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Sequences: Convergence and Divergence

In Section 2.1, we consider (infinite) sequences, limits of sequences, and
bounded and monotonic sequences of real numbers. In addition to certain
basic properties of convergent sequences, we also study divergent sequences
and in particular, sequences that tend to positive or negative infinity. We
present a number of methods to discuss convergent sequences together with
techniques for calculating their limits. Also, we prove the bounded monotone
convergence theorem (BMCT), which asserts that every bounded monotone
sequence is convergent. In Section 2.2, we define the limit superior and the
limit inferior. We continue the discussion with Cauchy sequences and give ex-
amples of sequences of rational numbers converging to irrational numbers. As
applications, a number of examples and exercises are presented.

2.1 Sequences and Their Limits

An infinite (real) sequence (more briefly, a sequence) is a nonterminating
collection of (real) numbers consisting of a first number, a second number,
a third number, and so on:

a1, a2, a3, . . . .

Specifically, if n is a positive integer, then an is called the nth term of the
sequence, and the sequence is denoted by

{a1, a2, . . . , an, . . .} or, more simply, {an} .
For example, the expression {2n} denotes the sequence 2, 4, 6, . . .. Thus, a
sequence of real numbers is a special kind of function, one whose domain is
the set of all positive integers or possibly a set of the form {n : n ≥ k} for
some fixed k ∈ Z, and the range is a subset of R. Let us now make this point
precise.

Definition 2.1. A real sequence {an} is a real-valued function f defined on
a set {k, k + 1, k + 2, . . .}. The functional values
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24 2 Sequences: Convergence and Divergence

f(k), f(k + 1), f(k + 2), . . .

are called the terms of the sequence. It is customary to write f(n) = an for
n ≥ k, so that we can denote the sequence by listing its terms in order; thus
we write a sequence as

{an}n≥k or {an+k−1}∞n=1 or {an}∞n=k or {ak, ak+1, . . .}.

The number an is called the general term of the sequence {an} (nth term,
especially for k = 1). The set {an : n ≥ k} is called the range of the sequence
{an}n≥k. Sequences most often begin with n = 0 or n = 1, in which case
the sequence is a function whose domain is the set of nonnegative integers
(respectively positive integers). Simple examples of sequences are the se-
quences of positive integers, i.e., the sequence {an} for which an = n for
n ≥ 1, {1/n}, {(−1)n}, {(−1)n + 1/n}, and the constant sequences for which
an = c for all n. The Fibonacci sequence is given by

a0, a1 = 1, a2 = 2, an = an−1 + an−2 for n ≥ 3.

The terms of this Fibonacci sequence are called Fibonacci numbers , and the
first few terms are

1, 1, 2, 3, 5, 8, 13, 21.

2.1.1 Limits of Sequences of Real Numbers

A fundamental question about a sequence {an} concerns the behavior of its
nth term an as n gets larger and larger. For example, consider the sequence
whose general term is

an =
n+ 1

n
= 1 +

1

n
.

It appears that the terms of this sequence are getting closer and closer to the
number 1. In general, if the terms of a sequence can be made as close as we
please to a number a for n sufficiently large, then we say that the sequence
converges to a. Here is a precise definition that describes the behavior of a
sequence.

Definition 2.2 (Limit of a sequence). Let {an} be a sequence of real num-
bers. We say that the sequence {an} converges to the real number a, or tends
to a, and we write

a = lim
n→∞ an or simply a = lim an,

if for every ε > 0, there is an integer N such that

|an − a| < ε whenever n ≥ N.
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In this case, we call the number a a limit of the sequence {an}. We say that
the sequence {an} converges (or is convergent or has limit) if it converges to
some number a. A sequence diverges (or is divergent) if it does not converge
to any number.

For instance, in our example above we would expect

lim
n→∞

n+ 1

n
= 1.

The notions of convergence and limit of a sequence play a fundamental role
in analysis.

If a ∈ R, other notations for the convergence of {an} to a are

lim
n→∞(an − a) = 0 and an → a as n → ∞.

The notation a = lim an means that eventually the terms of the sequence {an}
can be made as close to a as may be desired by taking n sufficiently large.
Note also that

|an − a| < ε for n ≥ N ⇐⇒ an ∈ (a− ε, a+ ε) for n ≥ N.

That is, a sequence {an} converges to a if and only if every neighborhood of a
contains all but a finite number of terms of the sequence. Since N depends on
ε, sometimes it is important to emphasize this and write N(ε) instead of N .
Note also that the definition requires some N , but not necessarily the smallest
N that works. In fact, if convergence works for some N then any N1 > N also
works.

To motivate the definition, we again consider an = (n+1)/n. Given ε > 0,
we notice that

∣
∣
∣
∣

n+ 1

n
− 1

∣
∣
∣
∣
=

1

n
< ε whenever n >

1

ε
.

Thus, N should be some natural number larger than 1/ε. For example, if
ε = 1/99, then we may choose N to be any positive integer bigger than 99,
and we conclude that

∣
∣
∣
∣

n+ 1

n
− 1

∣
∣
∣
∣
< ε =

1

99
whenever n ≥ N = 100.

Similarly, if ε = 2/999, then 1/ε = 499.5, so that
∣
∣
∣
∣

n+ 1

n
− 1

∣
∣
∣
∣
< ε =

2

999
whenever n ≥ N = 500.

Thus, N clearly depends on ε.
The definition of limit makes it clear that changing a finite number of terms

of a given sequence affects neither the convergence nor the divergence of the
sequence. Also, we remark that the number ε provides a quantitative measure
of “closeness,” and the number N a quantitative measure of “largeness.”

We now continue our discussion with a fundamental question: Is it possible
for a sequence to converge to more than one limit?
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Theorem 2.3 (Uniqueness of limits). The limit of a convergent sequence
is unique.

Proof. Suppose that a = lim an and a′ = lim an. Let ε > 0. Then there exist
two numbers N1 and N2 such that

|an − a| < ε for n ≥ N1 and |an − a′| < ε for n ≥ N2.

In particular, these two inequalities must hold for n ≥ N = max{N1, N2}. We
conclude that

|a− a′| = |a− an − (a′ − an)| ≤ |an − a|+ |an − a′| < 2ε for n ≥ N.

Since this inequality holds for every ε > 0, and |a− a′| is independent of ε, we
must have |a− a′| = 0, i.e., a = a′.

Also, as a direct consequence of the definition we obtain the following: If
an → a, then an+k → a for any fixed integer k. Indeed, if an → a as n → ∞,
then for a given ε > 0 there exists an N ∈ N such that |an − a| < ε for all
n ≥ N . That is,

|an+k − a| < ε for all n+ k ≥ N + k = N1 or |am − a| < ε for m ≥ N1,

which is same as saying that am → a as m → ∞.

Definition 2.4. A sequence {an} that converges to zero is called a null
sequence.

