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Overview

Section 1 lists some concepts that are typically covered in undergraduate classes: I expect
that you have seen many of these ideas before, even if you do not have complete mastery of
all of them. We will spend most of our time in the prep sessions going through Sections 2–6,
which list some of the main concepts and examples that will appear in the lectures during
the summer school. I encourage you to work through as many of the exercises as you are
able to, and to ask questions if you get stuck on a particular exercise, or if you want more
explanation of one of the concepts that is mentioned.

1. Quick review of basic concepts

1.1. Linear algebra.

1.1.1. Vector spaces, inner products, and norms. Let F be either R or C. A vector space
over F is a set V equipped with an addition operation V × V → V and scalar multiplication
F×V → V such that: addition is associative, commutative, has an identity, and every element
has an inverse; scalar multiplication is compatible with multiplication in F , multiplication
by 1 fixes every v ∈ V , and the distributive laws hold.1

An inner product on a vector space V is a map 〈·, ·〉 : V × V → F such that

(1) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V (conjugate symmetry);
(2) 〈av+w, u〉 = a〈v, u〉+〈w, u〉 for all u, v, w ∈ V and a ∈ F (linearity); this also implies

conjugate linearity in the second argument;
(3) 〈v, v〉 ≥ 0 for all v ∈ V , with equality if and only if v = 0 (positive definiteness).

The standard inner product on Cn is 〈v, w〉 =
∑n

j=1 vjwj . A norm on a vector space V is a

map ‖ · ‖ : V → R such that

(1) ‖v‖ ≥ 0 for all v ∈ V , with equality if and only if v = 0;
(2) ‖λv‖ = |λ|‖v‖ for all v ∈ V and scalars λ;
(3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Given an inner product, ‖v‖ =
√
〈v, v〉 defines a norm that satisfies the parallelogram law

2‖v‖2 + 2‖w‖2 = ‖v+w‖2 + ‖v−w‖2. There are many norms that are not induced by inner
products. Given 1 ≤ p ≤ ∞, the `p-norm on Cn is given by

(1.1) ‖v‖p =
( n∑
j=1

|vj |p
)1/p

if p <∞, ‖v‖∞ = max
1≤j≤n

|vj |.

These norms are all equivalent in the following sense: for every n ∈ N there is a constant
C > 0 such that for every 1 ≤ p, q ≤ ∞ and v ∈ Cn we have

C−1‖v‖q ≤ ‖v‖p ≤ C‖v‖q.
The norm ‖ · ‖p is induced by an inner product if and only if p = 2.

1.1.2. Matrices and linear transformations up through Jordan normal form. Let M(n,C)
denote the space of n × n matrices with complex-valued entries. A matrix L ∈ M(n,C)
defines a linear transformation on Cn by x 7→ Lx, and we will usually identify a matrix
and its linear transformation without further comment; if the entries are real-valued then
the linear transformation acts on Rn. An eigenvalue of L is a complex number λ such that
λI − L is not invertible; in other words, there is an eigenvector v ∈ Cn for which Lv = λv.

1The same definition holds if F is a more general field, but R and C will suffice for our purposes.
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The spectrum of L is the set of eigenvalues, often written σ(L); this is a finite subset of C.
The spectral radius r(L) := max{|v| : v ∈ σ(L)} can be determined by Gelfand’s formula:

r(L) = lim
n→∞

‖Ln‖1/n, where ‖L‖ := sup{‖Lv‖ : ‖v‖ = 1}.

A matrix L is diagonalizable if Cn has a basis of eigenvectors for L; in this case there is an
invertible matrix C ∈ M(n,C) such that D = CLC−1 is a diagonal matrix. This allows for
very efficient computation of powers of L since Lk = C−1DkC for all k ∈ Z, and powers of a
diagonal matrix are easy to compute: if D = diag(λ1, . . . , λn), then Dk = diag(λk1, . . . , λ

k
n).

Not every matrix is diagonalizable; consider L =
(
0 1
0 0

)
. This matrix has L2 = 0; a matrix

with Lk = 0 for some k is called nilpotent. If L is nilpotent then there is an invertible matrix
C such that N = CLC−1 is strictly upper triangular, meaning that Nij = 0 whenever i ≥ j.

In general, if L ∈ M(n,C) has σ(L) = {λ1, . . . , λm}, then the characteristic polynomial
det(tI − L) factors as

∏m
j=1(t− λj)nj for some nj ∈ N, which are the algebraic multiplicities

of the eigenvalues λj . The geometric multiplicity of λj is the dimension of the eigenspace
Ej := ker(λjI − L); that is, the number of linearly independent eigenvectors for λj . The
matrix L is diagonalizable if and only if these multiplicities agree for all eigenvalues. In this
case we have Cn = E1 ⊕ E2 ⊕ · · · ⊕ Em, and each eigenspace Ej is L-invariant.

For non-diagonalizable matrices, we can get a decomposition along these lines by letting

Ej :=
⋃
k≥1

ker(λjI − L)k = {v ∈ Cn : (λjI − L)kv = 0 for some k ≥ 1}

be the generalized eigenspace; then we once again have Cn = ⊕mj=1Ej , and each Ej is L-
invariant. Moreover, each Ej has a basis v1, . . . , vdimEj

with the property that every vi has
either Lvi = λvi (so vi is an eigenvalue) or Lvi = λvi + v`(i), where `(i) ∈ {1, . . . ,dimEj}
and the map ` is 1-1. The matrix of the linear transformation L relative to the basis given
by the union of all the vi’s is the Jordan normal form of L.

The trace of a matrix A is TrA =
∑n

j=1Ajj , and is equal to the sum of the eigenvalues
of A, counted with their algebraic multiplicities. The determinant of A is the product of the
eigenvalues, and its absolute value can be interpreted as the amount by which multiplication
by A expands n-dimensional volume.

1.2. Real analysis. A metric space is a set X together with a metric d, which is a function
d : X ×X → R satisfying the following properties:

(1) d(x, y) = d(y, x) for all x, y ∈ X;
(2) d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y;
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality).

A set U in a metric space is open if for all x ∈ U there is ε > 0 such that the ball of radius ε
given by B(x, ε) := {y ∈ X : d(x, y) < ε} is contained in U . A set is closed if its complement
is open. It is possible for a set to be both open and closed; it is also possible for a set to be
neither open nor closed. A set is compact if every open cover has a finite subcover; that is
K ⊂ X is compact if for every collection of open sets {Uα}α∈A with K ⊂

⋃
α∈A Uα, there is

a finite subcollection Uα1 , . . . , Uαm such that K ⊂
⋃m
i=1 Uαi .

A sequence xn ∈ X converges to x ∈ X if d(xn, x)→ 0; equivalently, if for every open set
U ⊂ X that contains x (a neighborhood of x) there is N ∈ N such that for all n ≥ N we
have xn ∈ U . A set A ⊂ X is closed if and only if every sequence xn ∈ A with xn → x ∈ X
has x ∈ A. A set K ⊂ X is compact if and only if every sequence xn ∈ K has a convergent
subsequences. (These last two statements are true for metric spaces but may fail in more
general topological spaces.)
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If V is a vector space with a norm ‖ · ‖, then V is a metric space with metric given by
d(x, y) = ‖x−y‖. If d1, d2 are two metrics on V coming from two equivalent norms ‖·‖1, ‖·‖2,
then d1 and d2 induce the same topology : a sequence xk ∈ V converges to x ∈ V w.r.t. d1 if
and only if it converges to x w.r.t. d2. Warning: in finite dimensions all norms are equivalent,
so they all give the same topology, but in infinite dimensions different norms can induce
different topologies.

If X,Y are metric spaces, a map f : X → Y is continuous if for every open set U ⊂ Y
the preimage f−1(U) ⊂ X is open. For metric spaces this is equivalent to the condition that
f(xn)→ f(x) in Y whenever xn → x in X. The map f is a homeomorphism if it a bijection
such that f and f−1 are both continuous. It is an isometry if d(f(x), f(y)) = d(x, y) for all
x, y ∈ X. Isometric bijections are homeomorphisms but not vice versa.

Another useful example is the set Σ = {0, 1}N = {x1x2x3 · · · : xk ∈ {0, 1} ∀k ∈ N} of all
one-sided infinite binary sequences, equipped with the symbolic metric

d(x, y) = e−min{k∈N:xk 6=yk},

in which x and y are close together if they agree on a long initial segment. The space Σ is
homeomorphic to the middle-third Cantor set C ⊂ [0, 1] via the map h : Σ → [0, 1] defined
by h(x) =

∑∞
k=1 2xk3

−k. The Cantor set C can be characterized as the set of points in the
unit interval [0, 1] that have a base-3 expansion in which the digit 1 never appears.

1.3. Abstract algebra. Given n ∈ N, the symmetric group on n symbols is the set Sn of
permutations (bijections) σ : {1, . . . , n} → {1, . . . , n} together with the binary operation of
composition: if σ, τ ∈ Sn are permutations, then so is σ ◦ τ . More generally, a group is a set
G together with a binary operation · : G×G→ G, usually written g · h or just gh, such that
the following axioms hold.

(1) Associativity : g(hk) = (gh)k for all g, h, k ∈ G.
(2) Identity : There is e ∈ G such that eg = ge = g for all g ∈ G.
(3) Inverses: For every g ∈ G there is g−1 ∈ G such that gg−1 = g−1g = e.

A group is abelian if gh = hg for all g, h ∈ G. In this case we often write the binary operation
as addition. Every vector space (in particular Rn and Cn) is an abelian group under addition.

Given two groups G,H, a map ϕ : G → H is a homomorphism if ϕ(gh) = ϕ(g)ϕ(h)
for all g, h ∈ G. The kernel of a homomorphism is the preimage of the identity element:
kerϕ = {g ∈ G : ϕ(g) = eH}. The kernel is always a subgroup of G. A homomorphism is
injective if and only if its kernel is trivial. A bijective homomorphism is an isomorphism.

A subgroup of a group G is a subset H ⊂ G that is closed under multiplication and
inversion. Equivalently, H ⊂ G is a subgroup if and only if gh−1 ∈ H for every g, h ∈ H. A
left coset of a subgroup is a set of the form gH = {gh : h ∈ H} ⊂ G, and a right coset is
a set of the form Hg. If H is the kernel of a homomorphism, then H has the property that
every left coset is also a right coset, and vice versa. Equivalently, gHg−1 = H for all g ∈ G,
and in this case we say that H is normal. If H is a normal subgroup of G then the set of
left cosets (or the set of right cosets) is a group in its own right, denoted G/H, and H is the
kernel of the canonical homomorphism G 7→ G/H given by g 7→ gH.

Most of the groups we are interested in can be described as matrix groups. The set M(n,C)
comes equipped with the binary operation of matrix multiplication: (AB)ij =

∑n
k=1AikBkj .

This is associative and there is an identity element, but not all matrices have an inverse. The
set of invertible matrices GL(n,C) = {A ∈ M(n,C) : detA 6= 0} is a group under matrix
multiplication, called the general linear group.
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The set C∗ = C \ {0} is a group under multiplication, and the map det : GL(n,C)→ C∗ is
a homomorphism since det(AB) = det(A) det(B). The kernel of this homomorphism is the
special linear group SL(n,C) = {A ∈M(n,C) : detA = 1}. We can also consider the special
linear group over the reals: SL(n,R) = {A ∈M(n,R) : detA = 1}.

By Cramer’s formula for A−1, if A has integer entries and detA = 1, then A−1 has integer
entries as well, so SL(n,Z) = {A ∈M(n,Z) : detA = 1} is a subgroup of SL(n,R).

A ring is an abelian group with a second binary operation satisfying certain axioms that
mimic those satisfied by addition and multiplication of real numbers; usually the abelian
group operation is written as addition, and the second binary operation is written as multi-
plication, and the two are required to satisfy a distributive law. Elements must have additive
inverses but need not have multiplicative inverses. Examples of rings include Z,Q,R,C, but
N is not a ring since its elements do not have additive inverses. A more sophisticated example
of a ring is R[x], the ring of polynomials in one variable with real coefficients.

A field is a ring in which every nonzero element has a multiplicative inverse. Examples
of fields include Q,R,C, but not Z. Another example of a field is R(x), the field of rational
functions in one variable with real coefficients.

2. A crash course in smooth manifolds and hyperbolic geometry

Informally, a smooth manifold is something that locally looks like Rn. Instead of giving a
general definition we think about two-dimensional examples: surfaces.

2.1. The sphere. The two-dimensional sphere S2 can be thought of concretely as the set of
all points x ∈ R3 for which ‖x‖2 = 1. Every point in the northern hemisphere of the sphere
(where z > 0) is uniquely determined by its x and y coordinates; the upper hemisphere is

the graph of the function z =
√
x2 + y2 on the open disc {(x, y) ∈ R2 : x2 + y2 < 1}. Thus

considering (x, y) on this open disc gives coordinates on the northern hemisphere of the disc.
Formally, the map ϕ : (x, y, z) → (x, y) that takes a point on the northern hemisphere to
its (x, y)-coordinates is called a chart. There is another chart on the southern hemisphere
obtained in the same way. These two charts do not quite cover the whole sphere because the
equator is not part of either one. The regions determined by y < 0, y > 0, x < 0, and x > 0
give four more hemispheres that admit coordinate charts along similar lines, and these six
charts together cover the sphere, yielding an atlas.

The abstract definition of a smooth manifold M is given via such charts and atlases; one
requires that M can be covered by charts that give local coordinates on an open set in M , and
that the resulting atlas is smooth in the sense that the change-of-coordinates maps, which
act on a subset of Rn, have infinitely many derivatives.

