Quantum Walks - Fillman

PROBLEMS

Some hints are on the last page. Try to solve problems without looking at hints first. Some notation: $\ell^2(\mathbb{Z})$ denotes the space of functions $f:\mathbb{Z}\to\mathbb{C}$ such that $\sum_n |f(n)|^2 < \infty$. The standard basis of $\ell^2(\mathbb{Z})$ is denoted by $\{\delta_n\}_{n\in\mathbb{Z}}$ and is defined by

$$\delta_n(m) = \begin{cases} 1 & n = m \\ 0 & n \neq m. \end{cases}$$

We will denote the standard basis of \mathbb{C}^2 by

$$e_+ = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_- = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

- (1) Let
 - $\mathcal{H}_{1} = \ell^{2}(\mathbb{Z}) \otimes \mathbb{C}^{2}$ $\mathcal{H}_{2} = \ell^{2}(\mathbb{Z}, \mathbb{C}^{2}) := \left\{ f : f \text{ is a function from } \mathbb{Z} \text{ to } \mathbb{C}^{2} \text{ such that } \sum_{n \in \mathbb{Z}} \|f(n)\|^{2} < \infty \right\}$ $\mathcal{H}_{3} = \ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z})$ $\mathcal{H}_{4} = \ell^{2}(\mathbb{Z} \times \mathbb{Z}_{2}).$

Show that $\mathcal{H}_1 \cong \mathcal{H}_2 \cong \mathcal{H}_3 \cong \mathcal{H}_4$ by constructing explicit unitary isomorphisms between them

(2) Given a sequence of 2×2 unitary matrices

$$Q_n = \begin{bmatrix} q_n^{11} & q_n^{12} \\ q_n^{21} & q_n^{22} \end{bmatrix} \in \mathbb{U}(2, \mathbb{C}),$$

define operators on $\ell^2(\mathbb{Z})\otimes \mathbb{C}^2$ by

$$S\delta_n \otimes e_{\pm} = \delta_{n\pm 1} \otimes e_{\pm}$$
$$Q\delta_n \otimes e_{+} = q_n^{11}\delta_n \otimes e_{+} + q_n^{21}\delta_n \otimes e_{-}$$
$$Q\delta_n \otimes e_{-} = q_n^{12}\delta_n \otimes e_{+} + q_n^{22}\delta_n \otimes e_{-}$$
$$W = SQ.$$

Show that S, Q, and W are unitary.

- (3) (Portions of the unitary RAGE theorem) Let U be a unitary operator on $\ell^2(\mathbb{Z}), \psi \in \ell^2(\mathbb{Z})$, and $\mu = \mu_{U,\psi}$ the associated spectral measure.
 - (a) If $\mu = \mu_{\rm pp}$ show that: for every $\varepsilon > 0$, there exists $L \in \mathbb{N}$ such that

$$\limsup_{n \to \infty} \sum_{|j| \ge L} |\langle \delta_j, U^n \psi \rangle|^2 \le \varepsilon$$

Explain why one could refer to this statement as "dynamical localization." (b) If $\mu = \mu_{ac}$, show that: for every $L \in \mathbb{N}$,

$$\lim_{n \to \infty} \sum_{|j| \leq L} |\langle \delta_j, U^n \psi \rangle|^2 = 0.$$

Why is this a statement of "dynamical delocalization"?

(4) With notation as in Exercise (2), suppose there is a bi-infinite sequence $\dots n_{-1} < n_0 < n_1 < \dots$ such that

$$q_{n_j}^{11} = q_{n_j}^{22} = 0$$
 for every $j \in \mathbb{Z}$.

First, what does this imply about $q_{n_j}^{12}$ and $q_{n_j}^{21}$? Discuss the structure of W. What can you say about the spectrum and spectral type of W? What can you say about the dynamics (behavior of W^{ℓ} as $\ell \to \infty$?)