Examples 2.5. (i) The sequence {n} diverges because no matter what a and
ε we choose, the inequality

a− ε < n < a+ ε, i.e., |n− a| < ε,

can hold only for finitely many n. Similarly, the sequence {2n} diverges.
(ii) The sequence defined by {(−1)n} is {−1, 1,−1, 1, . . .}, and this sequence

diverges by oscillation because the nth term is always either 1 or −1. Thus
an cannot approach any one specific number a as n grows large. Also, we
note that if a is any real number, we can always choose a positive number
ε such that at least one of the inequalities

a− ε < −1 < a+ ε or a− ε < 1 < a+ ε

is false. For example, the choice ε = |1−a|/2 if a 	= 1, and ε = |1+a|/2 if
a 	= −1, will do. If a = 1 or −1, choose ε to be any positive real number
less than 1. Thus the inequality |(−1)n− a| < ε will be false for infinitely
many n. Hence {(−1)n} diverges.

(iii) The sequence {sin(nπ/2)}n≥1 diverges because the sequence is

{1, 0,−1, 0, 1, 0, . . .},
and hence it does not converge to any number, by the same reasoning as
above.

(iv) The sequence {(−1)n/n} converges to zero, and so it is a null
sequence. •
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Definition 2.6. A sequence {an} is bounded if there exists an R > 0 such
that |an| ≤ R for all n. A sequence is unbounded if it is not bounded.

Since a convergent sequence eventually clusters about its limit, it is fairly
evident that a sequence that is not bounded cannot converge, and hence the
next theorem is not too surprising; it will be used in the proof of Theorem
2.8.

Theorem 2.7. Every convergent sequence is bounded. The converse is not
true.

Proof. Let {an}n≥1 converge to a. Then there exists an N ∈ N such that
|an − a| < 1 = ε for n ≥ N . It follows that |an| < 1 + |a| for n ≥ N . Define
M = max{1 + |a|, |a1|, |a2|, . . . |aN−1|}. Then |an| < M for every n ∈ N.

To see that the converse is not true, it suffices to consider the sequence
{(−1)n}n≥1, which is bounded but not convergent, although the odd terms
and even terms both form convergent sequences with different limits.

2.1.2 Operations on Convergent Sequences

The sum of sequences {an} and {bn} is defined to be the sequence {an + bn}.
We have the following useful consequences of the definition of convergence
that show how limits team up with the basic algebraic operations.

Theorem 2.8 (Algebra of limits for convergent sequences). Suppose
that limn→∞ an = a and limn→∞ bn = b, where a, b ∈ R. Then

• limn→∞(ran + sbn) = ra+ sb, r, s ∈ R. [Linearity rule for sequences]
• limn→∞(anbn) = ab. [Product rule for sequences]
• limn→∞ an/bn = a/b, provided b 	= 0. [Quotient rule for sequences]
• limn→∞ m

√
an = m

√
a, provided m

√
an is defined for all n and m

√
a exists.

Proof. The linearity rule for sequences is easy to prove. The quotient rule for
sequences is easy if we prove the product rule for sequences (see also Questions
2.44(33) and 2.44(34)). We provide a direct proof.

We write
anbn − ab = (an − a)bn + (bn − b)a.

Since every convergent sequence must be bounded, there exists an M > 0
such that |bn| ≤ M (say), for all n. Let ε > 0 be given. Again, since bn → b
as n → ∞, there exists an N2 such that

|bn − b| < ε

2(|a|+ 1)
for n ≥ N2.

(We remark that we could not use ε/2|a| instead of ε/[2(|a| + 1)] because a
could be zero.)
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Also by the hypothesis that an → a as n → ∞, there exists an N3 such
that

|an − a| < ε

2M
for n ≥ N3.

Finally, for n ≥ max{N2, N3} = N , we have

|anbn − ab| ≤ |an − a| |bn|+ |bn − b| |a|
<

ε

2M
M +

ε

2(|a|+ 1)
|a| < ε

2
+

ε

2
= ε.

The product rule clearly follows.
The proof of third part follows from Lemma 2.9. The proof of the final

part is left as a simple exercise (see Questions 2.44(16)).

Lemma 2.9 (Reciprocal rule). If limn→∞ bn = b and b 	= 0, then the
reciprocal rule holds:

lim
n→∞

1

bn
=

1

b
.

Proof. The proof is easy, and so we leave it as a simple exercise.

Note that if an = (−1)n and bn = (−1)n−1, then {a2n} and {an+ bn} both
converge, although individual sequences {an} and {bn} diverge.

Example 2.10. Find the limit of each of these convergent sequences:

(a)

{
1

np

}

(p > 0). (b)

{
n2 − 2n+ 3

5n3

}

. (c)

{
n6 + 3n4 − 2

n6 + 2n+ 3

}

.

Solution. (a) As n grows arbitrarily large, 1/n (and hence 1/np) gets smaller
and smaller for p > 0. Thus, limn→∞ 1/np = 0. Also, we note that if ε > 0,
then |(1/np) − 0| < ε or n > 1/(ε1/p). Thus, if N is any integer greater than
1/(ε1/p), then

|(1/np)− 0| < ε for all n ≥ N.

Thus, for each p > 0, n−p → 0 as n → ∞. That is, {1/np} is a null sequence
for each p > 0.

(b) We cannot use the quotient rule of Theorem 2.8 because neither the
limit for the numerator nor that for the denominator exists. On the other
hand, we can divide the numerator and denominator by n3 and then use the
linearity rule and the product rule. We then have

n2 − 2n+ 3

5n3
=

1

5

(
1

n
− 2

n2
+

3

n3

)

→ 0 as n → ∞.

(c) Divide the numerator and denominator by n6, the highest power of n
that occurs in the expression, to obtain

lim
n→∞

n6 + 3n4 − 2

n6 + 2n+ 3
= lim

n→∞
1 + 3

n2 − 2
n6

1 + 2
n5 + 3

n6

= 1.
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In fact, if we set

an = 1 +
3

n2
− 2

n6
and bn = 1 +

2

n5
+

3

n6
,

then the linearity rule gives that an → 1 and bn → 1 as n → ∞. Finally, the
quotient rule gives the desired limit, namely,

lim
n→∞

an
bn

= 1. •
Suppose that {an} is a sequence of real numbers such that an > 0 for all

but a finite number of n. Then there exists an N such that an > 0 for all
n ≥ N . If the new sequence {1/an+N}n≥0 converges to zero, then we say that
{an} diverges to ∞ and write lim an = ∞. Equivalently, if lim an does not
exist because the numbers an > 0 become arbitrarily large as n → ∞, we
write limn→∞ an = ∞. We summarize the discussion as follows:

Definition 2.11 (Divergent sequence). For given sequences {an} and
{bn}, we have

(a) limn→∞ an = ∞ if and only if for each R > 0 there exists an N ∈ N such
that an > R for all n ≥ N .

