1. Let $\Delta = \{(p_1, \ldots, p_N) : p_i \geq 0 \text{ for all } i \text{ and } \sum_{i=1}^N p_i = 1\}$. Given $a_i \in \mathbb{R}$, define $F : \Delta \rightarrow \mathbb{R}$ by $F(p) = \sum_{i=1}^N -p_i \log p_i + \sum_{i=1}^N p_i a_i$. Prove that $\max_{p \in \Delta} F(p) = \log \sum_i e^{a_i}$, and that the maximum is achieved at $p_j = e^{a_j}/\sum_i e^{a_i}$.

2. Let $\Sigma \subset \{0,1\}^\mathbb{N}$ be the hard core lattice gas model, for which $x \in \Sigma$ iff x does not contain two consecutive 1s. Put $\beta = 0$ and find the corresponding Gibbs measure; prove that it is a Markov measure by finding the relevant stochastic matrix and eigenvector.

3. Modify the Ising model by replacing the local energy function $U_k(x) = -x_k x_{k+1}$ with $U_k(x) = -x_k x_{k+1} - \frac{2}{N} x_k x_{k+2}$; that is, we add an interaction between sites that are a distance 2 apart. Prove that the corresponding invariant Gibbs measure μ is a ‘two-step Markov measure’ by finding $\{\pi_{ij} : i, j \in \{\pm 1\}\}$ and $\{P_{ijk} : i, j, k \in \{\pm 1\}\}$ such that for $w = w_1 \cdots w_n$ we have

$$\mu([w]) = \pi_{w_1 w_2} P_{w_1 w_2 w_3} P_{w_2 w_3 w_4} \cdots P_{w_{n-2} w_{n-1} w_n}.$$

Here π_{ij} can be interpreted as the probability of beginning in the state i, then j, and P_{ijk} can be interpreted as the probability of seeing the state k next, given that the last two states were i and j.

4. Let X be a Markov shift on a finite alphabet given by a transition matrix T of 0s and 1s. Suppose that T is primitive (some power is positive) and let λ be the Perron–Frobenius eigenvalue of T. Let \mathcal{L}_n be the set of words w of length n such that $[w] \cap X \neq \emptyset$. Prove that there is a constant $C > 0$ such that $\#\mathcal{L}_n/\lambda^n \in [C^{-1}, C]$ for all $n \in \mathbb{N}$. Must the limit $\lim_{n \rightarrow \infty} \#\mathcal{L}_n/\lambda^n$ exist?

5. Fix $\beta \in \mathbb{R}$ and let $f : [0,1) \rightarrow [0,1)$ be the expanding interval map defined by

$$f(x) = \begin{cases} (1 + e^{-2\beta})x & 0 \leq x < 2/(1 + e^{-2\beta}), \\ 1 - (1 + e^{2\beta})(\frac{1}{2} - x) & 2/(1 + e^{-2\beta}) \leq x < \frac{1}{2}, \\ (1 + e^{2\beta})(x - \frac{1}{2}) & \frac{1}{2} \leq x < 1 - 2/(1 + e^{-2\beta}), \\ 1 - (1 + e^{-2\beta})(1 - x) & 1 - 2/(1 + e^{-2\beta}) \leq x < 1. \end{cases}$$

In other words, f is the map uniquely defined by the following conditions:

- f maps $I_0 := [0, \frac{1}{2})$ and $I_1 := [\frac{1}{2}, 1)$ monotonically onto $[0, 1]$;
- $f' = 1 + e^{-2\beta}$ on $I_{00} = I_0 \cap f^{-1}(I_0)$ and $I_{11} = I_1 \cap f^{-1}(I_1)$;
- $f' = 1 + e^{2\beta}$ on $I_{01} = I_0 \cap f^{-1}(I_1)$ and $I_{10} = I_1 \cap f^{-1}(I_0)$.

Write $P_{00} = P_{11} = e^{-\beta}/(e^{\beta} + e^{-\beta})$ and $P_{01} = P_{10} = e^{\beta}/(e^{\beta} + e^{-\beta})$. Prove that Lebesgue measure m is f-invariant, and that writing $I_{w_1 \cdots w_n} = \bigcap_{k=1}^n f^{-(k-1)}(I_{w_k})$ for $w_1 \cdots w_n \in \{0,1\}^n$, we have $m(I_{w_1 \cdots w_n}) = \frac{1}{2} P_{w_1 w_2} P_{w_2 w_3} \cdots P_{w_{n-1} w_n} P_{w_n}$. In particular, $([0,1), f)$ is measure-theoretically isomorphic to the Markov chain defined by the stochastic matrix P, which was the Gibbs measure for the Ising model at inverse temperature β.

2018 Houston Summer School on Dynamical Systems

Problem set: Thermodynamic formalism