(5) With notation as in Exercise (2), suppose φ is a vector with $W\varphi = z\varphi$ for a scalar $z \in \mathbb{C}$. Expanding φ in the standard basis of $\ell^2(\mathbb{Z}) \otimes \mathbb{C}^2$, we may write

$$\varphi = \sum_{n \in \mathbb{Z}} \varphi_n^+ \delta_n \otimes e_+ + \varphi_n^- \delta_n \otimes e_-.$$

Show that there are 2×2 matrices $T_n = T_n(W, z)$ such that

$$\begin{bmatrix} \varphi_{n+1}^+ \\ \varphi_n^- \end{bmatrix} = T_n \begin{bmatrix} \varphi_n^+ \\ \varphi_{n-1}^- \end{bmatrix}.$$

(6) Suppose U is a unitary operator on a Hilbert space \mathcal{H} and that $\varphi, \psi \in \mathcal{H}$. Show that

$$\sum_{\ell=0}^{\infty} e^{-2\ell/L} |\langle \varphi, U^{\ell}\psi \rangle|^2 = e^{2/L} \int_0^{2\pi} \left| \langle \varphi, (e^{i\theta + L^{-1}} - U)^{-1}\psi \rangle \right|^2 \frac{d\theta}{2\pi}$$

What is the significance of this equality from the dynamical point of view?

- (7) Suppose W is a quantum walk with periodic coins, that is, there is $p \in \mathbb{N}$ such that $Q_{n+p} = Q_n$ for all n. Let $\alpha = (\alpha_n)_{n \in \mathbb{Z}}$ be the Verblunsky coefficients of the associated CMV matrix. Show that α is periodic modulo a phase. That is, show that there is some $\theta \in \mathbb{R}$ and $q \in \mathbb{N}$ such that $\alpha_{n+q} = e^{i\theta}\alpha_n$ for all n.
- (8) Let \mathcal{E} be an extended CMV matrix with Verblunsky coefficients $\alpha = (\alpha_n)_{n \in \mathbb{Z}}$. The sieved matrix $\widetilde{\mathcal{E}}$ is the CMV matrix with coefficients $\widetilde{\alpha}$ defined by

$$\widetilde{\alpha}_{2n} = \alpha_n, \quad \widetilde{\alpha}_{2n+1} = 0, \ n \in \mathbb{Z}.$$

- (a) Show that $\widetilde{\mathcal{E}}^2 \cong \mathcal{E} \oplus \mathcal{E}^{\top}$. To do this, you should find two natural invariant subspaces A and B of $\widetilde{\mathcal{E}}^2$ and show that $\widetilde{\mathcal{E}}^2|_A \cong \mathcal{E}$ and $\widetilde{\mathcal{E}}^2|_B \cong \mathcal{E}^{\top}$.
- (b) What does this tell you about the relationship between $\sigma(\mathcal{E})$ and $\sigma(\mathcal{E})$?
- (9) Let $(A_n)_{n=1}^{\infty}$ denote a sequence of $\mathbb{SL}(2,\mathbb{C})$ matrices obeying the recursion

$$A_{n+1} = A_{n-1}A_n, \quad n \ge 2.$$

Denoting $x_n = tr(A_n)$, show that $x_{n+1} = x_n x_{n-1} - x_{n-2}$ for all $n \ge 3$.

PROBLEMS

Hints.

Quantum Walks - Fillman

- (1) Try identifying suitable orthonormal bases for each space.
- (2) Polarization
- (3) (a) First, handle the case when ψ is a linear combination of eigenfunctions of U.

(b) Cauchy–Schwarz, Riemann–Lebesgue

- (4) As a warm-up, try the case when $\{n_j\} = \mathbb{Z}$, i.e., $q_n^{11} = q_n^{22} = 0$ for every $n \in \mathbb{Z}$.
- (5) The equation $W\varphi = z\varphi$ is an equality of vectors. Write out the components.
- (6) Parseval.
- (7) How does periodicity of Q affect the λ 's in the gauge transform?
- (8) (a) Calculate $\tilde{\mathcal{E}}^2 \delta_{4n}$, $\tilde{\mathcal{E}}^2 \delta_{4n+1}$, $\tilde{\mathcal{E}}^2 \delta_{4n+2}$, and $\tilde{\mathcal{E}}^2 \delta_{4n+3}$ for general $n \in \mathbb{Z}$. This should be enough to identify some invariant subspaces.
 - (b) Spectral mapping theorem
- (9) Cayley–Hamilton.