(b) limn→∞ bn = −∞ if and only if for each R < 0 there exists an N ∈ N

such that bn < R for all n ≥ N .

We do not regard {an} as a convergent sequence unless lim an exists as a
finite number, as required by the definition. For instance,

lim
n→∞n3 = ∞, lim

n→∞(−n) = −∞, lim
n→∞ 3n = ∞, lim

n→∞(
√
n+ 5) = ∞.

We do not say that the sequence {n2} “converges to ∞” but rather that it
“diverges to ∞” or “tends to ∞.” To emphasize the distinction, we say that
{an} diverges to ∞ (respectively −∞) if lim an = ∞ (respectively −∞). We
note that lim(−1)nn is unbounded but it diverges neither to ∞ nor to −∞.

Definition 2.12 (Oscillatory sequence). A sequence that neither con-
verges to a finite number nor diverges to either ∞ or −∞ is said to oscillate or
diverge by oscillation. An oscillating sequence with finite amplitude is called
a finitely oscillating sequence. An oscillating sequence with infinite amplitude
is called an infinitely oscillating sequence.

For instance,

{(−1)n}, {1 + (−1)n}, {(−1)n(1 + 1/n)}
oscillate finitely. We remark that an unbounded sequence that does not diverge
to ∞ or −∞ oscillates infinitely. For example, the sequences

{(−1)nn}, {(−1)nn2}, {(−n)n}
are all unbounded and oscillate infinitely.
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Example 2.13. Consider an = (n2 + 2)/(n+ 1). Then

an = n

(
1 + 2

n2

1 + 1
n

)

.

From the algebra of limits we observe that

lim
n→∞

1 + 2
n2

1 + 1
n

= 1.

On other hand, limn→∞ an does not exist. Indeed, we can show that an → ∞
as n → ∞. According to the definition, we must show that for a given R > 0,
there exists an N such that an > R for all n ≥ N . Now we observe that

an > R ⇐⇒ n+ 1 +
3

n+ 1
> R + 2,

which helps to show that an > R if n ≥ R+ 2. So we can choose any positive
integer N such that N ≥ R + 2. We then conclude that an → ∞ as n → ∞.
Similarly, we easily have the following:

(1) As in Example 2.10(c), we write

lim
n→∞

n7 + 2n3 − 1

n6 + n2 + 3n+ 1
= lim

n→∞
1 + 2

n4 − 1
n7

1
n + 1

n5 + 3
n6 + 1

n7

.

The numerator tends to 1 as n → ∞, whereas the denominator approaches
0. Hence the quotient increases without bound, and the sequence must
diverge. We may rewrite in the present notation,

lim
n→∞

n7 + 2n3 − 1

n6 + n2 + 3n+ 1
= ∞.

(2) {n/3 + 1/n}, {n3 − n}, {(n2 + 1)/(n+ 1)}, and {(n3 + 1)/(n+ 1)} all
diverge to ∞.

(3)
{

(−1)nn2
}

diverges but neither to −∞ nor to ∞.
(4) an → ∞ =⇒ a2n → ∞.
(5) If an > 0 for all large values of n, then an → 0 =⇒ 1/an → ∞. Is the

converse true? •
Finally, we let an =

√
n2 + 5n − n and consider the problem of finding

lim an. It would not be correct to apply the linearity property for sequences

(because neither lim
√

n2 + 5n nor limn exists as a real number). At this place
it important to remember that the linearity rule in Theorem 2.8 cannot be
applied to {an}, since lim

√
n2 + 5n = ∞ and limn = ∞. It is also not correct

to use this as a reason to say that the limit does not exist. The supporting
argument is as follows. Rewriting an algebraically as
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an =
(√

n2 + 5n− n
)
√
n2 + 5n+ n√
n2 + 5n+ n

=
5n√

n2 + 5n+ n
=

5
√

1 + 5
n + 1

,

we obtain limn→∞
(√

n2 + 5n− n
)

= 5/2.

Remark 2.14. We emphasize once again that Theorem 2.8 cannot be applied
to sequences that diverge to ∞ or −∞. For instance, if an = n + 1, bn = n,
and cn = n2 for n ≥ 1, then it is clear that the sequences {an}, {bn}, and
{cn} diverge to ∞, showing that the limits do not exist as real numbers. Also,
it is tempting to say that

an − bn → ∞−∞ = 0 and cn − bn → ∞−∞ = 0 as n → ∞.

Note that ∞ is not a real number, and so it cannot be treated like a usual
real number. In our example, we actually have an − bn = 1 for all n ≥ 1, and

cn − bn = n(n− 1) → ∞ as n → ∞. •

2.1.3 The Squeeze/Sandwich Rule

In the following squeeze rule, the sequence {bn} is “sandwiched” between the
two sequences {an} and {cn}.
Theorem 2.15 (Squeeze/Sandwich rule for sequences). Let {an}, {bn},
and {cn} be three sequences such that an ≤ bn ≤ cn for all n ≥ N and for
some N ∈ N. If

lim
n→∞ an = lim

n→∞ cn = L,

then limn→∞ bn = L. If bn → ∞, then cn → ∞. Also, if cn → −∞, then
bn → −∞.

Proof. Let ε > 0 be given. By the definition of convergence, there exist two
numbers N1 and N2 such that

|an − L| < ε for n ≥ N1 and |cn − L| < ε for n ≥ N2.

In particular, since an ≤ bn ≤ cn for all n ≥ N , we have

L− ε < an ≤ bn ≤ cn < L+ ε for n ≥ N3 = max{N,N1, N2},

showing that |bn − L| < ε for n ≥ N3, as required.
We leave the rest as a simple exercise.

Corollary 2.16. If {cn} is a null sequence of nonnegative real numbers, and
|bn| ≤ cn for all n ≥ N , then {bn} is a null sequence.
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For instance, since {1/√n} is null and 1/(1 +
√
n) < 1/

√
n for all n ≥ 1,

{1/(1 +√
n)} is also a null sequence. Similarly, comparing 1/3n with 1/n, it

follows easily that {1/3n} is a null sequence.

Corollary 2.17. If limn→∞ an = 0 and |bn − L| ≤ an for all n ≥ N , then
limn→∞ bn = L.

Proof. By the last corollary, it follows that {bn − L} is a null sequence, and
so the desired conclusion follows. Alternatively, it suffices to observe that

|bn − L| ≤ an ⇐⇒ L− an ≤ bn ≤ L+ an

and apply the squeeze rule.

For instance, using the squeeze rule, we easily have the following:

(a) limn→∞ cosn2/n = 0, because −(1/n) ≤ cosn2/n ≤ 1/n. With the same
reasoning, one has

lim
n→∞

sin(nπ/2)

n
= 0.