Exercise 2.1. Let S2 ⊂ R3 be the unit sphere. The stereographic projection from the
north pole is the map ϕ : S2 \ {(0, 0, 1)} → R2 given by the condition that the three points
(0, 0, 1), x = (x, y, z), and (ϕ(x),−1) lie on the same line in R3; see Figure 1. Let ψ : S2 \
{(0, 0,−1)} → R2 be the stereographic projection from the south pole given by interchanging
the roles of 1 and −1 in the previous sentence. Write down the change-of-coordinates map
ψ ◦ ϕ−1 : R2 \ {0} → R2 \ {0}.

If we think of R2 in Exercise 2.1 as the complex plane C and then add a point at infinity,
we obtain the Riemann sphere.

2.2. The torus. Another two-dimensional smooth manifold is the torus. We can visualize
the torus as a surface of revolution in R3, but there is a different description that is often
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Figure 1. Stereographic projection from the north pole.

more useful. Take a square [0, 1]× [0, 1]; imagine that it is a sheet of paper (or something even
more flexible), and that we identify the left and right edges, gluing them together to obtain a
cylinder. The ends of the cylinder are two circles, and if we glue these circles togetherthen we
obtain a torus. Thus the torus can be thought of as the square with opposite edges identified.

Exercise 2.2. What kind of surface do we get if we identify opposite edges of a hexagon?

A different (but related) way of thinking of the torus comes from taking the quotient
space of R2 by a certain equivalence relation. Given x, y ∈ R2, say that x ≡ y (mod Z2) if
x− y ∈ Z2; that is, if x1− y1 ∈ Z and x2− y2 ∈ Z. The equivalence class of x ∈ R2 is the set
of all y ∈ R2 such that x ≡ y (mod Z2); this is a copy of the integer lattice Z2 that has been
shifted so that it contains x. Denote this set by [x] or x+ Z2, and note that [x] = [y] if and
only if x ≡ y (mod Z2). The sets [x] form a partition of R2. The torus can be identified with
the space of all equivalence classes, and it inherits a natural metric from R2. We often write

T2 = R2/Z2 = {[x] = x+ Z2 : x ∈ R2},(2.1)

d([x], [y]) = min{‖(x+ a)− (y + b)‖2 : a, b ∈ Z2} = min{‖(x− y) + k‖2 : k ∈ Z2}.(2.2)

Note that each equivalence class [x] intersects the unit square [0, 1]2 exactly once if neither
x1 nor x2 is an integer; we say that [0, 1]2 is a fundamental domain for the torus T2.

The torus is a smooth manifold; its charts arise very naturally since a small neighborhood
of [x] is obtained by translating [x] ⊂ R2 by some vector v ∈ R2 with ‖v‖ small; thus
the change-of-coordinates map between any two overlapping charts is a translation. This
construction works in any dimension and we write Tn = Rn/Zn for the n-dimensional torus.
Note that when n = 1 we obtain the circle S1 = R/Z, which can be viewed either as the unit
interval [0, 1] with endpoints identified (so [0, 1] is a fundamental domain), or as the set of
all translations of the set of integers in R.

Exercise 2.3. The map [x] 7→ (cos 2πx, sin 2πx) gives a homeomorphism from R/Z to the
unit circle in R2. Write a similar formula for a homeomorphism from R2/Z2 to the surface
of revolution in R3 obtained by rotating a circle in the xz-plane with centre (R, 0) and radius
r < R around the z-axis.

In this example, Rn is a covering space for Tn. We will not get into the formal definition
of covering space; its main utility here is that certain maps on Rn descend to maps on Tn.
For example, the map F : R → R given by F (x) = 2x has the property that F (x + n) =
2x+ 2n ≡ 2x (mod Z), and thus the map f : S1 → S1 given by f([x]) = [2x] is well-defined
since f(y) ∈ [f(x)] whenever y ∈ [x]. This is the doubling map on the circle. Another
important example is given by taking L =

(
2 1
1 1

)
∈ SL(2,Z) and observing that the map

L : R2 → R2 has the property that L(x+ Z2) = Lx+ Z2 since L gives a bijection from Z2 to
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itself. Thus L induces a bijection (in fact a homeomorphism) from T2 to itself by L[x] = [Lx].
The same principle works with any n ∈ N and L ∈ SL(n,Z), giving a toral automorphism
FL : Tn → Tn by FL([x]) = [Lx]. We describe this situation by saying that SL(n,Z) acts on
Tn by toral automorphisms. We will discuss group actions a little more in §6.3.

Exercise 2.4. Given L ∈ SL(n,Z), how many periodic points does FL : Tn → Tn have?
Recall that a point [x] ∈ Tn is periodic for FL if there is k ∈ N such that F kL(x) = x, where

F kL is the result of composing FL with itself k times, so F 2
L = FL ◦FL, F 3

L = FL ◦FL ◦FL, and
so on. If you have difficulty answering this question for a general L, start with L =

(
2 1
1 1

)
,

or ask the same question for the doubling map f : S1 → S1 given by f([x]) = [2x]. If you
solve the question, think about a more difficult version: given k, how many periodic points of
period k does FL have?

2.3. Tangent spaces. Suppose M ⊂ R3 is a smooth surface. (We didn’t define this concept
precisely yet, but never mind; if that bothers you, just think of the unit sphere.2) Fix a point
x ∈M and a vector v ∈ R3. Note that we are thinking of x as specifying a location and v as
specifying a direction, even though both of them are represented by an ordered triple of real
numbers. We say that v is tangent to M at x if the line through x with direction v (that is,
the set {x+ tv : t ∈ R}) is tangent to M . (Of course, we didn’t define what that means yet
either; can you write down a good definition?) Equivalently, v is tangent to M at x if there
is a curve γ : R→M ⊂ R3 such that γ(0) = x and γ′(0) = v. Let TxM denote the set of all
vectors v that are tangent to M at x; this is the tangent space to M at x. We should think
of each element of TxM as carrying two pieces of information: a location on M (the point x)
together with a direction of motion along M (really, not just a direction but a speed as well).

An abstract smooth manifold (which we still avoid defining) has a similar notion of tangent
space at each point. We avoid the precise definition and just say that if M is an n-dimensional
manifold, then for each x ∈M , the tangent space TxM is an n-dimensional vector space such
that for every smooth curve γ : R→M passing through x, the tangent vector to γ at x is an
element of TxM . Thus a tangent vector v ∈ TxM carries two pieces of information: where
its footprint is (the point x), and a direction (with magnitude) along M . In the specific case
of the torus Tn = Rn/Zn, the tangent space can always be identified with Rn by using the
canonical coordinates, and if you have not worked with smooth manifolds before, you should
think of this and/or the picture of the sphere in R3 whenever we discuss tangent spaces here.

It is sometimes useful to talk about the tangent bundle, which is the disjoint union of all
the tangent spaces: TM =

⊔
x∈M TxM = {(x, v) : x ∈ M,v ∈ TxM}. For Tn, the tangent

bundle is Tn × Rn, the set of all pairs (x, v), where x specifies a point on Tn and v specifies
a vector based at x. For other manifolds, it is not necessarily possible to express the tangent
bundle as a direct product.

Exercise 2.5. Convince yourself that TS2 6= S2×R2. (Giving a proper proof of this requires
a little machinery, which you may or may not have seen before.)

2.4. Riemannian manifolds. Let T2 be the torus represented as R2/Z2, and let M be the
surface of revolution from Exercise 2.3. That exercise showed that T2 and M are homeo-
morphic; they have the same topological properties. However, their metric properties are
different: M inherits a natural metric from R3, while T2 inherits a metric from R2 via (2.2).

2If you insist: a subset M ⊂ R3 is a smooth surface if for every x ∈ M there is an open set U ⊂ R3

containing x and a smooth function Φ: U → R such that the gradient of Φ never vanishes and M∩U = Φ−1(0).
Equivalently, if for every x ∈M there is an open set U such that on M ∩ U , one of the three coordinates can
be written as a smooth function of the other two, so that M ∩ U is the graph of this function.
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Exercise 2.6. Let h : T2 → M be the homeomorphism from Exercise 2.3. Given a ∈ R,
consider the closed curves γa = {[(a, y)] : y ∈ R} ⊂ T2 and ηa = {[(x, a)] : x ∈ R} ⊂ T2.
Show that the curves γa, ηa all have the same length on T2, but that this is not true for the
curves h(γa), h(ηa) on M .

Since T2 is not just locally homeomorphic to R2, but locally isometric to R2, it is sometimes
called the flat torus. The torus of revolution M , on the other hand, is not flat. We say that
T2 and M are the same as smooth manifolds (they are diffeomorphic), but they are different
as Riemannian manifolds.

Informally, a Riemannian manifold is a smooth manifold in which we are given a little
extra information: not only do we have a tangent space at every x ∈ M , but to every
v ∈ TxM we assign a length ‖v‖ (then we can define the angle between two vectors by using
the law of cosines). Once we know this, we can define the length of a curve γ : [0, 1]→M as∫ 1
0 ‖γ

′(t)‖ dt. We will return to this idea below.

2.5. Surfaces of higher genus and a little hyperbolic geometry. If one glues together
the edges of an octagon in the pattern shown in Figure 2, one obtains the surface of genus
2 shown there, which we denote by M . Can we get this surface via a quotient construction
like we did with the torus? It turns out that we can, but first we need a little hyperbolic
geometry.

Figure 2. Identifying edges of an octagon gives a surface of genus 2.

First we describe one more way to get the torus T2 from the Euclidean plane R2. Let
a : R2 → R2 be translation by the vector

(
1
0

)
, and let b : R2 → R2 be translation by

(
0
1

)
.

Then x ≡ y (mod Z2) if and only if we can get from x to y by repeatedly applying a, b, and
their inverses in some order. If we write F = [0, 1]2 for the fundamental domain given by the
unit square, then the images of F under all iterates of a and b tile the plane. In terms of the
planar model given by [0, 1]2 with opposite edges identified, we see that a maps the left edge
to the right edge, and identifies x with a(x), while b maps the bottom edge to the top edge,
and identifies x with b(x).

Nothing quite so simple can work with the octagon, because the angles don’t add up.
With the edge identifications shown in Figure 2, all the vertices of the octagon become the
same point on M . This was fine for the torus, because each vertex had an angle of π

2 in

the square, and since there were 4 vertices, the total angle around the resulting point on T2

was 4 · π2 = 2π. But the octagon has 8 vertices, each with an internal angle of 3π
4 , so the

total angle around this point on the M would be 6π, which is much too big. To resolve this,
we need to find a way to draw a regular octagon whose angles are all equal to π

4 . This is

impossible in the Euclidean plane, but possible in the hyperbolic plane H2.
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The hyperbolic plane H2 can be thought of in two ways: in the upper half-plane model,
it is the set {z ∈ C : Im z > 0}, and in the unit disc model, it is the set {z ∈ C : |z| < 1}.
In both cases, we must define a metric on H2. First recall a (somewhat circuitous) way to
define the metric on Euclidean space R2. Given any smooth path γ : [0, 1] → R2, the length

of γ is `(γ) =
∫ 1
0 ‖γ

′(t)‖ dt, where here ‖ · ‖ is the usual Euclidean norm. Then the distance

between x, y ∈ R2 is inf{`(γ) : γ(0) = x and γ(1) = y}. A path achieving this infimum is
called a geodesic; in Euclidean space, geodesics are just straight lines.

In the upper half-plane model, we can define the length of a curve γ : [0, 1]→ H2 by

(2.3) `(γ) =

∫ 1

0
‖γ′(t)‖H dt, where ‖γ′(t)‖H :=

‖γ′(t)‖
Im γ(t)

,

and then define distance and geodesics just as above. The real line R is not part of the upper
half-plane; it (together with the point at ∞) is called the ideal boundary. The equation
for `(γ) shows that the ideal boundary is an infinite distance from every point in H2. A
geodesic in H2 is either a vertical line or an arc of a circle that intersects the ideal boundary
orthogonally. The geodesics in the unit disc model are similar, although in this case we need
to use a different formula for the metric.

Exercise 2.7. Find a function y : R → (0,∞) such that for each a ∈ R, the curve γ(t) =
a+ iy(t) has the property that ‖γ′(t)‖H = 1 for all t.

Exercise 2.8. Define a curve γ : (0, π) → H2 by γ(t) = eit = cos t + i sin t. Find a
reparametrization t : R → (0, π) such that the curve η(s) = γ(t(s)) has the property that
‖η′(s)‖H = 1 for all s ∈ R, hence η is a unit speed geodesic.

Exercise 2.9. Show that the map θ(z) = −z+i
z+i gives a bijection from the upper half-plane to

the unit disc.

The hyperbolic metric on the unit disc is defined so that the map θ in Exercise 2.9 is an
isometry.

Exercise 2.10. Determine which curves in Figure 3 are geodesics.

γ

z

ψA(z)

w

ψA(w)

ηz

F

ψA(F )

ψ−1
A (F )

Figure 3. A hyperbolic translation.

One kind of isometry on H2 is illustrated in Figure 3; the map ψA from the disc to itself
moves points along γ and maps geodesics to geodesics. In fact, a formula for ψA can be in
terms of a matrix A ∈ SL(2,R). (We omit the proof that ψA is an isometry.)

Exercise 2.11. Given a matrix A =
(
a b
c d

)
∈ SL(2,R), define a map ϕA : C→ C by ϕA(z) =

az+b
cz+d ; this is called a fractional linear transformation (or Möbius transformation). Show that

ϕA is a bijection from the upper half-plane to itself, and that `(γ) = `(ϕA ◦ γ), where `(γ) is
the length of the curve γ as in (2.3). (We say that ϕA is an isometry.)
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The map ψA can be written as ψA = θ ◦ ϕA ◦ θ−1 for some A ∈ SL(2,R).

