
Homogeneous Dynamics Exercises

1 Some Hyperbolic Geometry and Mautner’s phenomena

In this tutorial we review some hyperbolic geometry and guide the readers through a proof of the
Mautner phenomena.

Let H := {z = x+ iy : y > 0} denote the upper half plane and equip each tangent plane TzH = C
with the inner product 〈v, w〉z = (v · w) 1

y2 where z = x+ iy ∈ H and v, w ∈ TzH (by v · w we mean

the usual dot product on C).
For a continuous piecewise differentiable curve φ : [0, 1]→ H we define its hyperbolic arc length

as

L(φ) :=

∫ 1

0

‖Dφ(t)‖φ(t)dt =

∫ 1

0

1

Im(φ(t))

√
φ′(t) · φ′(t)dt

and we use the arc length to define a distance on H as dH(z, z′) = infφ L(φ) for points z, z′ ∈ H
where the infimum is taken over paths φ that start at z and end at z′.

This metric on H has a huge group of isometries that we can identify with SL2(R). We do
this by recalling the action of SL2(R) on H by Mobius transformations. Namely, for a matrix

g =

(
a b
c d

)
∈ SL2(R) and z ∈ H define g · z = az+b

cz+d . (Notice that there is some duplication

with this action, by which we mean we have that g · z = (−g) · z. For this reason, we consider
PSL2(R) = SL2(R)/{±I}.)

Exercise 1.

1. Show that PSL2(R) acting on H by Mobius transformations is an isometric and transitive
action. (To show it is isometric it suffices to show that Dg preserves the inner product.)

2. Consider the tangent bundle TH := ∪z∈HTzH = {(z, v) : z ∈ H, v ∈ TzH}. Show PSL2(R)
extends to an action on the tangent bundle by the derivative action. That is, PSL2(R) y TH
by Dg · (z, v) = (g · z, g′(z)v) =

(
az+b
cz+d ,

1
(cz+d)2 v

)
.

3. Consider the unit tangent bundle T 1H := {(z, v) ∈ TH : ‖v‖ = 1} . Show that PSL2(R) y
T 1H is a simply transitive action. Conclude that T 1H = PSL2(R) by the Orbit-Stabilizer
Theorem. This correspondence allows us to turn questions of geometry in T 1H into questions
of linear algebra of PSL2(R) and vice-versa.

Exercise 2. In this exercise we consider some useful generating sets for SL2(R) that come in
handy.

1. Consider u+s =

(
1 s
0 1

)
and u−s =

(
1 0
s 1

)
for s ∈ R.

Show that 〈u+s , u−s 〉 = SL2(R). That is, that every g ∈ SL2(R) can be written as a product
of of upper and lower unipotent matrices. (Hint: think of multiplying by u+ and u− as row
reduction. For example, multiplying on the left by u+ corresponds to row reducing on the top
row and multiplying on the right by u− corresponds to row reducing the left column.)

2. Show 〈u+, w〉 = SL2(R) = 〈u−, w〉 where w =

(
0 1
−1 0

)
.
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3. Show that SL2(R) = [SL2(R), SL2(R)] where the right-hand side is the subgroup generated

by elements of the form ghg−1h−1. (Hint: What is gt · u+s · (gt)−1 where gt =

(
et 0
0 e−t

)
?)

4. (Optional) Show that SL2(R) is unimodular using the last characterization of SL2(R).

Exercise 3. In this exercise we outline how to prove the Mautner phenomena. There are various
formulations of this and we state the following special case of it.

Theorem 1. (Mautner phenomena) Suppose SL2(R) acts in a measure preserving way on a proba-
bility space (X,µ). Notice then that SL2(R) acts on L2(X,µ) via (g ·φ)(x) := (φ◦g−1)(x) = φ(g−1x)
where g ∈ SL2(R), φ ∈ L2(X,µ), and x ∈ X. Then any function φ invariant under the upper unipo-
tent matrix group U = {u+s : s ∈ R} is invariant under SL2(R).

Invariant under U means u · φ = φ for every u ∈ U. We prove this by consider the continuous
function ρ : SL2(R)→ C given by ρ(g) = 〈g ·φ, φ〉 where 〈·, ·〉 denotes the inner product on L2(X,µ).

1. Show that ρ(ugu′) = ρ(g) for all g ∈ SL2(R) and u, u′ ∈ U .

2. Show that ρ is invariant under gt for all t ∈ R. (Hint: What is the product u+r · u−ε · u+r where

r, s, ε ∈ R? Calculate this product and the substitute r = et−1
ε and s = −r

1+rε .)

3. Show that ρ is invariant under u−s for all s ∈ R. Conclude that ρ is invariant under SL2(R).

4. Show in this case that if µ is ergodic with respect to SL2(R), then it must be ergodic with
respect to U.

2 SL2(Z) is a lattice in SL2(R)
In this tutorial we show SL2(Z) is a lattice in SL2(R). Recall, a lattice Γ < SL2(R) is a discrete
subgroup such that SL2(R)/Γ carries a finite SL2(R)-invariant measure. We prove this by finding
a fundamental domain for the action of SL2(Z) on H with finite volume and then lifting this to a
finite volume fundamental domain on T 1H which we can identify with SL2(R) by virtue of exercise
1 from the last section. For completeness, we recall these definitions.

Definition 1. We call a subset D of SL2(R) discrete if for every x ∈ D has that the only sequences
(xn) ⊂ D with xn → x are the sequences that are eventually constant.

Definition 2. Let X be a locally compact space and G act on X by homeomorphisms. An open
subset F of X is a fundamental domain for the action of G if

1. ∪γ∈GγF , where F is the closure of F , and

2. γ1F ∩ γ2F = ∅, for all γ1, γ2 ∈ G, γ1 6= γ2.