(b) limn→∞
{√

n+ 1−√
n
}

= 0 and limn→∞
√
n(
√
n+ 1 − √

n) = 1/2.
Moreover,

0 <
√
n+ 1−√

n =
1√

n+ 1 +
√
n
<

1

2
√
n
.

Note that the above inequality is useful in estimating
√
n. For n = 1, this

gives
√
2 < 1.5, and for n = 2, 4, we have

√
3 < 1.875 and

√
5 < 2.25.

Indeed, for n = 2, we have

√
3 <

√
2 +

√
2

4
=

5
√
2

4
<

5× 1.5

4
=

7.5

4
= 1.875.

(c) limn→∞ n/2n = 0. Indeed, using induction we easily see that 2n ≥ n2 for
n ≥ 4, so that

0 <
n

2n
≤ 1

n
.

(d) limn→∞ bn = 1 if bn = 1/(
√
n2 + 1) + 1/(

√
n2 + 2) + · · ·+ 1/(

√
n2 + n).

We note that

n√
n2 + n

< bn <
n√

n2 + 1
, i.e.,

1
√

1 + 1/n
< bn <

1
√

1 + 1/n2
.

(e) limn→∞ cn = ∞ if cn = 1/(
√
n+ 1) + 1/(

√
n+ 2) + · · · + 1/(

√
n+ n).

We note that

cn >
n√
n+ n

=

√
n√
2
= bn,

where bn → ∞ as n → ∞.
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Using the squeeze rule, Theorem 2.8, and a few standard examples allows
one to calculate limits of important sequences.

Example 2.18. Show that

(a) lim
n→∞ a1/n = 1 for a > 0. (b) lim

n→∞n1/n = 1. (c) lim
n→∞

n!

nn
= 0.

Solution. (a) We consider the cases a > 1 and a < 1, since there is nothing
to prove if a = 1. Suppose first that a > 1. Then a1/n ≥ 1, and so

a1/n = 1 + xn

for some sequence {xn} of positive real numbers. Then by the binomial
theorem,

a = (1 + xn)
n ≥ 1 + nxn for all n ≥ 1,

which is equivalent to

0 < a1/n − 1 ≤ a− 1

n
for all n ∈ N.

Thus, a1/n → 1 as n → ∞ if a > 1. For 0 < a < 1, we have (1/a)1/n → 1
as n → ∞, and therefore, by the reciprocal rule,

a1/n =
1

(1/a)1/n
→ 1

1
= 1 as n → ∞.

The sequence {a1/n} is referred to as the nth root sequence.
(b) Clearly (1 + 1)n ≥ 1 + n > n, so that n1/n − 1 < 1 for n ≥ 1. Also, for

n ≥ 1, we observe that n1/n ≥ 1, so that n1/n − 1 = xn with xn ≥ 0. In
particular, using the binomial theorem, we deduce that

n = (1 + xn)
n ≥ 1 + nxn +

n(n− 1)

2
x2
n ≥ 1 +

n(n− 1)

2
x2
n,

which implies that

0 ≤ xn = n1/n − 1 ≤
√

2

n
for n ≥ 1.

By the squeeze rule, xn → 0 as n → 0, since 1/
√
n → 0. We conclude

that n1/n → 1 as n → ∞, as desired.
(c) It follows that

0 <
n!

nn
≤ 1

n
.

The second inequality is true because

n! = n(n− 1) · · · 2 · 1 < n · n · · ·n · 1 = nn−1.

The squeeze rule (with an = 0, cn = 1/n) gives the desired conclusion. •
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Remark 2.19. We observe that case (a) of Example 2.18 may be obtained
as a special case of case (b). For instance, if a ≥ 1, then for n large enough
we have 1 ≤ a < n. Taking roots on both sides, we obtain

1 ≤ a1/n < n1/n for large n.

Again, by the squeeze rule, we see that limn→∞ a1/n = 1.
As a consequence of (a) and (b) of Example 2.18 and the product rule

for sequences, we can easily obtain that

lim
n→∞(2n)1/n = 1 and lim

n→∞(3
√
n)1/2n = 1. •

2.1.4 Bounded Monotone Sequences

Now we introduce some important terminology associated with sequences. A
sequence {an} is said to be

• bounded above if there exists an M ∈ R such that an ≤ M for all n,
• bounded below if there exists an m ∈ R such that an ≥ m for all n,
• bounded if it is bounded both below and above,
• monotonically increasing (or simply increasing) if an ≤ an+1 for all n (see
Figure 2.1),

• monotonically decreasing (or simply decreasing) if an ≥ an+1 for all n (see
Figure 2.2),

O x

y

Fig. 2.1. An increasing sequence.

xO

y

Fig. 2.2. A decreasing sequence.

• strictly increasing if an < an+1 for all n,
• strictly decreasing if an > an+1 for all n,
• monotonic if it is either increasing or decreasing,
• strictly monotonic if it is either strictly increasing or strictly decreasing,
• alternating if an changes sign alternately. In other words, an is of the form
an = (−1)n−1bn or an = (−1)nbn(bn ≥ 0) for all n. That is, anan+1 < 0
for all n.
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Constant sequences are treated as both increasing and decreasing! We now
demonstrate these definitions by giving several simple examples.

(1) {1/n}n≥1 is strictly decreasing and bounded.
(2) {n}n≥1 is strictly increasing and unbounded; however, it is bounded below

by 1.
(3) {(−1)n−1n}n≥1 is neither increasing nor decreasing. Also, it is unbounded.
(4) {(−1)n}n≥1 is neither increasing nor decreasing nor convergent but is

bounded.
(5) {(−1)n/n}n≥1 is convergent but is neither increasing nor decreasing.
(6) If an = 2 for 1 ≤ n ≤ 5 and an = n for n ≥ 6, then {an}n≥1 is increasing

but not strictly.
(7) {n1/n}n≥1 is not monotone, as can be seen by examining the first four

terms of the sequence.
(8) {n!/nn} is decreasing and bounded.
(9) {an}, an = 8n/n!, is neither increasing nor decreasing, because

an+1

an
=

8

n+ 1

{≥ 1 if n ≤ 7
≤ 1 if n ≥ 7.

On the other hand, if we ignore the first six terms, it follows that {an}n≥7

is decreasing. In such cases, we say that {an} is eventually decreasing.
Similarly, one can define eventually increasing sequences. Finally, we re-
mark that (3)–(5) are examples of sequences that are alternating.

2.1.5 Subsequences

We now present two simple criteria that involve the notion of a subsequence
for establishing that a sequence diverges. Let {an}n≥1 be a sequence and
{nk}k≥1 any strictly increasing sequence of positive integers; that is,

0 < n1 < n2 < n3 < · · · .
Then the sequence {ank

}k≥1, i.e., {bk}k≥1, where bk = ank
, is called a sub-

sequence of {an}n≥1. That is, a subsequence is obtained by choosing terms
from the original sequence, without altering the order of the terms, through
the map k �→ nk, which determines the indices used to pick out the subse-
quence. For instance, {a7k+1} corresponds to the sequence of positive integers
nk = 7k + 1, k = 1, 2, . . .. Observe that every increasing sequence {nk} of
positive integers must tend to infinity, because

nk ≥ k for k = 1, 2, . . ..