Exercise 2.12. Show that ϕ−A = ϕA, and that ϕAB = ϕA ◦ ϕB. In particular, show that
A 7→ ϕA is a homomorphism from SL(2,R) into the isometry group of H2, and that the kernel
of this homomorphism is {±I}.

The quotient group SL(2,R)/{±I} is denoted PSL(2,R) (the projective special linear
group. The unit tangent bundle of H2, denoted T 1H2, is the set of pairs (p, v) such that p
is a point in H2, v is a tangent vector at p, and ‖v‖H = 1 using the definition of hyperbolic
length in (2.3). Given A ∈ SL(2,R) (so {±A} ∈ PSL(2,R)), the corresponding isometry
ϕA : H2 → H2 induces an isometry on the unit tangent bundle by

(2.4) DϕA(p, v) = (ϕA(p), ϕ′A(p)v).

In the last expression we think of ϕ′A(p) and v as complex numbers. The following exercise
gives a bijection between PSL(2,R) and T 1H2 by identifying ±I with (i, 1), and ±A with
the image of (i, 1) under DϕA.

Exercise 2.13. Given (p, v) ∈ T 1H2, show that there is a unique {±A} ∈ PSL(2,R) such
that ϕA(i) = p and ϕ′A(i) = v.

F

Fc−1

Fd−1

Fc

Fd

Fa−1

Fb−1

Fa

Fb

a1

b1

a2

b2

c1

d1

c2

d2

Figure 4. A regular octagon in the hyperbolic plane.

Returning to the question of getting the surface of genus 2, consider the disc model and
take 8 geodesics that are evenly spaced around the circle, as shown in Figure 4. These
geodesics can be chosen so that the octagon they form has angle π

4 at all 8 vertices. Let
a be the hyperbolic isometry that takes the edge labeled a1 into the edge labeled a2, and
similarly for b, c, d. Then the images of the octagon F under all iterates of a, b, c, d (and their
inverses) tile H2. Say that two points x, y ∈ H2 are equivalent if x is mapped into y by the
composition of some combination of a, b, c, d, and their inverses. The quotient space of H2 by
this equivalence relation gives the surface of genus 2, just as the quotient space of R2 by the
equivalence relation induced by the translations a, b gave the torus.

2.6. Geodesics and horocycles. In the previous section we encountered geodesics in the
hyperbolic plane as (Euclidean) circles and lines that intersect the ideal boundary orthog-
onally. Another important class of curves in H2 is given by horocycles, which include (Eu-
clidean) circles that are tangent to the ideal boundary.
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Horocycles have the following fundamental property. Suppose that p, q ∈ H2 lie on the
same horocycle, and that v, w are two tangent vectors based at p, q, respectively, which v, w
have unit length with respect to the hyperbolic norm given in (2.3). Suppose moreover that
v, w are orthogonal (perpendicular, normal) to the horocycle and point ‘inwards’, that is,
towards the point at which the horocycle is tangent to the ideal boundary. Let γv and γw
be the unit speed geodesics with the property that γv(0) = p, γ′v(0) = v, γw(0) = q, and
γ′w(0) = w. Then γv(t) and γw(t) approach each other exponentially quickly as t → ∞, in
the sense given by the following series of exercises.

Exercise 2.14. Use the result of Exercises 2.8 and 2.13 to write explicit formulas for γv and
γw by finding A,B ∈ SL(2,R) such that DϕA(i,−1) = (p, v) and DϕB(i,−1) = (q, w), and
then putting γv = ϕA ◦ η and γw = ϕB ◦ η.

Exercise 2.15. Use the result of Exercise 2.14 to show that there are C, λ > 0 such that
dH(γv(t), γw(t)) ≤ Ce−λt for all t ≥ 0, where dH is the hyperbolic distance induced by the
length function in (2.3).

The result of Exercise 2.15 is sometimes summarized as the statement that “the normal
vector field to the horocycle is the stable manifold for geodesic flow”. Let us explain what
the ingredients of this statement mean. The “normal vector field to the horocycle” is the set
of pairs (p, v), where p is a point on the horocycle and v is an inward-pointing unit vector
at p that is orthogonal to the horocycle. The exercise shows that the geodesics determined
by these pairs (p, v) get close together exponentially quickly as t → ∞; this is the “stable
manifold” behavior.3 But what is “geodesic flow”?

As mentioned above, each pair (p, v) ∈ T 1H2 determines a unique unit speed geodesic γ
with the property that γ(0) = p and γ′(0) = v. Given t ∈ R, let gt(p, v) = (γ(t), γ′(t)); that
is, gt : T

1H2 → T 1H2 moves each unit tangent vector a distance t along the geodesic that it
generates. The family {gt}t∈R is called the geodesic flow on T 1H2.

Exercise 2.16. Use the result of Exercise 2.13 to show that the map π : PSL(2,R)→ T 1H2

defined by π(A) = DϕA(i, i) is a bijection. Show that if gt is the geodesic flow just defined,

then for every t ∈ R and ±A ∈ PSL(2,R), we have π−1 ◦ gt ◦ π(A) = A
(
et/2 0
0 e−t/2

)
.

Exercise 2.16 says that when geodesic flow on T 1H2 is viewed as a flow on PSL(2,R),

it behaves like right multiplication by the diagonal matrix
(
et/2 0
0 e−t/2

)
. Another important

flow on T 1H2 is the stable horocycle flow, which in terms of PSL(2,R) is given by right
multiplication by

(
1 t
0 1

)
.

Exercise 2.17. Show that the horocycle flow corresponds to moving (p, v) to (q, w), where q
is a point on the same horocycle as p, obtained by moving a distance t along that horocycle,
and w is the inward-pointing unit normal vector at q.4

Finally, we point out one special horocycle; horizontal lines in the upper half-plane model
are also called horocycles, and can be thought of as circles of infinite radius that are tangent
to the point at infinity on the ideal boundary. The following mimics Exercise 2.15.

Exercise 2.18. Show that if a, b ∈ R and y(t) is as in Exercise 2.7, then there are C, λ > 0
such that dH(a+ iy(t), b+ iy(t)) ≤ Ce−λt for all t ≥ 0.

3If we instead choose the outward pointing normal vectors, then this convergence happens as t→ −∞, and
we speak of the “unstable manifold”.

4Again, there is an unstable horocycle flow where we use outward-pointing normals instead, and the matrix
is lower-triangular instead of upper-triangular.
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3. A crash course in symbolic dynamics

3.1. General notions. Given p ∈ N, the full one-sided shift on p symbols is the metric space

Σ = Σp = {1, . . . , p}N = {x1x2x3 · · · : xk ∈ {1, . . . , p} for all k ∈ N},

d(x, y) = e−min{k∈N:xk 6=yk},

together with the map σ : Σ → Σ given by σ(x1x2x3 · · · ) = x2x3x4 · · · . The full two-sided
shift is defined similarly, as {1, . . . , p}Z; in this case the metric is defined by taking the
minimum of |k| where xk 6= yk, so that two points are close together if they agree for a long
interval of indices on both sides of 0. In these notes we will only consider one-sided shifts, to
keep notation simpler.

A finite word over the alphabet A = {1, . . . , p} is a finite sequence of symbols from A.
The set of all words is denoted A∗ =

⋃
n≥0A

n. Given a word w ∈ A∗, the length of w is the

number of symbols in w, which we denote |w|, and the cylinder corresponding to w is

[w] = {x ∈ Σ : xk = wk for all 1 ≤ k ≤ |w|}.
That is, [w] is the set of infinite sequences that start with the word w. Every cylinder is a
ball in the metric d, and is both open and closed.

A subshift of Σ (also called a shift space) is a closed subset X ⊂ Σ that is shift-invariant
(σ(X) = X). The language L(X) is the set of finite words that appear in some word in X;
that is,

L(X) = {w ∈ A∗ : [w] ∩X 6= ∅}.

Exercise 3.1. Show that a set L ⊂ A∗ is the language of some subshift if and only if it
satisfies the following conditions:

(1) if w ∈ L and v is a subword of w, then v ∈ L;
(2) if w ∈ L, then there exists a symbol a ∈ A such that wa ∈ L.

Given a subshift X, write Ln for the collection of words of length n in the language of X.

Exercise 3.2. Let X be the shift space on the alphabet {0, 1} defined by the rule that x ∈ X
if and only the symbol 1 never appears twice in a row. Compute #Ln.

Exercise 3.3. Prove that every language has #Lm+n ≤ (#Lm)(#Ln).

It follows from Exercise 3.3 that the sequence an = log #Ln is subadditive: it satisfies
am+n ≤ am + an for every m,n.

Exercise 3.4. Prove Fekete’s lemma: if an is a subadditive sequence, then limn→∞ an
n exists

and is equal to infn∈N an
n .

We conclude that limn→∞ 1
n log #Ln exists; denote this limit by h(L). This is the topo-

logical entropy of the subshift X; it measures the exponential growth rate of the number of
words in the language of X. The entropy of the full shift on p symbols is log p.

3.2. Markov shifts and positive entropy. A (finite) directed graph consists of a finite
set of vertices, labeled 1, . . . , p, together with a set of directed edges, which are ordered pairs
(i, j), where i, j are both vertices (possibly the same vertex). We will always assume that for
any given choice of i, j, there is at most one directed edge going from vertex i to vertex j.
We write i→ j if there is an edge from i to j, and i 6→ j if there is not.

The Markov shift (or topological Markov chain) associated to a directed graph is the
subshift X ⊂ Σp whose language consists of all words w = w1 · · ·wn such that wk → wk+1
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for all 1 ≤ k < n. In other words, X consists of all infinite sequences x = x1x2x3 · · · that
label a walk along the graph.

Given a directed graph, define a p× p matrix T of 0s and 1s (the transition matrix ) by

Tij =

{
1 i→ j,

0 i 6→ j.

A word w of length n is in the language of the shift if and only if Tw1w2Tw2w3 · · ·Twn−1wn = 1.

Exercise 3.5. Let L be the language of the Markov shift with transition matrix T . Given
two symbols i, j ∈ A = {1, . . . , p}, prove by induction that the total number of words in Ln
that start with i and end with j is (Tn−1)ij.

It follows from Exercise 3.5 that for a Markov shift with transition matrix T , we have

(3.1) #Ln =

p∑
i,j=1

(Tn−1)ij .

Say that a transition matrix T is irreducible if for every i, j ∈ A there is some n ∈ N such
that (Tn)ij > 0; equivalently, given any two vertices i, j on the graph, there is a path that
goes from i to j (but may take many steps to do so). Say that T is primitive if there is a
single value of n that works for all i and j.

Theorem 3.6 (Perron–Frobenius). If T is primitive then

(1) it has a positive real eigenvalue λ such that every other eigenvalue µ has |µ| < λ;
(2) λ is a simple eigenvalue (it has geometric and algebraic multiplicity 1);
(3) T has a unique (up to a scalar) eigenvector v in the positive cone {v ∈ Rp : vi >

0 for all 1 ≤ i ≤ p};
(4) given every w ∈ Rp, the sequence (Tnw)/λn converges to a multiple of v.

This theorem will be proved during the main lecture series at the summer school. The main
idea is to observe that T maps the positive cone inside itself and show that the intersection
of all the forward images of this cone is a line, which contains the PF eigenvector v.

Once the first three parts are shown, it is not hard to show that the convergence in the
fourth part is exponential: choosing ξ < 1 such that |µ| < λξ for every eigenvalue µ 6= λ, for
every w ∈ Rp there are C > 0 and a ∈ R such that ‖(Tnw)λ−n − av‖ ≤ Cξn for all n ∈ N.

Exercise 3.7. Use the Perron–Frobenius theorem and (3.1) to prove that if L is the language
of a Markov shift with transition matrix T , then h(L) = log λ, where λ is the Perron–
Frobenius eigenvalue of T .

3.3. Zero entropy shifts. Markov shifts have positive topological entropy and hence their
languages grow exponentially quickly. At the other extreme are shift spaces where the lan-
guage grows slowly.

Exercise 3.8. Show that if X is a shift space with infinitely many points, then #Ln(X) ≥
n+ 1 for all n ∈ N.

A shift space for which #Ln = n + 1 for all n is called a Sturmian shift, and a sequence
x ∈ Σ is a Sturmian sequence if X := {σnx : n ∈ N} is a Sturmian shift. Clearly every
Sturmian shift has zero topological entropy.

It may not be immediately obvious that any Sturmian sequences exist. One method for
producing a Sturmian sequence is to fix an irrational number α > 0 and consider the line
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y = αx+β for some β ∈ R; if we start at x = 0 and move to the right along this line, writing
down the symbol 0 every time x passes through an integer value and 1 every time y passes
through an integer value, then we obtain the cutting sequence associated to α, β. A binary
sequence is Sturmian if and only if it is the cutting sequence associated to some α, β with α
irrational.

An equivalent way to describe this is to consider the map Rα : S1 → S1 given by rotation
by α; viewing S1 as the interval [0, 1] with endpoints identified, we can write Rα(x) = x+ α
(mod 1). Given x ∈ [0, 1], we can code the trajectory of x according to the partition [0, 1) =
[0, α) t [α, 1) by writing the sequence h(x) ∈ Σ given by

h(x)n =

{
1 fnx ∈ [0, α),

0 fnx ∈ [α, 1).

