗Many thanks to S. Barbieri for his careful reading and suggestions.
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Exercise 6. Most infinite words we shall consider have an at most linear factor
complexity function (∀n ∈ N, pu(n) ≤ Cn). In this case, even if the shift is not
injective, this exercise shows that it can be made invertible up to a set which is
at most countable.

Let u be a recurrent infinite word such that its factor complexity satisfies
pu(n) ≤ Cn for all n and some constant C. Prove that there exists a finite set
F such that, if D is the (at most countable, and shift-invariant) set

⋃
n∈Z S

nF ,
the shift S is one-to-one from Xu \D to Xu \D.

We can note that if u is recurrent and not eventually periodic, then the set
Xu is not countable, and Xu \D is not empty.

Exercise 7. For any s ≥ 1, construct an example of an infinite word u with
factor complexity pu(n) = s + n for n large enough. Same question with u
uniformly recurrent.

Exercise 8 (Factor complexity). Let u ∈ AN with the cardinality of A being
finite. Prove that if there exists n such that pu(n + 1) = pu(n), then u is
eventually periodic. (A sequence is said eventually periodic if it is periodic from
a certain index on.) Deduce that that u is eventually periodic if and only if
there exists C > 0 such that pu(n) ≤ Cn for all n.

What happens in the case of a sequence defined over Z?
Let X ⊂ AN be a subshift. Do the infinite words in X all have the same

factor complexity?
Let u be an infinite word such that the set of its factors is not equal to

A∗. Prove that there exists a real number α, with 1 ≤ α < CardA, such that
pu(n) = O(αn).

Does there exist an infinite word with factor complexity [log(n)]?
What is the factor complexity of a coding of an irrational rotation on R/Z

by two intervals?
Give an exemple of a two-dimensional word in AZ2

having at least one period
and an unbounded rectangular factor complexity, where the rectangular factor
complexity counts the number of rectangular factors of a given size.

What is the rectangular factor complexity of the two-dimensional word u
in {0, 1}Z2

defined by: um,n = 1 if m
√

2 + nπ ∈ [0, 1/2) modulo 1, for all
(m,n) ∈ Z2?

Exercise 9 (Sturmian words). A Sturmian word is an infinite word u with
factor complexity function satisfying pu(n) = n + 1 for all n. Prove that a
Sturmian word is recurrent, and even uniformly recurrent. Give an example of
a bi-infinite word u with factor complexity function satisfying pu(n) = n + 1,
for all n, that is not recurrent.

A Sturmian word can also be described as a binary coding of a rotation.
Prove that the language Lu associated with a Sturmian word u is palindromic,
that is, the reverse word wn · · ·w1 of any word w1 · · ·wn in Lu also belongs to
Lu.

Prove that the set of factors of a Sturmian word u is balanced, that is, for
any factors v, w of u of the same length, one has ||v|1 − |w|1| ≤ 1.

2



Exercise 10. An infinite word u ∈ AN is said to be C-balanced if for any
factors v, w of u of the same length, one has ||v|i − |w|i| ≤ C, for any i ∈ A.
Prove that a C-balanced infinite word admits uniform frequencies for letters.

Give an example of a 2-balanced infinite word.

Exercise 11 (Factor complexity of the Fibonacci word). The Fibonacci word
is the fixed point of σ : 0 7→ 01, 1 7→ 1.

1. Prove that every factor w of the Fibonacci word can be uniquely written
as follows:

w = aσ(v)b,

where v is a factor of the Fibonacci word, a ∈ {ε, 1}, and b = 0, if the last
letter of w is 0, and b = ε, otherwise.

2. Prove that if w is a left special factor distinct from the empty word, then
there exists a unique left special factor v such that w = σ(v)b, where b = 0,
if the last letter of w is 0, and b = ε, otherwise. Deduce the general form
of the left special factors.