The sequences

{
1

k2

}

k≥1

,

{
1

2k

}

k≥1

,

{
1

2k + 1

}

k≥1

,

{
1

5k + 3

}

k≥1

,

{
1

2k

}

k≥1
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are some subsequences of the sequence {1/k}k≥1, formed by setting nk =
k2, 2k, 2k+1, 5k+3, 2k, respectively. Note that all the above subsequences
converge to the same limit, 0, which is also the limit of the original sequence
{1/k}k≥1. Can we conjecture that every subsequence of a convergent sequence
must converge and converge to the same limit? We have the following:

1. Every sequence is a subsequence of itself.
2. Let ak = 1+(−1)k, k ≥ 1. Then a2k = 2 and a2k−1 = 0, showing that the

even sequence {a2k} and the odd sequence {a2k−1} are two convergent
(constant) subsequences of {ak}. Thus, a sequence may not converge yet
have convergent subsequences with different limits.

3. Let ak = sin(kπ/2). Then a2k−1 = (−1)k−1 and a2k = 0 are two sub-
sequences of ak. Does the sequence {b2k}, where bk = (1 + (−1)k−1)/2,
converge? Is {bk} a subsequence of {ak}?

Definition 2.20 (Subsequential limits). Let {ak} be a sequence. A subse-
quential limit is any real number or symbol ∞ or −∞ that is the limit of some
subsequence {ank

}k≥1 of {ak}k≥1.

For example, we have the following:

(1) 0 and 2 are subsequential limits of {1 + (−1)k}.
(2) −∞ and ∞ are the only subsequential limits of {k(−1)k}.
(3) {−√

3/2, 0,
√
3/2} is the set of subsequential limits of {ak}, ak = sin(kπ/3).

Here {a3k}, {a3k+1}, and {a3k+2} are convergent subsequences with limits
0, −√

3/2, and
√
3/2, respectively.

(4) Every real number is a subsequential limit of some subsequence of the
sequence of all rational numbers. Indeed, R ∪ {−∞,∞} is the set of sub-
sequential limits of the sequence of all rational numbers.

The following result, which shows that certain properties of sequences are
inherited by their subsequences, is almost obvious.

Theorem 2.21 (Invariance property of subsequences). If {an} con-
verges, then every subsequence {ank

} of it converges to the same limit. Also,
if an → ∞, then {ank

} → ∞ as well.

Proof. Suppose that {ank
} is a subsequence of {an}. Note that nk ≥ k. Let

L = lim an and ε > 0 be given. Then there exists an N such that

|ak − L| < ε for k ≥ N.

Now k ≥ N implies nk ≥ N , which in turn implies that

|ank
− L| < ε for nk ≥ N.

Thus, ank
converges to L as k → ∞. The proof of the second part follows

similarly.
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Here is an immediate consequence of Theorem 2.21.

Corollary 2.22. The sequence {an} is divergent if it has two convergent sub-
sequences with different limits. Also, {an} is divergent if it has a subsequence
that tends to ∞ or a subsequence that tends to −∞.

In order to apply this corollary, it is necessary to identify convergent sub-
sequences with different limits or subsequences that tend to ∞ or −∞. Now
the question is whether the converse of Theorem 2.21 also holds.

We can prove the divergence of a sequence if we are able to somehow
prove that it is unbounded. For instance (see also Questions 2.44(8)), consider
an =

∑n
k=1 1/k. There are several ways one can see that the sequence diverges.

Clearly, an > 0 for all n ∈ N, {an} is increasing, and

a2n = 1 +
1

2
+

(
1

3
+

1

4

)

+

(
1

5
+

1

6
+

1

7
+

1

8

)

+ · · ·+
(

1

2n−1 + 1
+ · · ·+ 1

2n

)

> 1 +
n

2
,

so that {an}n≥1 is increasing and not bounded above. Therefore, it cannot be
convergent, and so it must diverge (see also the bounded monotone conver-
gence theorem (BMCT), which is discussed later in this section). We remark
that we may group the terms in a number of ways and obtain that {an}n≥1

is unbounded, for example,

a10n−1 =

(

1 +
1

2
+ · · ·+ 1

9

)

+

(
1

10
+ · · ·+ 1

99

)

+ · · ·+
(

1

10n−1
+ · · ·+ 1

10n − 1

)

> 9

(
1

10

)

+
90

100
+ · · ·+ 9× 10n−1

10n
=

(
9

10

)

n.

We end this subsection with the following result, which is easy to prove.

Theorem 2.23. A sequence is convergent if and only if there exists a real
number L such that every subsequence of the sequence has a further subse-
quence that converges to L.

Corollary 2.24. If both odd and even subsequences of {an} converge to the
same limit l, then so does the original sequence.

Note that {(−1)n} diverges, because it has two subsequences {(−1)2n}
and {(−1)2n−1} converging to two different limits, namely 1 and −1.
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Fig. 2.3. Description for the bounded monotone convergence theorem.

2.1.6 Bounded Monotone Convergence Theorem

Until now, we have considered some basic techniques for finding the limit of a
convergent sequence. In general, it is difficult to tell whether a given sequence
converges. It is sometimes easy to show that a sequence is convergent even
if we do not know its limit. For example, the following theorem is a starting
point for our rigorous treatment of sequences and series, especially if we know
that the given sequence is monotonic. However, we shall soon show that every
bounded sequence has a convergent subsequence (see Theorem 2.42).

Theorem 2.25 (Monotone convergence theorem). Every increasing se-
quence that is bounded above converges. Also, every decreasing sequence that
is bounded below converges.

Proof. Let {an}n≥1 be an increasing sequence that is bounded above. Ac-
cording to the least upper bound property (Definition 1.18), since the range
A = {an : n ∈ N} is bounded above, A has a least upper bound; call it a. We
now prove that an → a as n → ∞.

Clearly an ≤ a for all n ∈ N, and by the definition of lub, given some ε > 0
there exists an integer N such that aN > a− ε. Since {an} is monotonically
increasing,

a− ε < aN ≤ an ≤ a < a+ ε for n ≥ N.

That is, |an − a| < ε for n ≥ N , and we conclude that {an} converges to its
least upper bound. That is, limn→∞ an = a = sup an.

The proof for the case of decreasing sequences is identical, using the great-
est lower bound instead of the least upper bound (see Figure 2.3).

Alternatively, it suffices to note that {bn}n≥1 is a decreasing sequence
that is bounded below if and only if the sequence {−bn}n≥1 is increasing and
bounded above.