Then a sequence is Sturmian if and only if it is the coding of the trajectory of some point
under some irrational rotation according to this partition. Aside: This procedure for coding
trajectories of a system in terms of their itineraries relative to some predetermined partition
is an extremely useful one for many classes of systems.

One important example of a Sturmian sequence is the Fibonacci word, which can be charac-
terized as the cutting sequence of a line of slope 1/φ, where φ is the golden ratio. Alternately,
the Fibonacci word is the infinite sequence obtained by starting with the word 0 and itera-
tively performing the following substitutions: at every step, replace each 0 with 01, and each
1 with 0. Thus we obtain

0 7→ 01 7→ 010 7→ 01001 7→ 01001010 7→ 0100101001001 7→ · · · .

Note that at each step the part of the word that we have already written down does not
change, so the (infinite) Fibonacci word begins with the symbols 0100101001001 · · · .

3.4. Symbolic codings and countable-state shifts. The Gauss map is the map f : (0, 1]→
(0, 1] defined by f(x) = 1

x −b
1
xc; that is, f(x) is the fractional part of 1/x. Note that f maps

each interval Ik := ( 1
k+1 ,

1
k ] monotonically onto (0, 1].

Exercise 3.9. Prove that for every sequence k0, k1, k2, · · · ∈ N, there is a unique x ∈ (0, 1]
such that fn(x) ∈ Ikn for every n ≥ 0.

This gives a bijection between (0, 1] and the space NN of infinite sequences of natural
numbers.

Exercise 3.10. Prove that if x ∈ (0, 1] and k0, k1, · · · ∈ N are related as in Exercise 3.9, then
k0, k1, . . . is the continued fraction expansion of x.

4. A crash course in measure theory

4.1. Basic examples of measures and integration. Informally, a measure on a set X is
a function µ that assigns to each subset E ⊂ X a weight µ(E) ≥ 0, with the property that
µ(
⊔∞
i=1Ei) =

∑
µ(Ei) whenever the sets Ei are disjoint. In the formal definition, µ(E) is

actually only defined when E comes from the σ-algebra of measurable sets, but the details of
this will not concern us here, as all the sets we consider are measurable.
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4.1.1. Lebesgue measure on R. The first measure to understand generalizes the notion of
length to subsets of R that need not be intervals. Given an interval I ⊂ R, let `(I) denote
the length of I. We can define a measure µ on R, called Lebesgue measure, by declaring that

(1) µ(I) = `(I) when I is an interval;

(2) µ(
⊔k
j=1 Ij) =

∑k
j=1 `(Ij) when I1, . . . , Ik are disjoint intervals; and in general,

(3) µ(E) = inf{
∑∞

j=1 `(Ij) : E ⊂
⋃∞
j=1 Ij and each Ij is an interval}.

Exercise 4.1. Show that these definitions are consistent and that it does not matter whether
the intervals we use are open or closed.

One important property of Lebesgue measure is that µ({x}) = 0 for every x ∈ R; in other
words, there are no points that carry positive measure. We say that µ is non-atomic.

Exercise 4.2. Show that Lebesgue measure satisfies µ(
⊔∞
i=1Ei) =

∑∞
i=1 µ(Ei) whenever the

sets Ei are closed and disjoint.

It follows that every countable set E has µ(E) = 0; in particular, µ(Q) = 0. We could
define other measures on R for which this fails; given any x ∈ R we can define the delta
measure δx by δx(E) = 1 if x ∈ E and 0 if x /∈ E. These measures are atomic. We will
mostly be concerned with non-atomic measures.

Remark 4.3. The countable additivity property in Exercise 4.2 actually holds whenever for
any collection of disjoint measurable sets Ei: a set E is said to be measurable if µ(X) =
µ(X ∩E)+µ(X ∩Ec) for every X ⊂ R. I find it helpful to think of such an E as representing
an event that can be conditioned on in the sense of probability, so that µ(X ∩ E)/µ(E) is
the conditional probability that X occurs given that E occurred, and similarly with Ec; then
the criterion for measurability can be thought of as P(X) = P(X|E)P(E) + P(X|Ec)P(Ec).
Of course µ is not actually a probability measure so the analogy breaks down somewhat. In
any case we will not concern ourselves with these details, as all of the sets we encounter in
these notes are measurable.

A property is said to hold µ-almost everywhere (usually abbreviated µ-a.e.) if there is a
set E ⊂ X such that µ(X \ E) = 0 and the property holds for all x ∈ E. For example, if µ
is Lebesgue measure on R, then µ-a.e. real number is irrational, while δ0-a.e. real number is
equal to 0.

Exercise 4.4. Prove that if we write E + t := {x + t : x ∈ E}, then µ(E + t) = µ(E) for
every E, t. This property is called translation-invariance of Lebesgue measure.

4.1.2. Lebesgue integration. Given a positive function ϕ : [a, b]→ (0,∞), Riemann integration
can be thought of as cutting up the region {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ ϕ(x)} that lies
underneath the graph of ϕ into a large number of very narrow vertical strips, each of which
is nearly a rectangle, then adding up the areas of these rectangles and taking a limit as the

number of rectangles goes to ∞ to get
∫ b
a ϕ(x) dx.

Roughly speaking, the Lebesgue integral is defined by cutting that same region up into
horizontal strips, adding up the (approximate) areas of the strips, and then taking a limit as
the width of the strips goes to 0. That is, Riemann slices the cake vertically, while Lebesgue
slices it horizontally. To make the definition slightly more formal, say that a partition ξ of
[0,∞) is a sequence 0 = c0 < c1 < c2 < · · · such that cn → ∞, and the diameter of ξ is
diam ξ = supn(cn+1 − cn). Given a function ϕ and a partition ξ, consider the sets

Aϕ,ξn = {x : ϕ(x) ≥ cn}.
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The set Aϕ,ξn × [cn, cn+1] is one of the “horizontal strips” mentioned above, and it follows from
the definition that

∞⋃
n=0

Aϕ,ξn+1 × [cn, cn+1] ⊂ {(x, y) : 0 ≤ y ≤ ϕ(x)} ⊂
∞⋃
n=0

Aϕ,ξn × [cn, cn+1],

as illustrated in Figure 5. Thus the “area under the graph of ϕ” should be close to the sum
of the “areas of the horizontal strips”, and we can define the Lebesgue integral as∫

ϕdµ = lim
diam ξ→0

∞∑
n=0

µ(Aϕ,ξn )(cn+1 − cn).

This last expression is a limit of Riemann sums and thus we obtain∫
ϕdµ =

∫ ∞
0

µ{x : f(x) ≥ t} dt,

where the integral on the right is the usual Riemann integral.

c0

c1

c2

c3

Aϕ,ξ1

Aϕ,ξ2

c0

c1

c2

c3

Aϕ,ξ0

Aϕ,ξ1

Aϕ,ξ2

Figure 5. Cutting the cake horizontally.

One difference between this approach and Riemann integration is that Lebesgue integration
can handle a large class of functions: for example, if ϕ = 1Q is the characteristic function
of the rational numbers (so ϕ(x) = 1 if x ∈ Q and 0 if x is irrational), then the Riemann
integral of ϕ does not exist (the lower and upper Rieman sums do not approach the same
limit), but the Lebesgue integral does. It turns out that there are still some functions that
cannot be integrated, but such examples will not concern us here.

Exercise 4.5. Compute
∫

1Q dµ.

The above definition was for nonnegative functions, but extends easily to functions that
take both positive and negative values. However, we must be careful that the function does
not have positive and negative parts that both integrate to ∞, otherwise we would end up
with ∞ −∞ when we compute the overall integral. To avoid this we usually restrict our
attention to the following class of integrable functions:

L1(µ) =
{
ϕ : ϕ is a (measurable) function with

∫
|ϕ| dµ <∞

}
.

Notice that the definition of Lebesgue integration easily adapts to spaces other than R,
and measures other than Lebesgue measure.

Exercise 4.6. Let δ0 be the delta measure at 0, and show that
∫
ϕdδ0 = ϕ(0) for all ϕ.
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Given a measure µ (Lebesgue measure, or otherwise), the set L1(µ) is a vector space, on
which we can define a norm by

‖ϕ‖1 =

∫
|ϕ| dµ.

Crucially, L1(µ) is complete with respect to this norm: if ϕn is any Cauchy sequence5 of
functions in L1(µ), then there is ϕ ∈ L1(µ) such that ‖ϕn − ϕ‖1 → 0. It is useful to know
that the set of simple functions given by

(4.1) L1
simple(µ) :=

{ n∑
j=1

cj1Ej : cj ∈ R, Ej ⊂ X,µ(Ej) <∞
}

is dense in L1(µ). (Warning: the notation in (4.1) is not standard.)
This is as good a place as any to point out that linear algebra in infinite-dimensional vector

spaces such as L1(µ) is often a rather different beast from our familiar finite-dimensional linear
algebra. The following two exercises illustrate this.

Exercise 4.7. Show that if T : Rn → Rn is a linear transformation with the property that
T kx → 0 for every x ∈ Rn, then there are λ ∈ (0, 1) and C ≥ 1 such that for every x ∈ Rn
and k ∈ N, we have ‖T kx‖ ≤ Cλk.

Exercise 4.8. Let µ be counting measure on the natural numbers, and `1 = L1(µ), so that
`1 is the set of all sequences whose sums converge absolutely. Define a linear transformation
T : `1 → `1 by (Tx)i = (1− 1

i )xi. Prove that ‖T kx‖1 → 0 for every x ∈ `1, but that given any

λ ∈ (0, 1) and C ≥ 1 there is x ∈ `1 such that ‖T kx‖ > Cλk for some k ∈ N.

4.1.3. Lebesgue measure on Rn. Lebesgue measure on R generalizes the idea of length; sim-
ilarly, one can construct Lebesgue measure on R2 generalizing the idea of area, on R3 gen-
eralizing the idea of volume, and so on. As with Lebesgue measure on R, one first defines
the function on a (relatively small) collection of sets with ‘nice’ structure, then extends it to
more general sets. In Rn the collection of ‘nice’ sets is

S = {[a1, b1]× [a2, b2]× · · · × [an, bn] ⊂ Rn : ai ≤ bi for all 1 ≤ i ≤ n},

and we write

µ([a1, b1]× · · · × [an, bn]) = (b1 − a1) · · · (bn − an).

Then we define Lebesgue measure for more general sets as

(4.2) µ(E) = inf
{ ∞∑
j=1

µ(Rj) : E ⊂
∞⋃
j=1

Rj and Rj ∈ S for all j
}
.

To develop all of this completely, one needs to describe precisely the axioms that the collection
of ‘nice’ sets should satisfy, and the conditions under which the definition in the last line agrees
with the original definition on elements of S (this is the Carathéodory extension theorem),
but we ignore these details.

5This means that for every ε > 0 there is N ∈ N such that ‖ϕm − ϕn‖ < ε whenever m,n ≥ N .
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4.1.4. Hausdorff measure and dimension. Let C ⊂ [0, 1] be the middle-third Cantor set. That
is, let C0 = [0, 1] and construct a sequence of sets Cn ⊂ [0, 1] such that

(1) Cn is a union of 2n intervals of length 3−n;
(2) Cn+1 is obtained from Cn by deleting the open middle third of each of the 2n com-

ponent intervals.

Thus C1 = [0, 13 ] ∪ [23 , 1], C2 = [0, 19 ] ∪ [29 ,
1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1], and so on. Note that C0 ⊃ C1 ⊃

C2 ⊃ C3 ⊃ · · · . The Cantor set is C =
⋂
nCn.

Exercise 4.9. Prove that the there is a natural homeomorphism between C and the space of
infinite binary sequences {0, 1}N. In particular, C is uncountable. (Note, however, that the
set of endpoints of removed intervals is only countable.)

Exercise 4.10. Use the fact that µ(C) ≤ µ(Cn) for all n to prove that the Lebesgue measure
of C is 0.

From these exercises we see that the Cantor set is large from the point of view of cardinality
(indeed, it is the same cardinality as R), but small from the point of view of Lebesgue measure.
So how should we quantify its size?

One way to approach this is to consider a new measure that is obtained by modifying the
definition of Lebesgue measure. Recall that Lebesgue measure on R was defined by

(4.3) µ(E) = inf
{ ∞∑
j=1

`(Ij) : E ⊂
∞⋃
j=1

Ij and each Ij is an interval
}
.

Moreover, for every ε > 0 and every interval I, we can cover I by a collection of intervals of
length < ε, and whose lengths add up to the length of I; thus we can require that all the
intervals Ij in (4.3) have length < ε, without changing the value of µ(E). In particular, the
following is equivalent to (4.3) (even if the reason for writing it this way is not immediately
clear):

(4.4) µ(E) = lim
ε→0

inf
{ ∞∑
j=1

`(Ij) : E ⊂
∞⋃
j=1

Ij and each Ij is an interval with `(Ij) < ε
}
.

We consider the following variant of (4.4): given α ≥ 0, the α-dimensional Hausdorff measure
on R is defined by

(4.5) mα
H(E) = lim

ε→0
inf
{ ∞∑
j=1

`(Ij)
α : E ⊂

∞⋃
j=1

Ij and each Ij is an interval with `(Ij) < ε
}
.

In particular m1
H(E) = µ(E), while m0

H(E) is just the number of points in E.

Exercise 4.11. Prove that each mα
H is translation-invariant, just as Lebesgue measure is

(recall Exercise 4.4).

Exercise 4.12. Prove that for every α ≥ 0, λ > 0, and E ⊂ R, we have mα
H(λE) =

λαmα
H(E), where λE = {λx : x ∈ E}.

