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If f:]0,1] — [0,1] is a mapping and A a real number, denote \- f by fy and the set of
all A for which there is an fy-invariant measure on [0, 1] which is absolutely continuous
with respect to dx by M. In the first paper for f = xz(z — 1) proofs of the following facts
are sketched: (1) The Lebesgue measure of My is positive, and 4 is a Lebesgue point
of My in the sense that for sufficiently small § > 0 the quotient of § and the measure
of My N[4—0,4] approaches 1. (2) For each € > 0 there is a positive K such that for
K > K the Lebesgue measure of My N[K, K +4] is at least 4 — . In the second paper
the following stronger results with the main idea of a proof are announced: (3) If f is
of class C3, satisfies f(0) = f(1) =0, f’(0) # 0, and has only a finite number of critical
points each of which is nondegenerate, then there is a number Tj such that for each ¢ >
0 there is a number Ky with the following property: If K > K, then the measure of
M;N[K, K+ T is at least Ty —e. (4) For f = x(z — 1) the family f) (0 <A <4) has a
C3 neighborhood U in the space of all C*® families [0,4] — C3([0, 1], [0, 1]) such that for
each g\ € U the set {); [0, 1] has a gj-invariant measure which is absolutely continuous
with respect to dz} has positive Lebesgue measure. These results confirm a conjecture

of Ruelle and Sinai.
{For the entire collection in which the first paper appears see MR0591170 (81j:58002).}
Hans G. Bothe
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