3. Prove that the Fibonacci word is not ultimately periodic.

4. Prove that the complexity function of the Fibonacci word equals n+ 1 for
every n.

Exercise 12. Is the word abaabaabababaab a factor of some Sturmian word?

Exercise 13. Let σ be the substitution defined on {0, 1} by σ : 0 7→ 001, 1 7→ 1.
Prove that the fixed point starting with 0 of σ has quadratic factor complexity.

Exercise 14 (Arnoux-Rauzy words). Let A = {1, 2, . . . , d}. The set of Arnoux-
Rauzy substitutions is defined as SAR = {µi | i ∈ A} where

µi : i 7→ i, j 7→ ij for j ∈ A \ {i} .

An Arnoux-Rauzy word is an infinite word u ∈ AN whose set of factors coincides
with the set of factors of a sequence of the form

lim
n→∞

µi0µi1 · · ·µin(1),

where the sequence (in)n≥0 ∈ AN is such that every letter in A occurs infinitely
often in (in)n≥0. The sequence (µin)n is called the directive sequence of u =
limn→∞ µi0µi1 · · ·µin(1).

Prove that one recovers Sturmian words in the case d = 2.
Prove that for every sequence (in)n and for any i = 1, · · · , d, then

limn→∞ µi0µi1 · · ·µin(i) exists.
Compare the words limn→∞ µi0µi1 · · ·µin(i), for i = 1, · · · , d.
Prove that two distinct directive sequences produce distinct words.
Consider now the set of substitutions S ′AR = {µi | i ∈ A} where

µ′i : i 7→ i, j 7→ ji for j ∈ A \ {i} .
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Let (in)n≥0 ∈ AN be such that every letter inA occurs infinitely often in (in)n≥0.
Prove that limn→∞ µ′i0µ

′
i1
· · ·µ′in(1) exists, and that limn→∞ µi0µi1 · · ·µin(1),

and limn→∞ µ′i0µ
′
i1
· · ·µ′in(1), have the same set of factors.

Prove that the fixed point starting with 1 of the Tribonacci substitution
σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 is an Arnoux-Rauzy word.

Prove that every prefix w of an Arnoux-Rauzy word u satisfies iw ∈ Lu for
all i ∈ A. Prove that Arnoux-Rauzy words have factor complexity 2n + 1 and
are uniformly recurrent.

Prove that an Arnoux-Rauzy word is linearly recurrent if and only if it has
bounded strong partial quotients, that is, each substitution of SAR occurs in its
directive sequence (µin)n with bounded gaps.

Exercise 15 (Episturmian words). The reversal of a word w1 · · ·wn is the word
wn · · ·w1. A factor w of an infinite word u is said to be special it there exists
at least two distinct letters a and b such that wa and wb are factors of u. An
infinite word is said to be episturmian if the set of its factors is closed under
reversal and has at most one right special factor of each length. Prove that
Arnoux-Rauzy words are episturmian. Prove that an episturmian infinite word
is uniformly recurrent and has uniform frequencies.

Exercise 16 (Chacon word). The Chacon morphism σ is defined over the
alphabet {0, 1} by σ : 0 7→ 0010, 1 7→ 1. Observe that the substitution σ is not
primitive. Prove that the Chacon word x = σω(0) begins with the following
sequence of words (bn)n≥0:

b0 = 0, and ∀n ∈ N, bn+1 = bnbn1bn.

Deduce that the Chacon word x is uniformly recurrent. Deduce also that the
Chacon word has uniform frequencies. Deduce that Xx = O(x) is uniquely
ergodic and minimal.

Exercise 17 (Rauzy graph of words). The Rauzy graph Γn of words of length
n of an infinite word u on a finite alphabet A is an oriented graph. Its vertices
are the factors of length n of u and its edges are defined as follows: there is an
edge from U to V if V follows U in the infinite word u, i.e., if there exists a word
W and two letters x and y such that U = xW , V = Wy and xWy is a factor of
the u. There are pu(n + 1) edges and pu(n) vertices, where pu(n) denotes the
factor complexity function of u.

