2018 Houston Summer School on Dynamical Systems

Problem set: Statistical Properties

- **1.** Let μ be a probability measure on a measurable space X, and let $f: X \to X$ be a measurable map. Prove that the following definitions of "*f*-invariant" are equivalent.
 - (a) For every measurable $E \subset X$ we have $\mu(f^{-1}E) = \mu(E)$.
 - (b) For every measurable $\varphi \colon X \to \mathbb{R}$ we have $\int \varphi \, d\mu = \int \varphi \circ f \, d\mu$.
- **2.** Prove that Lebesgue measure is invariant for each of the following.
 - (a) the doubling map $E_2: S^1 \to S^1;$ (b) a circle rotation $R_{\alpha}: S^1 \to S^1;$

 - (c) the toral automorphism given by $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$;
 - (d) the twist $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ on the torus;
 - (e) the map $(x, y) \mapsto (x + \alpha, y + x)$ on the torus.
- **3.** Let μ be an invariant probability measure for f, and prove that the following definitions of "ergodic" are equivalent.
 - (a) If E is a measurable set such that $f^{-1}(E) = E$, then $\mu(E) = 0$ or $\mu(E) = 1$.
 - (b) If φ is a measurable function φ such that $\varphi(x) = \varphi(f(x))$ for μ -a.e. x, then φ is constant μ -a.e.
 - (c) If ν_1, ν_2 are invariant measures such that $\mu = a_1\nu_2 + a_2\nu_2$ for some $a_1, a_2 \ge 0$ with $a_1 + a_2 = 1$, then $\nu_1 = \nu_2 = \mu$.
- 4. Recall that given a measure μ on the circle $S^1 = \mathbb{R}/\mathbb{Z}$, the Fourier transform of μ is the function $\hat{\mu} \colon \mathbb{Z} \to \mathbb{C}$ given by $\hat{\mu}(\kappa) = \int e^{-2\pi i \kappa x} d\mu(x)$, and that the map $\mu \mapsto \hat{\mu}$ is 1-1. Use this fact to prove that an irrational rotation is uniquely ergodic.
- 5. Prove that $x \in \mathbb{R}/\mathbb{Z}$ is pre-periodic (that is, its trajectory terminates in a periodic orbit) for the doubling map if and only if it is rational. Characterize the periodic points.
- **6.** Recall that the Fourier transform of $\varphi \in L^2(S^1)$ is $\hat{\varphi}(\kappa) = \int e^{-2\pi i \kappa x} \varphi(x) dx$, where the integral is taken with respect to Lebesgue measure, and that the map $\varphi \mapsto \hat{\varphi}$ is a bijection (in fact a unitary isomorphism) between $L^2(S^1)$ and $\ell^2(\mathbb{Z})$. Use this to prove that Lebesgue measure is ergodic for the doubling map.
- 7. Let $R_{\theta}(x) = x + \theta \pmod{1}$ where θ is irrational. Let dx be Lebesgue measure on [0, 1]and suppose that ϕ is a continuous function on the circle with $\int \phi dx = 0$. Show that $\frac{1}{n}S_n\phi \to 0$ uniformly; that is, for every $\epsilon > 0$ there is $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\left|\frac{1}{n}S_n\phi(x)\right| < \epsilon$ for every x.

 $\mathbf{2}$

[Note that this property, "uniform convergence of Birkhoff averages for all continuous functions for a continuous transformation on a compact space" is equivalent to unique ergodicity; see other problems on this list about irrational rotations on the circle.]

- 8. Use Fourier analysis to prove that Lebesgue measure is ergodic for the toral automorphism $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.
- **9.** Consider the map $f: \mathbb{T}^2 \to \mathbb{T}^2$ given by $f(x, y) = (x + \alpha, y + x)$, where α is irrational. Prove that f is uniquely ergodic by following the steps below.
 - (a) Prove that Lebesgue measure m is ergodic using Fourier analysis: use the fact that the characteristic function of any subset of \mathbb{T}^2 is in L^2 , and hence has a Fourier transform in ℓ^2 , so that in particular the Fourier coefficients decay at infinity.
 - (b) Let ν be any invariant measure for f and let ν_t be the image of ν under a rotation by t in the second coordinate. Show that each ν_t is also f-invariant, and that the average over all values of t is Lebesgue measure m on \mathbb{T}^2 . Use ergodicity to conclude that $\nu_t = m$ for a.e. t, and hence $\nu = m$.
- **10.** Let E_2 be the doubling map. Prove that there are infinitely many ergodic measures μ such that (1) μ is not periodic, and (2) the support of μ is not the whole circle. \diamond Recall that the support of μ is supp $(\mu) = \{x \mid \mu(B(x, \epsilon)) > 0 \text{ for every } \epsilon > 0\}.$

♦ Hint: code the system by the full 2-shift and consider Markov measures.

