

MR591187 (82a:58038a) 58F13 28D05 92A17 Jakobson, M. V. [Yakobson, M. V.]

Construction of invariant measures absolutely continuous with respect to dx for some maps of the interval.

Global theory of dynamical systems (Proc. Internat. Conf.,	Citations
Evanston, Ill., 1979), pp. 246–257, Lecture Notes in Math.,	819mSpringer_Berlin, 1980.
	From Reviews: 1

MR586212 (82a:58038b) 58F13 28D05 92A15 Jakobson, M. V. [Yakobson, M. V.]

Invariant measures that are absolutely continuous with respect to dx for one-parameter families of one-dimensional mappings. (Russian) Uspekhi Mat. Nauk 35 (1980), no. 4(214), 215–216.

If $f:[0,1] \to [0,1]$ is a mapping and λ a real number, denote $\lambda \cdot f$ by f_{λ} and the set of all λ for which there is an f_{λ} -invariant measure on [0, 1] which is absolutely continuous with respect to dx by M_f . In the first paper for f = x(x-1) proofs of the following facts are sketched: (1) The Lebesgue measure of M_f is positive, and 4 is a Lebesgue point of M_f in the sense that for sufficiently small $\delta > 0$ the quotient of δ and the measure of $M_f \cap [4-\delta,4]$ approaches 1. (2) For each $\varepsilon > 0$ there is a positive K_0 such that for $K \geq K_0$ the Lebesgue measure of $M_f \cap [K, K+4]$ is at least $4 - \varepsilon$. In the second paper the following stronger results with the main idea of a proof are announced: (3) If f is of class C^3 , satisfies f(0) = f(1) = 0, $f'(0) \neq 0$, and has only a finite number of critical points each of which is nondegenerate, then there is a number T_0 such that for each $\varepsilon >$ 0 there is a number K_0 with the following property: If $K \ge K_0$, then the measure of $M_f \cap [K, K+T_0]$ is at least $T_0 - \varepsilon$. (4) For f = x(x-1) the family f_λ ($0 \le \lambda \le 4$) has a C^3 neighborhood U in the space of all C^3 families $[0,4] \rightarrow C^3([0,1],[0,1])$ such that for each $q_{\lambda} \in U$ the set { λ ; [0, 1] has a q_{λ} -invariant measure which is absolutely continuous with respect to dx has positive Lebesgue measure. These results confirm a conjecture of Ruelle and Sinaĭ.

{For the entire collection in which the first paper appears see MR0591170 (81j:58002).} Hans G. Bothe

© Copyright American Mathematical Society 1982, 2015