2019 Houston Summer School on Dynamical Systems

Problem set: Basics of Ergodic Theory

1. Let T be a continuous transformation on a compact metric space X. Prove that any two distinct measures in $\mathcal{E}^T(X)$ are mutually singular.

2. Let $n \in \mathbb{N}$ and let X be the topological space with n elements, taken with the discrete topology. Any permutation $\sigma \in S_n$ is then a continuous map from X to itself. Describe, in terms of σ , the space $\mathcal{M}^{\sigma}(X)$ and the subset $\mathcal{E}^{\sigma}(X)$.

3. Define the doubling map $T(x) = 2x \mod 1$ on the unit interval with the Borel σ -algebra and Lebesgue measure.

(a) Show that T preserves Lebesgue measure.

(b) Show that T is isomorphic to the full one-sided shift on 2 symbols with the corresponding Borel σ -algebra and Bernoulli measure with $p_1 = p_2 = 1/2$.

4. Let X = [0,1) and let $T: X \to X$ be the doubling map, defined above. Find a sequence $\{\mu_n\}_{n\in\mathbb{N}}$ of distinct elements of $\mathcal{E}^T(X)$ which converges in the weak-* topology to Lebesgue measure on X.

5. Let X be a compact metric space and $T: X \to X$ a continuous map. Prove that, for any $f \in C(X)$ and for any $x \in X$,

$$\inf_{\mu \in \mathcal{E}^T(X)} \int f \ \mathrm{d}\mu \ \leq \ \liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x).$$

6. Give an example of a compact metric space X and a continuous map $T: X \to X$, for which the set $\mathcal{E}^T(X)$ is not a closed subset of $\mathcal{M}^T(X)$.