Prove that in fact, there are infinitely many closed subsets $A \subset S^1$ such that (1) A is infinite, and (2) there is an ergodic measure μ such that $\operatorname{supp}(\mu) = A$.

- 11. Prove that every orbit for R_{θ} is dense if θ is irrational. Prove that not every orbit for E_2 is dense. Construct a dense orbit for E_2 using the symbolic representation on the full 2-shift.
- 12. Let X be a separable metric space and $T: X \to X$ be continuous. Given $x \in X$ and $n \in \mathbb{N}$, let $\mathcal{E}_{x,n} = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{T^k x}$ be the *n*th *empirical measure* for x. That is, the measure $\mathcal{E}_{x,n}$ is defined by

$$\int \phi(y) \, d\mathcal{E}_{x,n}(y) = \frac{1}{n} \sum_{k=0}^{n-1} \phi(T^k x)$$

for every continuous $\phi: X \to \mathbb{R}$. Suppose $n_j \to \infty$ and $\mu \in \mathcal{M}(X)$ are such that $\mathcal{E}_{x,n_j} \to \mu$ in the weak* topology. (Note that if X is compact then existence of a convergent subsequence follows from compactness of $\mathcal{M}(X)$.)

- (a) Show that μ is *T*-invariant.
- (b) Give an example to show that this may fail if T is not continuous.
- (c) Say that x is generic for μ if $\mathcal{E}_{x,n} \to \mu$ (without passing to a subsequence). Birkhoff's ergodic theorem says that if μ is ergodic and G_{μ} is the set of generic points for μ ,

then $\mu(G_{\mu}) = 1$. Give an example showing that G_{μ} may be empty if μ is invariant but not ergodic.

- (d) Let Σ be the full shift on two symbols and let μ be any σ -invariant measure (not necessarily ergodic). Show that μ has a generic point.
- **13.** Let A be a finite alphabet and $\Sigma \subset A^{\mathbb{Z}}$ (or $A^{\mathbb{N}}$) be a closed σ -invariant subset. Given $n \in \mathbb{N}$, let

$$L_n = \{ w = w_1 \cdots w_n \mid w_i \in A \text{ for each } 1 \le i \le n,$$

and w appears as a subword of some $x \in \Sigma$.

(a) Let $a_n = \log \# L_n$ and show that

$$a_{n+m} \le a_n + a_m \text{ for every } n, m \in \mathbb{N}.$$
 (*)

- (b) A sequence satisfying (\star) is called *subadditive*. Prove *Fekete's lemma*: if a_n is a subadditive sequence, then $\lim \frac{1}{n}a_n$ exists and is equal to $\inf \frac{1}{n}a_n$ (which may be $-\infty$).
- (c) Deduce that $h(\Sigma) = \lim_{n \to \infty} \frac{1}{n} \log \# L_n(\Sigma)$ exists for every shift Σ . This limit is called the *topological entropy* of the shift Σ .
- (d) Let Σ be the SFT on two symbols $\{0, 1\}$ where the only forbidden word is 11. Show that $\#L_n(\Sigma)$ is the Fibonacci sequence.
- (e) Let Σ be a topological Markov chain with transition matrix M that is, a sequence x is in Σ if and only if $M_{x_n,x_{n+1}} = 1$ for every n. Show that $\#L_n$ is the sum of all the entries of M^{n-1} .
- (f) Let λ be a positive real eigenvalue of M with the property that $|\chi| \leq \lambda$ for all eigenvalues χ . (Existence of such an eigenvalue is part of the Perron–Frobenius theorem.) Prove that $h(\Sigma) = \log \lambda$.
- 14. Let (X, \mathcal{B}, μ) be a probability space and $T: X \to X$ a measure-preserving map. Given measurable sets $A, B \subset X$, let

$$C_n(A,B) := |\mu(A \cap T^{-n}B) - \mu(A)\mu(B)|$$

be the *n*th correlation function of A, B. Similarly, given L^2 test functions ϕ, ψ , let

$$C_n(\phi,\psi) := \left| \int \phi \cdot (\psi \circ T^n) \, d\mu - \int \phi \, d\mu \int \psi \, d\mu \right|.$$