Remark 2.26. The monotonicity condition on the sequence {an} in the above
results need not be satisfied for all n. If this is true for all n ≥ N , where N



2.1 Sequences and Their Limits 39

is some suitably selected positive integer, then the conclusion of the above
result is still true (see Figure 2.5). However, the tests in Theorem 2.25 tell
us nothing about the limit, but they are often useful when we suspect that a
sequence is convergent. •

For instance, we easily obtain the following simple examples:

(1) If an = 1 + 1/n, then {an} is clearly decreasing and bounded below (by
1, for example), and so it is convergent by Theorem 2.25. In this case, of
course, we know already that it converges to 1.

(2) If an = 1/
√
n, then {an} is clearly decreasing for n ≥ 1 and bounded by

1. Consequently, the sequence {1/√n} must converge.
(3) If an = (2n− 7)/(3n+ 2), then

an =
1

3n+ 2

(
2

3
(3n+ 2)− 7− 4

3

)

=
2

3
− 25

3(3n+ 2)
,

so that an ≤ 2/3 and {an} is increasing. By Theorem 2.25, the sequence
{an}n≥1 must converge. Indeed, an → 2/3 as n → ∞.

(4) Consider

an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
.

Then 0 < an ≤ n/(n+1) for all n ≥ 1, since each term (except the first) in
the sum is strictly less than 1/(n+1), and so {an} is a bounded sequence.
Also, for n ≥ 1,

an+1 − an =
1

2n+ 1
+

1

2(n+ 1)
− 1

n+ 1

=
1

2n+ 1
− 1

2(n+ 1)

=
1

2(2n+ 1)(n+ 1)
> 0.

Thus, {an} is a bounded monotone sequence, and so it converges by
Theorem 2.25. What is the limit of the sequence {an}?
The following equivalent form of Theorem 2.25 is the key to many impor-

tant results in analysis. We shall soon see its usefulness in our subsequent
discussion.

Theorem 2.27 (BMCT: Bounded monotone convergence theorem).
Every bounded monotonic sequence of real numbers converges. Equivalently, a
monotonic sequence converges if and only if it is bounded.

Consider the sequence {an}n≥1, where an =
∑n

k=1 1/k. This is clearly an
increasing sequence. Does there exist an upper bound for this sequence? In
fact, we have already proved that {an}n≥1 is unbounded (see also Questions
2.44(8)). We also remark that a bounded sequence can converge without being
monotone. For example, consider {(−1/3)n}n≥1.
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Example 2.28. Show that limn→∞ rn = 0 if |r| < 1 (see also Theorem 2.34
and Example 2.43). Here {rn} is called a power sequence.

Solution. Observe that −|r|n ≤ rn ≤ |r|n, and so it suffices to deal with
0 < r < 1. In any case, define an = |r|n for n ≥ 1. If |r| < 1, then we have

an+1 = |r|an, i.e., 0 ≤ an+1 < an,

showing that {an} is decreasing and bounded below by 0. Therefore, {an}
converges, say to a. Allowing n → ∞ in the last equality, we see that

a = |r|a, i.e., (1− |r|)a = 0,

which gives a = 0, since |r| < 1.
Alternatively, we first notice that there is nothing to prove if r = 0. Thus

for 0 < |r| = c < 1, we can write |r| in the form c = 1/(1+ a) for some a > 0,
so that by the binomial theorem,

0 < cn =
1

(1 + a)n
≤ 1

1 + na
<

1

na
,

and the result follows if we use the squeeze rule. •
Because every monotone sequence converges, diverges to ∞, or diverges to

−∞, we have the following analogue of Theorem 2.25 for unbounded monotone
sequences.

Theorem 2.29. Every increasing sequence that is not bounded above must
diverge to ∞. Also, every decreasing sequence that is not bounded below must
diverge to −∞.

Proof. Let {an}n≥1 be an increasing sequence that is unbounded. Since the
set {an : n ∈ N} is unbounded and it is bounded below by a1, it must be
unbounded above. Thus, given R > 0 there exists an integer N such that
aN > R. Since {an} is monotonically increasing,

an ≥ aN > R for n ≥ N.

Since R > 0 is arbitrary, it follows that limn→∞ an = ∞.
The proof for decreasing sequences is identical and is left as an exercise.

We may combine Theorems 2.27 and 2.29 in an equivalent form as follows.

Theorem 2.30. Every monotone sequence converges, diverges to ∞, or di-
verges to −∞. In other words, we say that limn→∞ an is always meaningful
for monotone sequences.
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Example 2.31. Set an = (1 · 3 · 5 · · · (2n− 1))/(2 · 4 · 6 · · · (2n)). Then {an}
converges.

Solution. Note that an > 0 for all n ≥ 1 and

an+1 = an

(
2n+ 1

2n+ 2

)

< an.

Thus, {an} is decreasing and bounded below by 0. Applying Theorem 2.25,
we see that {an} converges. Note also that an < 1 for n ≥ 1. •

Often sequences are defined by formulas. There is still another way of
specifying a sequence, by defining its terms “inductively” or “recursively.”
In such cases, we normally specify the first term (or first several terms) of
the sequence and then give a formula that specifies how to obtain all succes-
sive terms. We begin with a simple example and later present a number of
additional examples (see Examples 2.39 and 2.58 and Exercises 2.45).

Example 2.32. Starting with a1 = 1, consider the sequence {an} with
an+1 =

√
2an for n ≥ 1. We observe that

a1 = 1, a2 =
√
2, a3 =

√

2
√
2, a4 =

√

2

√

2
√
2, . . . ,

which seems to suggest that the given sequence is positive and increasing.
Hence, the sequence must converge if it is bounded and increasing. It is not
clear how to find an upper bound. However, the following observation might
be useful. “If an increasing sequence converges, then the limit must be the
least upper bound of the sequence” (see the proof of Theorem 2.25). As a
consequence, if the given sequence converges to a, then the limit a must satisfy

a =
√
2a, i.e., a(a− 2) = 0,

so that a = 2, for a = 0 is not possible. By the method of induction, it is easy
to prove that 0 < an ≤ 2 for all n ≥ 1. Consequently,

an+1 =
√
2an = an(

√

2/an) ≥ an for all n ≥ 1,

showing that the sequence {an} is bounded and increasing. Thus, {an} con-
verges and in fact converges to 2. •

The BMCT is an extremely valuable theoretical tool, as we shall see by a
number of examples below.

Example 2.33 (The number e). Let an = (1+1/n)n, n ≥ 1. The sequence
{an} is called Euler’s sequence. Note that (1 + x)n ≥ 1 + nx for x ≥ 0 and
n ≥ 1, so that for x = 1/n, this gives

(

1 +
1

n

)n

≥ 2 for n ≥ 1.