Prove that the graphs of words Γn of u are all connected. Prove that the
infinite word u is recurrent if and only if the graphs of words Γn are all strongly
connected.

Let U be a vertex of the graph Γn. Denote by U+ the number of edges of
Γn with origin U and by U− the number of edges of Γn with end vertex U .
In other words, U+ (respectively U−) counts the number of right (respectively
left) extensions of U in u.

What are the possible shapes of a graph of words Γn for a Sturmian word?
Deduce that Sturmian words are uniformly recurrent. Same question for Arnoux-
Rauzy words.
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We now restrict ourselves to recurrent infinite words for which the frequencies
of factors do exist. Let

U and V be two vertices linked by an edge such that U+ = 1 and V − = 1.
What can be said on the frequencies of the two factors U and V ?

Prove that for a recurrent infinite word u of factor complexity function pu(n),
the frequencies of factors of length n take at most 3(p(n+ 1)− p(n)) values.

Prove that the frequencies of factors of length n take at most p(n + 1) −
p(n) + rn + ln values, where rn (respectively ln) denotes the number of factors
having more than one right (respectively left) extension. Deduce that if u is
a recurrent with at most linear factor complexity, then the frequencies of its
factors of given length take a finite number of values.

Exercise 18 (Topological conjugacy). A topological dynamical system (Y, T )
is a topological factor of (X,S) if there exists a continuous map π from X onto
Y which conjugates the maps S and T , i.e., π ◦ S = T ◦ π. If π is moreover
injective, then it is said to be a topological conjugacy. Observe that π−1 is
continuous and that it also conjugates T and S.

Let u, v be two infinite words with values in finite alphabets, and let Xu, Xv

denote respectively the associated symbolic dynamical systems.

1. Suppose that (Xv, S) is a topological factor of (Xu, S), where S denotes
the shift. Let φ denote the conjugation map from Xu onto Xv. Prove
that the map φ satisfies the following: there exists a positive integer q
such that for every i, the coordinate of index i of φ(x) depends only on
(xi, . . . , xi+q).

More generally, Curtis-Hedlund-Lyndon theorem states that every factor
map is given by a sliding block code (that is, a map defined by a local
rule).

2. Deduce that if (Xu, S) and (Xv, S) are topologically conjugate, then they
have the same topological entropy, and if (Xv, S) is a topological factor of
(Xu, S), then Htop(v) ≤ Htop(u).

3. Prove that if (X,T ) and (Y, T ) are conjugate topologically symbolic sys-
tems, then there exists a constant c such that, for all n > c,

pX(n− c) ≤ pY (n) ≤ pX(n+ c).

Prove also that the boundedness of first-order and second-order differences
of the complexity function is preserved.

Prove that topological conjugacy preserves unique ergodicity.

Exercise 19. Give an example of a non-minimal non-uniquely ergodic subshift
(X,S) such that any infinite word x in X has uniform frequencies.

Exercise 20. Let u be an infinite word with uniform factor frequencies, that

is, for any factor w, the sequence |uk...uk+n|w
n+1 tends to a limit fw, uniformly in

k.
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For every word w, consider the shift-invariant measure µ defined by µ([w]) =

fw. Prove that 1
N

∑N−1
n=0 g(Snx) →

∫
g dµ for every x in the subshift Xu =

O(u) and for every continuous function g. Deduce that the subshift (Xu, S) is
uniquely ergodic.

Exercise 21. Prove that every sequence in a linearly recurrent subshift is lin-
early recurrent with the same constant. Prove that a linearly recurrent infinite
word has uniform frequencies.

Exercise 22. Let G be a compact metric group. Let T : G→ G, x 7→ ax be a
rotation of G. Prove that (G,T ) is minimal if and only if {an, n ∈ N} is dense
in X. Prove that (G,T ) is minimal if and only if it is uniquely ergodic.
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