This last scaling property makes mα
H useful for studying sets with some self-similarity, such

as the Cantor set.
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Exercise 4.13. Prove that for the middle-third Cantor set C, we have

mα
H(E) =


∞ α < log 2/ log 3,

1 α = log 2/ log 3,

0 α > log 2/ log 3.

In fact the phenomenon here, where mα
H jumps from ∞ to 0 at a single critical value of α,

is not unique to the Cantor set.

Exercise 4.14. Prove that if E ⊂ R and α ≥ 0 are such that mα
H(E) <∞, then mα′

H (E) = 0

for all α′ > α. Similarly, if mα
H(E) > 0, then mα′

H (E) =∞ for all α′ < α.

It follows from Exercise 4.14 that there is always a critical value of α (depending on E ⊂ R)
where mα

H(E) jumps from ∞ to 0. This value of α is called the Hausdorff dimension of E,
and written dimH(E). More formally, we write

(4.6)
dimH(E) = sup{α ≥ 0 : mα

H(E) =∞}
= inf{α ≥ 0 : mα

H(E) = 0}.

When α = dimH(E), the Hausdorff measure mα
H(E) can be 0, ∞, or anything in between.

Exercise 4.15. Prove that if E ⊂ R has positive Lebesgue measure, then dimH(E) = 1.

Exercise 4.16. Prove that if E ⊂ R has dimH(E) < 1, then E has Lebesgue measure 0.

It turns out that there are sets E ⊂ R with dimH(E) = 1 but Lebesgue measure 0. Can
you find one?

Exercise 4.17. Fix β ∈ (0, 1) and define the “middle-β” Cantor set Cβ by mimicking the
construction of C, except that in going from Cn to Cn+1, the ratio of the length of the deleted
interval to the length of the interval containing it is β, instead of 1

3 . Thus C = C1/3, and for

more general β we have C1 = [0, 1−β2 ]∪ [1+β2 , 1], etc. Prove that dimH(Cβ) = log 2/ log( 2
1−β ).

Exercise 4.18. Modify the above construction yet again by allowing β to vary at each step, so
the resulting Cantor set is determined by a sequence β1, β2, · · · ∈ (0, 1). By choosing βn → 0
quickly enough, construct a set C ′ ⊂ [0, 1] that is homeomorphic to the middle-third Cantor
set C but has positive Lebesgue measure. This set C ′ is called a fat Cantor set.

4.1.5. Bernoulli and Markov measures. Lebesgue measure is the most important measure on
Rn. On the symbolic space Σ = AN = {1, . . . , a}N, there are two families of measures that
are particularly important. One is the Bernoulli measures. A probability vector is a vector
p ∈ Ra such that pi ≥ 0 for all 1 ≤ i ≤ a and

∑
i pi = 1. Given a probability vector p and a

word w ∈ An, define the measure of the cylinder [w] ⊂ Σ as

µ([w]) = pw1pw2 · · · pwn .

In other words, the measure of the cylinder is the probability of observing the outcomes
w1, . . . , wn in that order if we do n independent trials of an experiment with a possible
outcomes such that pi gives the probability of observing the outcome i on any given trial.
The measure µ is then defined in general by (4.2), where S = {[w] : w ∈ A∗}.

Exercise 4.19. Prove that a Bernoulli measure µ has the property that µ(σ−1[w]) = µ([w])
for every w ∈ A∗.
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Another important family is the Markov measures. Let P be an a× a matrix whose rows
are probability vectors (that is,

∑a
j=1 Pij = 1 for all i); such a matrix is called a stochastic

matrix. Assume that some power of P is positive. By (a more general version of) the Perron–
Frobenius Theorem 3.6, 1 is an eigenvalue of P , with a left eigenvector π whose entries are
all positive, and scaling π we can assume without loss of generality that it is a probability
vector. Define a Markov measure µ = µP by taking the measure of a cylinder [w] to be

µ([w]) = πw1Pw1w2Pw2w3 · · ·Pwn−1wn ,

and then extending by (4.2). In other words, the probability vector π gives the probability of
starting out in a particular state, and the entries of the stochastic matrix P give the transition
probabilities: Pij gives the probably that we will be in state j tomorrow if we are in state i
today.

Exercise 4.20. Prove that a Markov measure µ has the invariance property in Exercise 4.19.

4.2. Absolute continuity. Let m denote Lebesgue measure on R. We can construct many
other measures on R by the following procedure: fix a nonnegative function ϕ ∈ L1(m), and
then define µ by µ(E) =

∫
E ϕdm =

∫
ϕ1E dm. In this case ϕ is sometimes called a density

function, or more formally the Radon–Nikodym derivative of µ with respect to m, and written
ϕ = dµ

dm . We also have
∫
ψ dµ =

∫
ψϕdm for every ψ ∈ L1(µ).

Not every finite measure on R can be represented in this way, however.

Exercise 4.21. Let δ0 be the point mass at 0, and show that there is no ϕ ∈ L1(m) such
that δ0(E) =

∫
E ϕdm for every E.

Given measures µ, ν on R, say that µ is absolutely continuous with respect to ν if every
set with ν(E) = 0 also have µ(E) = 0; in this case we write µ � ν. Note that if there
is ϕ ∈ L1(ν) such that µ(E) =

∫
ϕdν, then µ � ν. The Radon–Nikodym theorem says

that the converse is true as well; every absolutely continuous measure can be represented by
integration against a density function.

One can consider absolute continuity with respect to any reference measure ν, but we
will primarily be concerned with the case when ν = m is Lebesgue measure. It is worth
thinking for a little longer about which measures are not absolutely continuous with respect
to Lebesgue measure. From Exercise 4.21 we see that this includes the “pure point” measures
given by µ =

∑
k ckδxk (where ck ≥ 0 and xk ∈ R). But it also includes some more involved

examples.
Fix p ∈ (0, 1) and let ζ be the Bernoulli measure on {0, 1}N associated to the probability

vector (p, 1 − p). Let π : {0, 1}N → C be the homeomorphism from the full shift to the
middle-third Cantor set from Exercise 4.9, and define a measure µ on C (and hence on R)
by µ(E) = µ(π−1E).

This measure µ has the property that µ(C) = 1, while m(C) = 0, so µ is not absolutely
continuous with respect to Lebesgue measure. In fact, more than this is true: the set C has
the property that m(C) = 0 and µ(R \C) = 0. When there is a set C with this property, we
say that the measures µ and m are mutually singular and write µ ⊥ m.

The Lebesgue decomposition theorem says that given any measure6 µ on R, there are
measures µac and ν such that µ = µac + ν, µac � m, and ν ⊥ m. In other words, any
measure can be (uniquely) decomposed into an absolutely continuous part and a singular
part.

6Technically µ needs to be σ-finite, but let us not worry about this detail.
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Exercise 4.22. Show that given any finite measure ν on R, we can write ν = η+ ξ, where η
is continuous (meaning that η{x} = 0 for all x ∈ R) and ξ is a linear combination of point
masses.

Applying Exercise 4.22 to the singular part ν from the Lebesgue decomposition theorem
and writing µsing = η, µpp = ξ, we obtain a decomposition of our original measure as
µ = µac + µsing + µpp, where µac is the absolutely continuous part, µsing is the singular
continuous part, and µpp is the pure point part.

4.3. Measure-preserving transformations. A measure-preserving transformation con-
sists of a space X equipped with a measure µ, together with a map T : X → X that leaves
the measure invariant, meaning that µ(T−1E) = µ(E) for all (measurable) sets E ⊂ X.
Exercises 4.19 and 4.20 showed that the shift map σ : Σ→ Σ becomes a measure-preserving
transformation when it is equipped with any Bernoulli or Markov measure; equivalently, we
say that Bernoulli and Markov measures are shift-invariant.

At first it may seem a little strange that we look at T−1E instead of T (E) in the definition
of invariance. Some explanation for this may be found in the following exercise.

Exercise 4.23. Show that a measure µ is T -invariant if and only if
∫
ϕdµ =

∫
ϕ ◦ T dµ for

all ϕ ∈ L1(µ). (The expected value of the measurement ϕ is the same whether we perform it
today or tomorrow.) Hint: reduce the problem from L1(µ) to the set of simple functions from
(4.1) by using the fact that this set is dense in L1(µ).

Another reason for looking at T−1E is that for a non-invertible transformation, such as
the one-sided shift map σ : Σ→ Σ, there may be many sets whose forward iterates eventually
cover the whole space.

Exercise 4.24. Show that given any w ∈ A∗ there is n ∈ N such that σn([w]) = Σ.

If µ0 and µ1 are two measures on a space X that are both invariant under a transformation
T : X → X, then for every t ∈ [0, 1], the measure defined by the convex combination

µt(E) = tµ1(E) + (1− t)µ0(E)

is also a T -invariant measure on X. For example, if µ is the Bernoulli measure on Σ = {0, 1}N
such that µ[w] = 2−|w| for all w, and δ0 is the delta measure sitting on the point 0000 · · · ∈ Σ,
then ν = 1

2(µ+ δ0) is also a σ-invariant measure.
We say that an invariant measure µ is ergodic if it cannot be decomposed as a non-trivial

convex combination of two other invariant measures. Thus the measure ν in the previous
paragraph is not ergodic.

Exercise 4.25. Prove that the following are equivalent for a T -invariant measure µ.

(1) µ is ergodic.
(2) If E ⊂ X has T−1E = E, then either µ(E) = 0 or µ(X \ E) = 0.
(3) If ϕ : X → R has ϕ(Tx) = ϕ(x) for µ-a.e. x, then there is c ∈ R such that ϕ(x) = c

for µ-a.e. x.

Exercise 4.26. Prove that every Bernoulli measure is ergodic for the shift map σ.

Exercise 4.27. Determine necessary and sufficient conditions on the stochastic matrix P
for the associated Markov measure to be ergodic for the shift.

Usually we are interested in transformations that preserve a probability measure; that is,
a measure with µ(X) = 1.
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Theorem 4.28 (Poincaré recurrence). If T : X → X preserves a probability measure µ, then

for every A ⊂ X and µ-a.e. x ∈ A there is τ(x) ∈ N such that T τ(x)(x) ∈ A.

Proof. Let B = {x ∈ A : Tnx /∈ A ∀n ≥ 1} be the set of ‘bad’ points where the conclusion
fails. Then given any j, k ≥ 0 we claim that T−jB ∩ T−kB = ∅; indeed, if k > j and x ∈
T−jB∩T−kB, then y = T jx ∈ B∩T−(k−j)B, so T k−jy ∈ B ⊂ A, contradicting the fact that
y ∈ B. By this disjointness we have 1 = µ(X) ≥ µ(

⊔
n T
−nB) =

∑
n µ(T−nB) =

∑
n µ(B),

and thus µ(B) = 0. �

Given a transformation T : X → X and a function ϕ : X → R, the nth ergodic sum is the
function

Snϕ(x) :=

n−1∑
k=0

ϕ(T kx) = ϕ(x) + ϕ(Tx) + ϕ(T 2x) + · · ·+ ϕ(Tn−1x).

For example, if X = {1, . . . , a}N, T = σ, and ϕ = 1[1] is the characteristic function of the
cylinder [1], then Snϕ(x) is the number of times that the symbol 1 appears in the first n
places of x. Suppose µ is the Bernoulli measure on X associated to a probability vector p.
Then by the definition of the Bernoulli measure and by the strong law of large numbers, we
see that for µ-a.e. x ∈ X the ergodic averages (or Birkhoff averages) 1

nSnϕ have the property

that limn→∞ 1
nSn1[i](x) = pi for each symbol i ∈ A. This is a special case of the following

foundational result in ergodic theory, which we state but do not prove.

Theorem 4.29 (Birkhoff ergodic theorem). Let (X,T, µ) be an ergodic measure-preserving
transformation. Then for every ϕ ∈ L1(X,µ) we have limn→∞ 1

nSnϕ(x) =
∫
ϕdµ.

Given two measures µ, ν on the same space X, we say that µ and ν are mutually singular
if there is E ⊂ X such that µ(E) = 1 and ν(X \ E) = 1. If p 6= q are probability vectors,
then there is i such that pi 6= qi, and writing E = {x : lim 1

nSn1[i](x) = pi} we see that
the corresponding Bernoulli measures µp, µq have µp(E) = 1 and µq(X \ E) = 1, so distinct
Bernoulli measures are mutually singular.

Exercise 4.30. Prove that any two distinct Markov measures are mutually singular. More
generally, prove that any two distinct ergodic measures are mutually singular.

At the other extreme, we say that µ is absolutely continuous with respect to ν if every set
with ν(E) = 0 also has µ(E) = 0, and we write µ � ν. Given ν, one way to produce an
absolutely continuous measure is to take a function h ≥ 0, treat it as a density function, and
define µ by µ(E) =

∫
E h dν. For example, the Gaussian (normal) probability distribution

gives a measure on R that is absolutely continuous with respect to Lebesgue, with density

function proportional to e−x
2/2.

In fact, this is the only way to have an absolutely continuous measure: the Radon–Nikodym
theorem says that if µ � ν, then there is a density function h ≥ 0 such that µ is given as
above. The function h is called the Radon–Nikodym derivative and is denoted dµ

dν . Then
we have the following relationship between integrals w.r.t. µ and integrals w.r.t. ν, which
explains the notation: ∫

ϕdµ =

∫
ϕ
dµ

dν
dν
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4.4. Measure-theoretic entropy. The entropy of a probability vector p = (p1, . . . , pa) is
defined to be

(4.7) H(p) :=
a∑
i=1

−pi log pi.

Exercise 4.31. Show that 0 ≤ H(p) ≤ log a for all probability vectors p ∈ ∆a := {(p1, . . . , pa) :
pi ≥ 0,

∑
pi = 1}, with equality if and only if pi = 1

a for all a. Hint: use convexity. If you
struggle, first consider the case a = 2.