- (a) Show that $C_n(A, B) \to 0$ for every A, B if and only if $C_n(\phi, \psi) \to 0$ for every $\phi, \psi \in L^2$. In this case the measure is called *mixing*.
- (b) Our results on decay of correlations all involve $C_n(\phi, \psi)$ for sufficiently regular test functions, instead of $C_n(A, B)$, or $C_n(\phi, \psi)$ for arbitrary L^2 functions. This is because even when $C_n(\phi, \psi)$ decays exponentially for Hölder continuous functions (or some other nice class), we may have very slow decay for $C_n(A, B)$, or for arbitrary measurable functions.

4

Demonstrate this phenomenon as follows: let $T: [0,1] \to [0,1]$ be the doubling map $T(x) = 2x \pmod{1}$, and let μ be Lebesgue measure on [0,1]. Find measurable sets $A, B \subset [0,1]$ such that $C_n(A, B)$ only decays polynomially – that is, there are $\gamma, c > 0$ such that $C_n(A, B) \ge cn^{\gamma}$ for all n.

Note that this is equivalent to answering the same question where X is the full shift on two symbols and μ is $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli.

15. The *Dyck shift* Σ is the two-sided shift on the four-symbol alphabet A whose letters are the brackets (, [,], and), and whose allowable sequences are precisely those in which the brackets are opened and closed in the right order. That is, the word ([]) is allowable, but the word ([)] is not. Similarly, ((([is allowable, but (] ((is not.

Let $B \subset A^* := \bigcup_n A^n$ be the set of *balanced* words; that is, the set defined by the following recursive procedure:

 \diamond the empty word is in *B*;

 \diamond if $w \in B$ then $(w) \in B$;

 \diamond if $w \in B$ then $[w] \in B$.

Consider the subsets

 $\Sigma^R = \{ x \in \Sigma \mid \text{ for every } n \in \mathbb{N} \text{ there is } m < n \text{ with } x_m x_{m+1} \cdots x_n \in B \},\$

 $\Sigma^{L} = \{ x \in \Sigma \mid \text{ for every } m \in \mathbb{N} \text{ there is } n > m \text{ with } x_{m} x_{m+1} \cdots x_{n} \in B \}.$

That is, Σ^R is the set of sequences where every right bracket has a matching left bracket, and Σ^L is the set of sequences where every left bracket has a matching right bracket.

- (a) Let $X = \{0, 1, 2\}^{\mathbb{Z}}$ be the full shift on three symbols and define $h: \Sigma \to X$ by $h(x)_n = H(x_n)$, where $H: A \to \{0, 1, 2\}$ maps the symbol (to 1, the symbol [to 2, and both symbols),] to 0. Show that h is 1-1 on Σ^R .
- (b) Let μ be an σ -invariant probability measure on Σ and show that $\mu(\Sigma^R \cup \Sigma^L) = 1$.
- (c) Consider the directed graph G whose vertices are non-negative integers and which has the following edges:
 - \diamond 2 edges from 0 to 0;
 - \diamond 2 edges from *n* to n + 1 for every $n \ge 0$;
 - $\diamond 1$ edge from n to n-1 for every $n \ge 1$.

Let a_n be the number of paths of length n on this graph that start at 0. Show that $#L_n(\Sigma) = a_n$.

Hint: it may help to label the two edges from 0 to 0 with the right brackets) and], the two edges from n to n + 1 with (and [, and the edge from n to n - 1 with ") or]".

- (d) Show that $h(\Sigma) = \log 3$.
- (e) If you know about measure-theoretic entropy and the variational principle, show that Σ has two ergodic measures of maximal entropy, and that both are fully supported on Σ .