42 2 Sequences: Convergence and Divergence
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Fig. 2.4. Diagram for
an = (1 + 1/n)n.
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x

Fig. 2.5. an is eventually inside the strip.

If we plot the first few terms of this sequence on a sequence diagram, then it
seems that the sequence {an} increases and converges to a limit, which is less
than 3 (see Figure 2.4).

First we show that the sequence is increasing (see Figure 2.4). This is
an immediate consequence of the well-known arithmetic–geometric mean in-
equality

(
k∏

i=1

xi

)1/k

≤ 1

k

k∑

i=1

xi

if we choose k = n+ 1, x1 = 1, and xi = 1 + 1/n for i = 2, . . . , n + 1. As an
alternative proof, we may use the binomial theorem and obtain

an = 1 +

n∑

k=1

(
n

k

)(
1

n

)k

= 1 +

n∑

k=1

n(n− 1) · · · (n− k + 2)(n− k + 1)

nk

1

k!

= 1 + 1 +

n∑

k=2

[

1 ·
(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− k − 2

n

)(

1− k − 1

n

)]
1

k!

< 2 +

n∑

k=2

[(

1− 1

n+ 1

)(

1− 2

n+ 1

)

· · ·
(

1− k − 2

n+ 1

)(

1− k − 1

n+ 1

)]
1

k!

< 2 +
n+1∑

k=2

[(

1− 1

n+ 1

)(

1− 2

n+ 1

)

· · ·
(

1− k − 2

n+ 1

)(

1− k − 1

n+ 1

)]
1

k!

= an+1,
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and so {an} is increasing. Next, we show that the sequence is bounded. Since
k! = 1 · 2 · 3 · · · k ≥ 1 · 2 · 2 · · · 2 = 2k−1 for k ≥ 2, we have

2 < an < 1 +

n∑

k=1

1

k!
< 1 +

n∑

k=1

1

2k−1
= 1 +

1− (1/2)n

1− (1/2)
< 1 +

1

1− 1/2
= 3.

Thus, {an} is an increasing bounded sequence. By BMCT, it follows that the
sequence {an} converges to a real number that is at most 3. It is customary to
denote this limit by e, the base of the natural logarithm, a number that plays
a significant role in mathematics. The above discussion shows that 2 < e ≤ 3.
The foregoing discussion allows us to make the following definition:

e = lim
n→∞

(

1 +
1

n

)n

.

Moreover, by considering the binomial expansion of (1 + x/n)
n
, the above

discussion may be continued to make the following definition of ex for x > 0:

ex = lim
n→∞

(

1 +
x

n

)n

, x > 0.

Later, we shall show that this limit actually exists also for x < 0 (see Theorem
5.7). Thus, we easily have

lim
n→∞

(

1− 1

3n

)n+2

= lim
n→∞

[(

1− 1

3n

)3n
]1/3 (

1− 1

3n

)2

= e−1/3 · 1

and

lim
n→∞

(

1 +
5

n

)n

= lim
n→∞

(

1 +
5

5n

)5n

= lim
n→∞

[(

1 +
1

n

)n]5

= e5.

Can we replace 5 in each step of the last of these equalities by a positive
integer?

Moreover, by the product and the quotient rules for sequences, we have

lim
n→∞

(

1 +
1

n+ k

)n

= lim
n→∞

(

1 + 1
n+k

)n+k

(

1 + 1
n+k

)k
=

lim
n→∞

(

1 + 1
n+k

)n+k

lim
n→∞

(

1 + 1
n+k

)k
= e,

where k is a fixed positive integer. Could k be any fixed integer? Could k be
any positive real number? •
Theorem 2.34 (Convergence of a geometric sequence). If r is a fixed
number such that |r| < 1, then limn→∞ rn = 0. Further, {rn} diverges if |r| >
1. At r = 1, the sequence converges, whereas it diverges for r = −1.
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Proof. We have already proved the first part in Example 2.28 (see also
Example 2.43). If r = 1, the sequence reduces to a constant sequence and
so converges to 1. If r > 1, then rn → ∞ as n → ∞, so the sequence diverges.
Indeed, if r > 1, then 1/r < 1, and so

1

rn
=

(1

r

)n

→ 0 as n → ∞,

which implies that rn → ∞ as n → ∞.
For r = −1, the sequence {(−1)n} diverges, and if r < −1, then {rn}

diverges, since |r|n → ∞ as n → ∞.

Example 2.35. For p > 0, we easily have

lim
n→∞

rn

np
=

⎧

⎨

⎩

0 if |r| ≤ 1,
∞ if r > 1,
does not exist if r < −1.

Indeed, for |r| < 1, let an = rn and bn = 1/np. Then {an} and {bn} are null
sequences, and so is their product. For r = 1,−1, there is nothing to prove.

For r > 1, we write r = 1+ x with x > 0. Let k be a positive integer such
that k > p. Then for n > 2k,

(1 + x)n >

(
n

k

)

xk =
n(n− 1) · · · (n− k + 1)

k!
xk >

(n

2

)k xk

k!
,

since n− k + 1 > n/2 for each k. Hence, since k − p > 0, it follows that

(1 + x)n

np
>

xk

2kk!
nk−p → ∞ as n → ∞. •

Example 2.36. Find limn→∞ rn/(1 + r2n) for various values of r.

Solution. Set an = rn/(1+r2n). We need to find limn→∞ an for various values
of r. For r = 1, we have an = 1/2, showing that limn→∞ an = 1/2. For r = −1,
we have an = (−1)n/2, so that {an} diverges. On the other hand, for |r| < 1,
let cn = 1 + r2n. By Theorem 2.34, limn→∞ cn = 1 and limn→∞ rn = 0.
Therefore, by the quotient rule,

lim
n→∞

rn

1 + r2n
=

limn→∞ rn

limn→∞(1 + r2n)
=

0

1
= 0.

Similarly for |r| > 1, we have 1/|r| < 1, and so using the above argument, we
see that

lim
n→∞

rn

1 + r2n
= lim

n→∞
1/rn

1 + 1/r2n
=

0

1
= 0.

We conclude that {an}n≥1 converges for all r 	= −1. •
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Theorem 2.37. Let {an} and {bn} be two convergent sequences such that
an → L and bn → M as n → ∞. We have

(a) |an| → |L| as n → ∞;
(b) if an ≤ bn for all n ≥ N0, then L ≤ M .

Here (b) is often referred to as the limit inequality rule.

Proof. We prove case (b) by contradiction. Suppose that an → L, bn → M ,
and L > M . Then with ε = (L−M)/2, there exists an N such that

L− ε < an < L+ ε and M − ε < bn < M + ε for all n ≥ N.

In particular,

bn < M + ε =
L+M

2
= L− ε < an for all n ≥ N,

which is a contradiction to the hypothesis that an ≤ bn for all n ≥ N0.
Therefore, our assumption is wrong, and hence we must have L ≤ M .