To understand where (4.7) comes from, we interpret H(p) as the average information
gained by observing which of the events 1, 2, . . . , a occurs, as follows. Let I(p) be the amount
of information that we gain if we observe an event whose probability is p. We may reasonably
expect the function I to satisfy the following properties:

(1) I(p) ≥ 0, with equality if and only if p = 1 (we never lose information by making an
observation, and we gain information if and only if the event had a positive probability
of not occurring);

(2) I is continuous and non-increasing (if p changes by just a little bit, then so does I,
and less likely events carry more information);

(3) I(pq) = I(p) + I(q) (if two independent events occur, the amount of information
we gain from observing both of them is the sum of the information we gain from
observing each one on its own).

One can show that the only function I : (0, 1] → R satisfying these axioms is the function
I(p) = − log p, and thus (4.7) can be rewritten as H(p) =

∑
i piI(pi), which is the expected

amount of information we gain by making a single observation of an experiment whose out-
comes are distributed according to the probability vector p.

Now consider the full shift Σ on a symbols. Let p ∈ ∆a be a probability vector, and let µ
be the Bernoulli measure on Σ associated to p. Given x ∈ Σ, keeping track of the first symbol
x1 ∈ A under iterations of σ amounts to conducting successive experiments where each has a
possible outcomes; if x is distributed according to µ, then these experiments are independent
and identically distributed, so the amount of information we expect to gain per trial is equal
to H(p). We call this the measure-theoretic entropy of µ and write hµ(σ) = H(p).

If x ∈ Σ is distributed according to a shift-invariant measure ν on Σ that is not a Bernoulli
measure, then the experiments described in the previous paragraph are still identically dis-
tributed (this is because ν is σ-invariant) but are no longer independent. We continue to
define the measure-theoretic entropy of ν as the amount of information we expect to gain per
trial in the long run, which can be written as

(4.8) hν(σ) := lim
n→∞

1

n

∑
w∈An

−ν[w] log ν[w].

Exercise 4.32. Writing cn =
∑

w∈An −ν[w] log ν[w], show that cm+n ≤ cm + cn, and then
use Exercise 3.4 to prove that the limit in (4.8) exists and is equal to infn

cn
n .

Recall that the topological entropy of the full shift on a symbols is log a; by Exercise 4.31
we therefore have 0 ≤ hµ(σ) ≤ log a for every Bernoulli measure µ, with equality if and only
if µ is the Bernoulli measure that gives every 1-cylinder equal weight. In fact, Exercise 4.32
shows that hµ(σ) ≤ c1 ≤ log a for every invariant measure µ. A similar picture holds for shift
spaces that are not the full shift.
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Theorem 4.33 (Variational principle). Let X be a shift space on a finite alphabet, and
σ : X → X the shift map. Let htop(X,σ) = h(L(X)) be the topological entropy of X, and let
M(X) be the set of all σ-invariant measures on X. Then we have

htop(X,σ) = sup
µ∈M(X)

hµ(σ).

Note thatM(X) is a convex set because the convex combination of two invariant measures
is itself an invariant measure. An extreme point of a convex set is a point that cannot be
written as a proper convex combination of two other points in the set. In particular, the
extreme points of M(X) are precise the ergodic measures.

In factM(X) is a Choquet simplex : every element inM(X) can be written in a unique way
as a (possibly infinite) convex combination of its extreme points. This leads to the ergodic
decomposition; every invariant measure can be decomposed into its ergodic components.

It is often the case thatM(X) is very large (infinite-dimensional); for example, when X is
a topological Markov chain given by a transition matrix T , we can take any stochastic matrix
P such that Pij ≤ Tij for all i, j and obtain the corresponding Markov measure, which is

supported on X. We can also take any periodic sequence x ∈ X, say x = σkx, and define an

atomic measure on X by µx = 1
k

∑k−1
j=0 δσjx.

Exercise 4.34. Show that the periodic orbit measure µx is σ-invariant and ergodic.

In cases like this the variational principle (together with a generalization from entropy to
pressure, which we do not state here) helps us to select certain distinguished invariant mea-
sures. For example, on the full shift, the equidistributed Bernoulli measure is distinguished
by the fact that it maximizes the entropy; in fact, one can show that it is the unique measure
of maximal entropy.

On a topological Markov chain with primitive transition matrix T , one can find a measure
of maximal entropy via the following procedure: let λ be the Perron–Frobenius eigenvalue of
T , and let v and w be row and column eigenvectors for λ, so that vT = λv and Tw = λw.
Assume that v, w are normalized so that vw =

∑
viwi = 1. Define a probability vector π

and a stochastic matrix P by

πi = viwi, Pij =
Tijwj
λwi

.

Exercise 4.35. Show that the Markov measure µ given by π, P has the following properties:

(a) it is a measure (must check that ∀w ∈ Ln(X) we have
∑n

i=1 µ[wi] = µ[w]), and
(b) it is σ-invariant.

The measure µ constructed in Exercise 4.35 is called the Parry measure, and can be shown
to be the unique measure of maximal entropy for the Markov shift X.

The Variational Principle holds for a broader class of systems (continuous maps on compact
metric spaces) but in the interests of brevity, we omit the details of the definitions involved.

4.5. Basic functional analysis. We often need to be careful about specifying which class
of functions we work with. When X is a metric space it is natural to consider the set

C(X) = C(X,R) = {ϕ : X → R : ϕ is continuous}.
This is a vector space over R in a natural way. If X is compact then every ϕ ∈ C(X) is
bounded, and so the following defines a norm on C(X), called the uniform norm:

‖ϕ‖ = ‖ϕ‖u := sup
x∈X
|ϕ(x)|.
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This makes C(X) into a metric space, and this metric space can be shown to be complete:
every Cauchy sequence ϕn ∈ C(X) converges to some ϕ ∈ C(X) (ie., ‖ϕn − ϕ‖u → 0). A
complete normed vector space is called a Banach space.

The simplest examples of Banach spaces are finite-dimensional vector spaces, but since all
norms are equivalent in this setting, most of the work in Banach space theory goes towards
dealing with infinite-dimensional spaces such as C(X).

Given 0 < α < 1 one can consider the class of Hölder continuous functions with exponent
α on X, which contains those functions ϕ for which there is a constant C > 0 such that
|ϕ(x)− ϕ(y)| ≤ Cd(x, y)α for all x, y ∈ X. When α = 1, such a function is called Lipschitz.
The space of Hölder continuous functions is denoted Cα(X) and is a Banach space with the
norm

‖ϕ‖α := ‖ϕ‖u + |ϕ|α, |ϕ|α := sup
x,y∈X

|ϕ(x)− ϕ(y)|
d(x, y)α

.

Note that |ϕ|α is not a norm in its own right, since it vanishes on every constant function;
thus it is a seminorm.

When X = R (or more generally when X is a smooth manifold) it is often useful to consider
the space of continuously differentiable functions

C1 = {ϕ : ϕ′ exists and is continuous}.

If we restrict X to be a compact subset of R (or more generally, a compact smooth manifold),
then C1 is a Banach space with norm

‖ϕ‖C1 = ‖ϕ‖u + ‖ϕ′‖u.

One can define the spaces C2, C3, . . . in a similar way.
Another important type of function space comes from considering not the differentiability

properties of functions, but rather their integrability properties. Let µ be a measure on a
space X. We already introduced the space L1(µ) of all integrable functions; more generally,
given 1 ≤ p <∞, we let

Lp(µ) = Lp(X,µ) =
{
ϕ : X → R :

∫
X
|ϕ|p dµ <∞

}
which becomes a Banach space when equipped with the norm

(4.9) ‖ϕ‖p =
(∫

X
|ϕp| dµ

)1/p
.

Note the similarity to the `p-norms in (1.1). In fact (4.9) reduces to (1.1) when X = {1, . . . , n}
and µ is the counting measure µ(E) = #E. A crucial difference is that in general, Lp(µ)
is infinite-dimensional and the Lp norms define different topologies (and indeed, different
spaces).

There is a subtlety we are glossing over here, namely that the Lp spaces are actually
defined in terms of equivalence classes of functions, where ϕ ∼ ψ if ϕ = ψ µ-a.e. In practice
this distinction will not bother us much here; just remember that Lp-functions are defined
“almost everywhere”, instead of “everywhere”. This does show up in the definition of the Lp

space for p =∞:

‖ϕ‖∞ = inf
ψ∼ϕ
‖ψ‖u, L∞(µ) = {ϕ : X → R : ‖ϕ‖∞ <∞}.
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5. A crash course in linear algebra

5.1. Hilbert spaces and tensor products. Recall the definition of an inner product space
from §1.1.1. Let H be an inner product space; then H is a metric space with d(x, y) = ‖x−y‖,
where ‖ · ‖ is the norm induced by the inner product. If H is complete in this metric, then
it is called a Hilbert space. Every Hilbert space is a Banach space, but not vice versa.

Exercise 5.1. Prove that every finite-dimensional inner product space is complete.

We will primarily be concerned with the finite-dimensional case, so it is perfectly reasonable
for you to picture Cn whenever you read the words ‘Hilbert space’. Many of the things we say
below work in infinite dimensions also; the biggest difference is that one needs to be careful
what a ‘basis’ is when the space is no longer finite-dimensional, and so anything that involves
a basis needs to be treated with significant care beyond the finite-dimensional setting.

A linear operator on a Hilbert space H is a linear map T from H to itself. The operator
norm of T is

(5.1) ‖T‖ = sup{‖Tx‖ : x ∈ H, ‖x‖ = 1}.
The operator T is bounded if ‖T‖ <∞. Write L(H) for the set of all bounded linear operators
on H. When H = Cn, each T ∈ L(H) is represented by an n×n matrix of complex numbers.

Exercise 5.2. Prove that if H is finite-dimensional, then every linear operator is bounded.

In quantum mechanics, the set of all possible quantum states of a system is a Hilbert space,
and a specific state is often denoted |ψ〉 ∈ H. When H = Cn, |ψ〉 can be interpreted as a
column vector. In this case, the notation 〈ψ| refers to the row vector with the same entries,7

and 〈φ|ψ〉 is the inner product of two vectors, which can be interpreted as the product of a
1 × n matrix (the row vector) with an n × 1 matrix (the column vector). Note that if the
order is reversed, then |ψ〉〈φ| is the product of an n × 1 matrix with a 1 × n matrix, giving
an n× n matrix that represents an operator on Cn.

To describe a quantum system in terms of its subsystems, we need tensor products. If V,W
are finite-dimensional vector spaces with bases {v1, . . . , vm} and {w1, . . . , wn}, respectively,
then their tensor product is the vector space consisting of all formal linear combinations of
pairs of elements from the two bases. That is, given 1 ≤ i ≤ m and 1 ≤ j ≤ n, we write
vi ⊗wj for the ordered pair (vi, wj); the tensor product V ⊗W is the set of all formal linear
combinations of the vi ⊗ wj :

(5.2) V ⊗W =
{ m∑
i=1

n∑
j=1

cijvi ⊗ wj : cij ∈ C
}
.

We can also take the tensor product of vectors in V and W : given x =
∑

i xivi ∈ V and
y =

∑
j yjwj ∈W , the tensor product of x and y is

(5.3) x⊗ y =

m∑
i=1

n∑
j=1

xiyjvi ⊗ wj .

One can easily check that this is linear in both x and y, so (cx+x′)⊗ y = c(x⊗ y) + (x′⊗ y),
and so on. When V,W are inner product spaces, their tensor product carries an inner product
defined by

(5.4) 〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉〈w,w′〉.
7More formally, 〈ψ| is an element of the dual space of H, which is naturally isomorphic to H itself.
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Note that Cm ⊗ Cn is isomorphic to Cmn, so dimension is multiplicative. This is different
from the direct product, where Cm × Cn is isomorphic to Cm+n, and dimension is additive.

Finally, we can take the tensor product of operators. Given Hilbert spaces H1, H2 and
linear operators Tj ∈ L(Hj) for j = 1, 2, define their tensor product T1⊗T2 ∈ L(H1⊗H2) by

(5.5) (T1 ⊗ T2)(v ⊗ w) = (T1(v))⊗ (T2(w)).

Exercise 5.3. If H1 = H2 = C2 and T1, T2 ∈ L(C2), then T1, T2 are represented by 2 × 2
matrices, while T1 ⊗ T2 ∈ L(C4) is represented by a 4 × 4 matrix. Find the relationship
between these matrices.

5.2. Various flavors of operators. Given a Hilbert space H, the set L(H) is a vector
space in its own right because operators can be added together, and multiplied by scalars.
But more than this is true; operators can also be multiplied together via composition (which
corresponds to matrix multiplication in the finite-dimensional case). Thus L(H) is more than
a vector space, it is an algebra; a vector space V equipped with a product V×V → V satisfying
the usual expected associative and distributive laws (but not necessarily commutativity).

For every v ∈ H and T ∈ L(H), it can be shown that there is a unique element T ∗v ∈ H
such that 〈T ∗v, w〉 = 〈v, Tw〉 for all w ∈ H. Moreover, the map T ∗ : H → H is linear and
bounded; this is the adjoint of T , and is defined by the condition

(5.6) 〈T ∗v, w〉 = 〈v, Tw〉 for all v, w ∈ H.
Exercise 5.4. Show that if H = Cn, then the matrix representing T ∗ is the conjugate trans-
pose of the matrix representing T . That is, if T is represented by the matrix A ∈ M(n,C),
then T ∗ is represented by the matrix B with Bij = Aji.