Rougly speaking, a fundamental domain is how we ‘see” a quotient X/G. Think about the case
Z2 acting on R2 by translations. Then we often ‘see” the resulting quotient R2/Z2 by instead draw-
ing the open unit square in R2 and remembering that we identify the top edge with the bottom edge
and the left edge with the right edge. This works because when we move the unit square around
by Z2 we tile R2 and these translates never overlap, which is to say the open unit square in R2 is a
fundamental domain for the action of Z2 on R2!

Exercise 1. Show that SL2(Z) is discrete in SL2(R). (Hint: consider the point p = ni ∈ H
where n > 1. Show γ · p 6= p for all γ ∈ SL2(Z) with γ 6= Id. Why is this enough?)
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Recall that we can equip H with a notion of hyperbolic area via the hyperbolic metric. That is,
for A ⊆ H, define

m(A) =

∫
A

1

y2
dxdy.

Exercise 2. Consider the subset F ′ = {z = x+ iy : |z| > 1, |x| < 1/2}. Show that F ′ has finite
area with respect to this area form.
Let us take for granted that F ′ is a fundamental domain for the action of SL2(Z) on H. Then by
“throwing in all unit vectors” to each point x ∈ F ′, we get a subset of T 1H. That is, consider
F = {(z, v) : z ∈ F ′, v ∈ TzH}.

Exercise 3. Show F = {g ∈ SL2(R) : g · i ∈ F ′} and that this forms a fundamental domain for
the action of SL2(Z) on SL2(R).

This shows SL2(Z) is a lattice in SL2(R).

3 Mahler’s Compactness Criterion

In this tutorial we give a proof of Mahler’s compactness and get acquainted with the space of
unimodular lattices which we denote by Xd.

Exercise 1.

1. Show that the action of SLd(R) on Xd is transitive.

2. Compute the stabilizer of Zd. Conclude that we can identify Xd with SLd(R)/SLd(Z).

Hence, we can equip Xd with the quotient topology of SLd(R)/SLd(Z). The next exercise gives a
more concrete description of this topology.

Exercise 2.

Consider Xd with the following topology: Say Λn → Λ in Xd if there is a basis {b(n)1 , · · · , b(n)d }
of Λn and {b1, · · · , bd} of Λ such that limn b

(n)
i → bi as n→∞ for i = 1, · · · , d.

Show that this topology coincides with the topology inherited from SLd(R)/SLd(Z). (Hint: It
suffices to show that f : SLd(R)/SLd(Z)→ Xd given by gSLd(Z) 7→ gZd is continuous and Xd

with the new topology is locally compact and separable. This shows f is a homeomorphism.)

Now we state Mahler’s Compactness Criterion which gives a characterization of what (relatively)
compact subsets of Xd “look like”. It should be no surprise that this criterion is based on properties
of the points of the lattice.

Theorem 2. (Mahler’s Compactness Criterion) A subset K of Xd is relatively compact if and only
if non-zero vectors of Λ are uniformly bounded away from 0 for all Λ ∈ K. That is, if there is s > 0
such that Λ ∩Bs(0) = {0} for every Λ ∈ K.

Exercise 3. In this exercise we prove the forward direction of Mahler’s Compactness Criterion
as follows. Suppose for the sake of contradiction that for every n ≥ 1, there is Λn ∈ K with
Λn ∩ B1/n(0) 6= {0}. That is, there is xn ∈ Λn \ {0} such that limn xn = 0. By calling Λn = gnZd,
this last condition says xn = gnyn → 0 with yn ∈ Zd \ {0}.

1. Show there is a sequence (γn) ∈ SLd(Z) and g ∈ SLd(R) such that limn gnγn = g.

2. Show limn γ
−1
n gn = 0 and hence we have a contradiction since γ−1n gn ∈ Zd \ {0} for all n ∈ N.

Exercise 4.. In this exercise we prove the reverse direction.
Suppose that there is s > 0 such that Λ ∩ Bs(0) 6= {0} for every Λ ∈ K. Let b1 ∈ Λ be such

that ‖b1‖ = min{‖b‖ : b ∈ Λ \ {0}} . Note that s ≤ ‖b1‖ by assumption and by Minkowski’s convex
body theorem we have ‖b1‖ ≤ 2d + 1 which is a constant depending only on the dimension. Let
W = (Rb1)⊥ and πW : Rd →W be orthogonal projection onto W . Consider the (d− 1)-dimensional
lattice ΛW := πW (Λ) (which after rescaling we can assume is also unimodular.)
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1. Prove by way of contradiction that all non-zero vectors in ΛW are uniformly bounded away
from 0. Call this uniform bound s′. How does s′ relate to s?

2. Suppose by induction that for ΛW we have basis {y2, . . . , yd} such that s′ ≤ ‖yi‖ ≤ κd−1.
Prove that we can choose {b2, . . . , bd} (to complete a basis for Λ) such that the bi satisfy
‖bi‖ ≤

√
‖πW (bi)‖2 + ‖b1‖2 for i ≥ 2 and bi ∈ π−1W (yi). Note that for each i we have a uniform

bound
√
|πW (bi)‖2 + ‖b1‖2 ≤ Cd, where Cd is only dependent on the dimension d.

Now, for any sequence Λn ∈ K, which we write as Λn = gnZd, we have the columns of gn are
uniformly bounded from below (by s) and above (by a constant depending only on the dimension

d.) That is, if the columns of gn are b
(n)
1 , b

(n)
2 , . . . , b

(n)
d , we have shown

s ≤ ‖b(n)i ‖ ≤ Cd

where i = 1, · · · , d for every n ∈ N.

3. Finish the proof by showing the gn belong to a fixed compact set of SLd(R) and hence K is
relatively compact.
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