It follows immediately from the definition (or from Exercise 5.4) that T ∗∗ = T . Thus
the map T 7→ T ∗ is an involution on L(H) (a bijection that is its own inverse). With this
involution, L(H) becomes an example of a C*-algebra; that is, it is an algebra (vector space
with multiplication) equipped with a complete norm (the operator norm) and an involution
satisfying the following properties.

Exercise 5.5. Prove that for every S, T ∈ L(H) and c ∈ C, we have (S + T )∗ = S∗ + T ∗,
(ST )∗ = T ∗S∗, (cT )∗ = cT ∗, and ‖T ∗T‖ = ‖T‖‖T ∗‖.

We turn now to some specific classes of operators that play a crucial role. An operator
T ∈ L(H) is called Hermitian, or self-adjoint, if T ∗ = T . Note that when H = Cn, this
condition says that the matrix representing T is equal to its own conjugate transpose.

Exercise 5.6. Prove that if T is self-adjoint, then all of its eigenvalues are real.

The spectral theorem in the finite-dimensional setting says that if T ∈ L(Cn) is self-adjoint,
then there is an orthonormal basis {v1, . . . , vn} for Cn such that each vj is an eigenvalue for
T .

Exercise 5.7. Is the basis {v1, . . . , vn} determined uniquely by T?

Another way to state the spectral theorem is as follows: writing U for the linear trans-
formation taking ej → vj , where {e1, . . . , en} is the standard orthonormal basis for Cn, we
have T = U−1DU , where D is a diagonal matrix. The matrix of U has the property that
its columns are the vectors vj , while the rows of U∗ are the complex conjugates of these
vectors, and hence (U∗U)ij =

∑
k vikvjk = 〈vj , vi〉 = δij , so U∗U = I is the identity matrix.

A matrix U with this property (its conjugate transpose is its inverse) is called unitary, and
so the spectral theorem says that self-adjoint matrices can by unitarily diagonalized.
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Using (5.6), the property of being unitary can be interpreted as follows: if U ∈ L(H) is
unitary, then U∗U = I, so 〈v, w〉 = 〈U∗Uv,w〉 = 〈Uv,Uw〉 for all v, w ∈ H. Conversely,
if 〈Uv,Uw〉 = 〈v, w〉 for all v, w ∈ H, then 〈U∗Uv,w〉 = 〈v, w〉 for all v, w ∈ H, and thus
U∗U = I, so U is unitary. Thus the unitary operators are exactly those operators that
preserve the inner product. In other words, the unitary operators are the isometries of H.

Let H be a finite-dimensional Hilbert space and V ⊂ H a subspace. Then V ⊥ = {w ∈ H :
〈v, w〉 = 0 for all v ∈ V } is a subspace of H as well, called the orthogonal complement of V .
We have H = V ⊕ V ⊥, meaning that for every x ∈ H there is a unique choice of v ∈ V and
w ∈ V ⊥ such that x = v + w. The map T : x→ v is called orthogonal projection onto V . It
is a linear operator on H and has the property that T 2 = T (it is idempotent). Moreover, it
is self-adjoint: indeed, given x ∈ H we have Tx ∈ V and x− Tx ∈ V ⊥, so for every x, y ∈ H
we have

〈Tx, y − Ty〉 = 〈x− Tx, Ty〉 = 0 ⇒ 〈Tx, y〉 = 〈Tx, Ty〉 = 〈x, Ty〉 = 〈T ∗x, y〉,
which implies that T ∗ = T .

Exercise 5.8. Prove that if T ∈ L(H) is idempotent and self-adjoint – that is, T 2 = T = T ∗

– then there is a subspace V ⊂ H such that T is orthogonal projection onto V . (Consider the
kernel and range of T .)

The set of unitary n × n matrices is denoted U(n). A unitary matrix with real entries is
often called an orthogonal matrix, and the set of such n× n matrices is denoted O(n). This
is the set of matrices for which the corresponding linear operator on Rn preserves the usual
Euclidean norm.

It is occasionally useful to consider the set of real n × n matrices preserving a different
quantity. A quadratic form on Rn is a function

q : Rn → R

(x1, . . . , xn) 7→
n∑
i=1

n∑
j=1

aijxixj ,

where aij ∈ R are the coefficients of the form. Note that by writing A for the n×n matrix with
entries aij , this formula becomes q(x) = 〈x,Ax〉. We can assume without loss of generality
that aij = aji since they both contribute to the same term; in this case A is symmetric (the
real version of self-adjoint). Then all of its eigenvalues are real by Exercise 5.6. The signature
of q is the triple (a, b, c) ∈ {0, 1, . . . , n}3 where a is the number of times 0 is an eigenvalue,
b is the number of positive eigenvalues, and c is the number of negative eigenvalues (with

multiplicity). Note that a + b + c = n. If all eigenvalues are positive then x 7→
√
q(x) is a

norm and (x, y) 7→ 〈x,Ay〉 is an inner product (not necessarily the standard one). But it is
sometimes interesting to consider quadratic forms with other signatures, and in this case one
may still work with the isometry group associated to the form q; that is, the set of real n×n
matrices A such that q(Ax) = q(x) for all x ∈ Rn.

Exercise 5.9. Describe the isometry groups of the quadratic forms q(x1, x2) = x21 + x22 and
q′(x1, x2) = x21 − x22 on R2.

5.3. Spectral theory and functional calculus. Let V be a finite-dimensional vector space
and T : V → V a linear operator. Then the spectrum of T , denoted σ(T ), is the set of
eigenvalues of T . The open set C \ σ(T ) is called the resolvent set of T .

Exercise 5.10. Prove that λ ∈ C is in the resolvent set if and only if λI − T is invertible.
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We often work with functions of matrices in the sense that we consider expressions T 2;
but what should we make of an expression like

√
T? A moment’s thought suggests that

√
T

should be a matrix A such that A2 = T . When does such a matrix exist? Can we make sense
of f(T ) for other functions f : C→ C? This is the motivation behind the functional calculus,
which uses the spectrum of T to provide an answer in certain cases.

As a first example, observe that if T =
(
4 0
0 9

)
, then σ(T ) = {2, 3} and the matrix A =

(
2 0
0 3

)
has A2 = T , so it seems reasonable to write A =

√
T . Moreover, A is just the diagonal

matrix we obtain by applying the square root function to each of the eigenvalues (points of
the spectrum) of T , which lay on the diagonal of T . This suggests that the spectrum should
play a role in a more general theory.

Suppose that Ω ⊂ C is an open set containing σ(T ), and that f : Ω → C is holomorphic
(differentiable as a complex function). Let γ be a simple closed curve in Ω, and z ∈ Ω a point
such that γ winds once around z in the counterclockwise direction. Then the Cauchy integral
formula from complex analysis says that

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ.

The utility of this formula for our purposes is that if ζ is in the resolvent set of T , then we
can replace z by T in the integrand and obtain the meaningful expression f(ζ)(ζI − T )−1

(see Exercise 5.10). Thus if γ wraps once around the spectrum σ(T ), then we can define

(5.7) f(T ) =
1

2πi

∫
γ
f(ζ)(ζI − T )−1 dζ.

An important property of this definition is that when f(z) =
∑n

j=0 cjz
j is a polynomial, the

definition via (5.7) agrees with the natural definition f(T ) =
∑n

j=0 cjz
j . Moreover, if f, g

are suitable functions, then f(T )g(T ) = (f · g)(T ), where we note that ‘multiplication’ on
the left-hand side is composition of operators, while on the right-hand side it is pointwise
multiplication of functions.

There is a corresponding theory in infinite dimensions, though we will not go into it here.
The starting point is to take a Banach space X and a bounded linear operator T on X, then
to define the spectrum σ(T ) by first defining its complement, the resolvent set, following
Exercise 5.10: we define

R(T ) = {z ∈ C : zI − T has a bounded inverse}.
Then the spectrum is σ(T ) = C \R(T ). Note that σ(T ) may be composed of more than just
the eigenvalues of T , since it is possible that zI − T is bijective but that its inverse is not
bounded, or that zI − T is injective (hence has no eigenvalues) but not surjective.

Exercise 5.11. Consider the Hilbert space `2 = {(x1, x2, . . . ) :
∑

k |xk|2 <∞} with the inner
product 〈x, y〉 =

∑
k xkyk. Define the right shift operator R : `2 → `2 by R(x1, x2, . . . ) =

(0, x1, x2, . . . ). Prove that R is bounded, has no eigenvalues, and that σ(R) 6= ∅. What is
σ(R)?

6. A crash course in Lie groups

6.1. Matrix Lie groups and basic examples. Abstractly, a Lie group is a smooth mani-
fold that also has a binary operation making it a group, such that multiplication and inversion
are both smooth maps. For our purposes it will be enough to think of Lie groups concretely,
as follows: A real (matrix) Lie group is a subgroup of GL(n,R) that is closed in the topology
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induced by the operator norm. In other words, a Lie group is a subset G ⊂ GL(n,R) such
that

(1) G is a subgroup, so AB−1 ∈ G whenever A,B ∈ G;
(2) G is closed, so if An ∈ G for all n and limAn = A ∈ GL(n,R), then A ∈ G.

We already saw the example of SL(n,R) = {A ∈ GL(n,R) : detA = 1}. This is a subgroup
because it is the kernel of homomorphism A 7→ detA. It is closed because the map A 7→ detA
is continuous, and so the preimage of the closed set {1} is closed.

Another important example is the set of invertible diagonal matrices

Dn = {A ∈ GL(n,R) : Aij = 0 for all i 6= j}.

Let D+
n = {A ∈ Dn : Aii > 0 for all i}.

Exercise 6.1. Prove that D+
n is a Lie group and that it is isomorphic to the additive abelian

group Rn. Then prove that D+
n ∩ SL(n,R) is a Lie group that is isomorphic to Rn−1.

A matrix A is orthogonal if AAT = I; equivalently, the rows and columns of A both form
orthonormal bases for Rn.

Exercise 6.2. Show that the orthogonal group O(n) = {A ∈ GL(n,R) : A is orthogonal} is
a Lie group, as is SO(n) = O(n) ∩ SL(n,R).

From Exercise 6.1, we know that R can be realized as a Lie group in two different ways: it
is isomorphic to D+

1 = {
(
ex
)

: x ∈ R} and also to D+
2 ∩SL(2,R) = {

(
ex 0
0 e−x

)
: x ∈ R}. Here

is another way to obtain R as a Lie subgroup of SL(2,R): consider

U2 =
{(

1 x
0 1

)
: x ∈ R

}
.

Exercise 6.3. Show that U2 is a Lie group and that the map ϕ : R→ U2 given by ϕ(x) =
(
1 x
0 1

)
is an isomorphism.

This last example has an important generalization: let U3 ⊂ SL(3,R) be the set of all 3×3
matrices of the form

(6.1)

1 x y
0 1 z
0 0 1

 .

We refer to U3 as the Heisenberg group.

Exercise 6.4. Verify that U3 is a Lie group.

Note that O(n) and SO(n) are compact Lie groups, while SL(n,R), Rn, and U3(R) are
non-compact. We conclude this section by mentioning one non-example.

Exercise 6.5. Let α be irrational and consider the set G of all 4× 4 matrices of the form
cos t sin t 0 0
− sin t cos t 0 0

0 0 cosαt sinαt
0 0 − sinαt cosαt


for some t ∈ R. Show that G is a subgroup of SL(4,R) but that it is not closed.
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6.2. Lattices and quotients. Earlier we described the n-dimensional torus Tn as the quo-
tient of Rn by the integer lattice Zn. A similar process works in other Lie groups. For
example, let U3(Z) be the set of all matrices in U3 = U3(R) such that the entries x, y, z in
(6.1) all take integer values.

Exercise 6.6. Show that U3(Z) is a subgroup of U3(R).

To obtain the torus, we used the lattice Zn to put an equivalence relation ∼ on Rn; points
on the torus Tn = Rn/Zn are identified with equivalence classes of ∼. We can use U3(Z) to
define an equivalence relation on U3(R) in an analogous manner: given A,B ∈ U3(R), say
that A ∼ B if there is a matrix C ∈ U3(Z) such that AC = B.

Exercise 6.7. Give necessary and sufficient conditions on x, y, z and x′, y′, z′ in order to
have 1 x y

0 1 z
0 0 1

 ∼
1 x′ y′

0 1 z′

0 0 1

 .

Warning: the correct answer is not “x− x′ ∈ Z, y − y′ ∈ Z, z − z′ ∈ Z”.

Each equivalence class under ∼ is a subset of U3(R) – in fact, a left coset of the subgroup
U3(Z) ⊂ U3(R) – and the set of equivalence classes is the quotient space U3(R)/U3(Z). As on
the torus, we can define a metric on the quotient space by

d([A], [B]) = min
C∈U3(Z)

‖AC −B‖,

where [A] = AU3(Z) = {AC : C ∈ U3(Z)} is the equivalence class of A. This makes
U3(R)/U3(Z) into a metric space; in fact, it is also a smooth manifold, just as with the torus.
(This is an example of what is called a nilmanifold, since the group U3(R) is nilpotent).

Exercise 6.8. Let F ⊂ U3(R) be the set of matrices as in (6.1) such that x, y, z ∈ [0, 1]. Show
that F is a fundamental domain in the sense that the sets {FC : C ∈ U3(Z)} cover U3(R) and
overlap only along their boundaries. Conclude that the quotient space U3(R)/U3(Z) can also
be described by starting with the unit cube and making appropriate identifications of pairs of
faces (or subsets of faces); describe these identifications.

Rather than giving the precise general definition of “lattice”, we simply remark that in both
the previous examples, we were taking a quotient of a Lie group G by a subgroup Γ that was
discrete in the sense that there is no element g ∈ Γ that is the limit of a sequence gn ∈ Γ\{g}.
Another extremely important example of a lattice is the subgroup SL(n,Z) ⊂ SL(n,R), and
we can once again consider the quotient space SL(n,R)/SL(n,Z) whose elements are the left
cosets of SL(n,Z) in SL(n,R).

One difference between this last example and the previous two is that with Rn/Zn and
U3(R)/U3(Z), the quotient space is compact, while SL(n,R)/SL(n,Z) is not compact for
n ≥ 2. To see that the first two are compact, observe that in both cases, the unit cube is a
compact set that contains a representative of every coset. We say that Zn is cocompact in
Rn, and U3(Z) is cocompact in U3(R).

Exercise 6.9. Prove that SL(n,R)/SL(n,Z) has infinite diameter in the quotient metric
and hence is not compact. Hint: show that d([A], [I]) = inf{‖A − C‖ : C ∈ SL(n,Z)} is
unbounded by considering the matrices

(
ex 0
0 e−x

)
.
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6.3. Group actions. When n = 2, the example SL(2,R)/SL(2,Z) admits a nice visualiza-
tion if we work in the hyperbolic plane H2. First recall that in the upper half-plane model,
isometries of H(2) can be encoded by elements of SL(2,R), where the matrix A =

(
a b
c d

)
rep-

resents the fractional linear transformation ϕA : z 7→ az+b
cz+d . In fact, as Exercise 2.11 showed,

we have ϕAB = ϕA ◦ ϕB.
This extra structure deserves a name: given a setX, write Bij(X) for the set of all bijections

ϕ : X → X, which is a group under composition. An action of a group G on the space X is a
homomorphism G→ Bij(X); that is, a rule that assigns to each g ∈ G a bijection ϕg : X → X
with the property that

(6.2) ϕgh = ϕg ◦ ϕh.
In this case we often write ϕg(x) = g.x (or just ϕg(x) = gx) so (6.2) becomes (gh).x = g.(h.x).
Technically speaking this is a left action; a right action satisfies ϕgh = ϕh ◦ ϕg and is often
written ϕg(x) = x.g so that x.(gh) = (x.g).h.

Usually we are interested not in arbitrary bijections, but in bijections preserving a partic-
ular structure; for example, if ϕg is an isometry of X for every g ∈ G, then we say “G acts
on X by isometries”. With SL(2,R) and H2, we say that SL(2,R) acts on H2 by fractional
linear transformations. (In fact, these are isometries of H2.)

Recall also from Exercise 2.11 that ϕA = ϕ−A. So the group of fractional linear transfor-
mations is not actually SL(2,R), but the quotient group PSL(2,R) = SL(2,R)/{±I}, where
each element of PSL(2,R) is a coset {A,−A} for some A ∈ SL(2,R).

The subgroup PSL(2,Z) = SL(2,Z)/{±I} inherits this action on H2, and thus it places
an equivalence relation on H2 by saying that x ∼ y if and only if there is A ∈ PSL(2,Z) such
that ϕA(x) = y. The equivalence classes are thus the orbits of the PSL(2,Z) action; subsets
of H2 of the form [x] = {ϕA(x) : A ∈ PSL(2,Z)}. Figure 6 shows a fundamental domain for
this action: the dark area bounded on the sides by the vertical lines Re(z) = ±1

2 and on the
bottom by the unit circle |z| = 1. Also shown are the images of this fundamental domain
under the action of various products of T =

(
1 1
0 1

)
and A =

(
0 1
−1 0

)
∈ PSL(2,Z), which act

by the fractional linear transformations ϕT (z) = z + 1 and ϕA(z) = −1
z . (It can be shown

that A and T generate SL(2,Z), but we omit this here.)

Id TT−1

A TAT−1A

AT−1
T−1AT−1 TAT−1ATT−1AT TAT

i

0 1
2

1
3

2
3

1

Figure 6. Tiling H2 under the action of PSL(2,Z).

One can take the quotient of H2 by the action of the modular group PSL(2,Z) to obtain
the modular surface. A point on the modular surface is an orbit of PSL(2,Z); that is, a
subset of H2 of the form [z] = {ϕA(z) : A ∈ PSL(2,Z)}. Equivalently, one can view the
modular surface as the fundamental domain from Figure 6 with vertical edges identified by
ϕT and bottom edges (the two arcs to the left and right of i) identified by ϕA. It is worth
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noticing that when we do this, there are two cone points corresponding to i and eiπ/3; the
total angle around i is π, and the total angle around eiπ/3 is 2π

3 , instead of 2π. Thus the
modular surface is an example of an orbifold, rather than a manifold.

Note that our construction of the surface of genus 2 as a quotient space of H2 following
Exercise 2.11 is of the same type as the modular surface construction just described here. In
that case the group acting on H2 is not the modular group, but rather the group generated
by the isometries that perform the prescribed edge identifications; this group turns out to
be the fundamental group of the surface of genus 2, but as we do not discuss fundamental
groups here, we set this aside for now.

6.4. Haar measure. Earlier, we defined Lebesgue measure µ on each Euclidean space Rn.
This measure has the property of being translation-invariant : given E ⊂ Rn and x ∈ Rn,
we have µ(E + x) = µ(E). This condition gives some compatibility between the measure-
theoretic structure on Rn provided by µ and the algebraic structure on Rn provided by
addition. Moreover, Lebesgue measure turns out to be uniquely specified (up to a constant)
by this condition: if ν is any translation-invariant measure on Rn, then there is c > 0 such
that ν(E) = cµ(E) for all E.

There is a similar algebraically-significant measure on every Lie group.8 That is, there is
a measure µ on G that is9

(1) left-invariant : µ(gE) = µ(E) for all g ∈ G and E ⊂ G, where gE = {gh : h ∈ E};
(2) finite on compact sets: µ(K) <∞ for all compact K ⊂ G.

The measure µ is called (left) Haar measure on G. For G = R, Haar measure is just Lebesgue
measure (up to a scaling constant). To see how to construct Haar measure on more general
groups, recall that to determine the Lie measure of a set E we covered E by smaller and
smaller ‘rectangles’ whose measure was determined in a natural way. The key property that
gave us translation-invariance in that setting was that two rectangles obtained from each
other by translation had the same measure; thus in particular one could imagine computing
the Lebesgue measure of a set E by taking a very small rectangle R, counting how many
copies of R it takes to cover E, dividing that number by the number of copies of R it takes
to cover a set of known volume, and then taking a limit as the size of R decreases to 0.

Warning: the construction in the previous paragraph is rather loosely defined and trying
to make it work out precisely involves some technicalities that we will not get into, since it
really defines an object called a content from which we must then construct the measure
itself. Thus you should take it rather as a general intuitive guide to motivate the following
paragraph.

To carry out the same procedure for a general matrix Lie group, we can fix a compact set
K with non-empty interior (think of a closed ball around the origin), and then consider a
small open set U that contains the identity; write nU (K) for the number of translates of U
that it takes to cover K, so

nU (K) = min
{
n ∈ N : there are g1, . . . , gn ∈ G such that K ⊂

n⋃
j=1

gjU
}
.

Then given a set E ⊂ G, one may consider the ratio nU (E)/nU (K) as somehow measuring
the size of E, and then define µK(E) = limi→∞ nUi(E)/nUi(K), where diamUi → 0 and

8As always, “Lie group” in this document means “matrix Lie group”; the general setting for the following
construction is a “locally compact topological group”.

9There are also some regularity conditions on the measure, but we ignore these technicalities.
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we choose Ui such that the limit exists; one must invoke some machinery to produce such
a sequence Ui, and then to produce the Haar measure µ from µK , but these are relatively
standard arguments in topology and measure theory, which we omit here.

6.5. Lie algebras. Our main examples of Lie groups up to this point are Rn ∼= D+
n , SL(n,R),

SO(n), and U3(R). The last of these, the Heisenberg group U3(R), naturally contains 3
“curves” – continuous one-parameter families of matrices – given by

(6.3) A1(t) =

1 t 0
0 1 0
0 0 1

 , A2(t) =

1 0 0
0 1 t
0 0 1

 , A3(t) =

1 0 t
0 1 0
0 0 1

 .

Exercise 6.10. Show that for each i ∈ {1, 2, 3} and s, t ∈ R we have Ai(s)Ai(t) = Ai(s+ t).

Exercise 6.11. Show that every X ∈ U3(R) can be written as X = A1(x)A2(y)A3(z) for
some x, y, z ∈ R.

From Exercise 6.10 we see that Ai : R → U3(R) is a homomorphism. It is natural to ask
if our other examples, such as SL(n,R) and SO(n), contain homomorphic images of R. We
see relatively quickly that D+

2 contains the following:

(6.4) B1(t) =

(
et 0
0 1

)
, B2(t) =

(
1 0
0 et

)
.

This suggests that exponentials might have something to do with a general answer.

6.5.1. Matrix exponentials. To define the exponential of a matrix A, we recall that for x ∈ R,
the Taylor series of ex around 0 gives

ex =

∞∑
n=0

xn

n!
.

Thus one might hope to define the exponential of a matrix by

eA =

∞∑
n=0

An

n!
= I +A+

1

2
A2 +

1

3!
A3 + · · · .

One can show that this series converges for every A ∈M(n,R).

Exercise 6.12. Let Eij denote the matrix with a ‘1’ in the i, jth position and all other entries
equal to 0. Show that the matrices Ai, Bi from (6.3) and (6.4) satisfy

A1(t) = etE12 , A2(t) = etE23 , A3(t) = etE13 , B1(t) = etE11 , B2(t) = etE22 .

Show more generally that if A =
(
x 0
0 y

)
, then eA =

(
ex 0
0 ey

)
.

We conclude from the last part of the exercise that every matrix X ∈ D+
2 is of the form

X = eA for some A ∈ D2, the set of diagonal 2×2 matrices. Notice that D2 is a vector space
inside M(2,R), so we obtain a subgroup of GL(n,R) as the image of a subspace of M(2,R)
under the exponential map.

Can we do the same thing for U3(R)? Exercise 6.12 suggests that we should start by letting
N3 denote the set of all 3× 3 matrices of the form

xE12 + yE23 + zE13 =

0 x z
0 0 y
0 0 0

 .
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It would be natural at this point to argue that “By Exercises 6.11 and 6.12, every X ∈ U3(R)
can be written as A1(x)A2(y)A3(z) = exE12eyE23ezE13 = exE12+yE23+zE13 for some x, y, z, and
hence every X ∈ U3(R) is of the form X = eA for some A ∈ N3.” This argument is wrong.
The problem is in the second equals sign: while the exponential function for real numbers
has the property that exey = ex+y, this is no longer true for general matrices.

Exercise 6.13. Find a pair of matrices A,B ∈M(2,R) such that eAeB 6= eA+B.

6.5.2. Lie brackets. Despite the failure of the naive approach to multiplying matrix exponen-
tials, the conjecture that every X ∈ U3(R) is of the form X = eA for some A ∈ N3 is in fact
true. To prove it, we need to express eAeB as eC for some C that is given in terms of A and
B.

Exercise 6.14. Prove that if A,B commute then eAeB = eA+B.

Since matrices in N3 may not commute, we must dig deeper.

Exercise 6.15. Prove that given any A,B ∈ N3, we have eAeB = eA+B+ 1
2
(AB−BA).

The key to the exercise is the observation that E12, E23, E13 span N3, and the only non-
commuting pair among these is E12, E23, for which we have E12E23 − E23E12 = E13. This
also means that AB−BA ∈ N3 whenever A,B ∈ N3, and we conclude that every X ∈ U3(R)
is of the form X = eA for some A ∈ N3.

What about our other examples, SL(n,R) and SO(n)? Can they be written as eV for
some subspace V ⊂ M(n,R)? In light of Exercise 6.15, the commutator [A,B] := AB −BA
of two matrices A,B ∈M(n,R) would seem to play an important role; in particular, it seems
useful to require that V contains [A,B] whenever it contains A and B. A linear subspace of
M(n,R) satisfying this property is called a Lie algebra, and the commutator [A,B] is often
called the Lie bracket of A and B.

As with Lie groups, this is really just a concrete case of a general definition: a Lie algebra
is a vector space V equipped with a binary operation [·, ·] : V × V → V that satisfies a list of
axioms mimicking the properties of the matrix commutator.

Returning to the question of finding a Lie group as the image of a Lie algebra under the
exponential map, one might hope that Exercise 6.15 holds in general. But it doesn’t.

Exercise 6.16. Find matrices A,B such that eAeB 6= eA+B+ 1
2
[A,B].

Nevertheless, we have the following theorem (whose proof we omit).

Theorem 6.17 (Baker–Campbell–Hausdorff). If V is a Lie algebra, then for every A,B ∈ V
there is C = C(A,B) ∈ V such that eAeB = eC .

In fact one can write an explicit formula for C(A,B) that depends only on A, B, and
iterated commutators (which must all lie in V by the definition of Lie algebra), but the form
of this expression is not important for us here. The important thing is that given a connected
Lie group such as SL(n,R) or SO(n), there is a Lie algebra V such that the Lie group is the
set of all matrices of the form eA for some A ∈ V .

Exercise 6.18. Show that det(eA) = eTrA, and deduce that the Lie algebra for SL(n,R) is
the set of all n×n matrices with trace equal to 0. (This Lie algebra is often written sl(n,R).)

Exercise 6.19. Show that so(n), the Lie algebra of SO(n), is the set of all skew-symmetric
n× n matrices.
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