The proof of case (a) follows from the fact that
∣
∣|an| − |L|∣∣ ≤ |an − L|.

Corollary 2.38. Let {bn} be a convergent sequence such that bn → M as
n → ∞, and bn ≥ 0 for all sufficiently large n. Then M ≥ 0.

Proof. Set an = 0 for all n in Theorem 2.37.

Example 2.39. Consider the following sequences {an}n≥1:

(a) an = 1/n2 + 1/(n+ 1)2 + · · ·+ 1/(2n)2;
(b) a1 = 1, an+1 =

√
2 + an for n ≥ 1;

(c) a1 = 2, an+1 = (1/2)(an + 2/an) for n ≥ 2;
(d) a1 = α and an+1 = (an+β/an)/2 for n ≥ 1, where α > 0 is arbitrary and

β is a fixed positive number.

In each case, determine whether the sequence converges.

Solution. (a) Clearly 0 < an < (n + 1)/n2 for all n ≥ 1, since each term
(except the first) in the sum is strictly less than 1/n2, and so {an} is a bounded
sequence. Also, for n ≥ 1,

an+1 − an =
1

(2n+ 1)2
+

1

(2n+ 2)2
− 1

n2
<

1

4n2
+

1

4n2
− 1

n2
= − 1

2n2
< 0,

that is, an+1 < an for all n ≥ 1. Thus, {an} is a bounded monotone sequence
and so converges by Theorem 2.27.

Alternatively, we observe that for all n ≥ 1,

n+ 1

(2n)2
≤ an ≤ n+ 1

n2
,

and so by the squeeze rule, we see that limn→∞ an = 0.
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(b) Clearly an > 0 for all n ≥ 1. Since a1 < 2, by induction we obtain
that an+1 =

√
2 + an <

√
2 + 2 = 2 for all n ≥ 1. Since

an+1 − an =
√
2 + an − an ≥ 0 ⇐⇒ (2− an)(1 + an) ≥ 0,

and since an ≤ 2, it follows that the sequence {an} is monotonically increasing
and bounded; hence it is convergent. We see that

a = lim
n→∞ an+1 = lim

n→∞
√
2 + an =

√
2 + a,

which gives (a− 2)(a+ 1) = 0, or a = 2.
(c) First we observe that if the given sequence were convergent, then we

would obtain its limit by allowing n → ∞ in the given recurrence relation:

a =
1

2

(

a+
2

a

)

, i.e., a2 = 2 or a =
√
2.

Now we show that the given sequence indeed converges to
√
2. We have a1 =

2 >
√
2, an > 0, and for n ≥ 1,

an+1 −
√
2 =

(an −√
2)2

2an
≥ 0.

(We remind the reader that it does not matter what positive value is assigned
to a1.) Thus, an ≥ √

2 for all n ≥ 2, and therefore,

an+1

an
=

1

2

(

1 +
2

a2n

)

≤ 1

2
(1 + 1) = 1, i.e., an+1 ≤ an for n ≥ 2,

showing that {an} is monotonically decreasing and bounded below by 0; hence
it is convergent.

(d) Since α and β are positive and a1 > 0 (arbitrary), the principle of
induction shows that an > 0 for all n ≥ 2. Next for n ≥ 1, we have

a2n+1 − β =
1

4

(

an +
β

an

)2

− β =
(a2n − β)2

4a2n
≥ 0,

so that a2n+1 ≥ β for all n ≥ 1. Also, for n ≥ 2,

an − an+1 = an − 1

2

(

an +
β

an

)

=
a2n − β

2an
≥ 0,

showing that {an}n≥2 is decreasing and bounded below (since all terms are
positive). By Theorem 2.25, we are assured that the sequence converges; call
the limit L. Since a2n+1 ≥ β and an > 0, we must have an+1 ≥ √

β for n ≥ 1
and hence L ≥ √

β (see Theorem 2.37). Since an → L as n → ∞, an+1 → L
as n → ∞. Thus, by the linearity rule,

L = lim
n→∞ an+1 = lim

n→∞
1

2

(

an +
β

an

)

=
1

2

(

L+
β

L

)

, i.e., L =
√

β. •
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Remark 2.40. Example 2.39(c) (also 2.39(d) with β = 2 and Exercise
2.68(10)) provides a proof that there is a sequence of rational numbers that
converges to the irrational number

√
2. Moreover, using the an from Example

2.39(c), we note that

a1 = 2, a2 =
3

2
, a3 =

1

2

(
3

2
+

4

5

)

=
17

12
and a4 =

1

2

(
17

12
+

24

17

)

=
577

408
,

so that a24 is approximately 2.0006. Thus, the sequence {an} defined in Exam-
ple 2.39(c) provides a practical way of computing a rational approximation
to

√
2. •

2.1.7 The Bolzano–Weierstrass Theorem

It is useful to have necessary and sufficient conditions for the convergence of
sequences. For monotone sequences, BMCT (see Theorem 2.27) shows that
boundedness is such a condition. On the other hand, for general sequences,
boundedness is necessary but not sufficient for convergence. Indeed, we have
seen examples of bounded sequences that do not converge yet have convergent
subsequences. To show that this is true in general, we need to prove a lemma.
It is convenient first to introduce a definition. We say that n ∈ N is a peak
point of {an} if

an ≥ ak for all k ≥ n.

Lemma 2.41. Every sequence of real numbers contains a monotonic subse-
quence.

Proof. Let {an}n≥1 be a sequence of real numbers. We need to construct a
monotone subsequence. Then either the sequence {an} has infinitely many
peak points or it has only finitely many peak points.

Assume that there are infinitely many peak points n. Let n1 be the first
such n with this property (i.e., the smallest peak point) and n2 the second
(i.e., the smallest peak point with n2 > n1), etc. Thus,

(i) an1 ≥ ak for all k ∈ N with k ≥ n1;
(ii) an2 ≥ ak for all k ∈ N with k ≥ n2 (> n1).

From (i) and (ii), it follows that

an1 ≥ an2 .

We now introduce nk+1 inductively as the smallest peak point such that
nk+1 > nk. Consequently,

ank
≥ ank+1

,

and so {ank
}k≥1 is a monotonically decreasing subsequence of {an}.
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On the other hand, if there are only finitely many n such that

an ≥ ak for all k ∈ N with k ≥ n,

then we can choose an integer m1 greater than all peak points, so that no
terms of the sequence

{am1 , am1+1, am1+2, . . . }

have this property. Because m1 itself is not a peak point, there exists an m2

with m2 > m1 for which
am1 < am2 .

Again, m2 is not a peak point bigger than all peak points, and so there exists
an m3 with m3 > m2 and

am3 > am2 .

Continuing the process, we obtain a sequence {amk
}k≥1 that is a monotoni-

cally increasing subsequence of {an}. This completes the proof.

We see that if a sequence is bounded, then even though it may diverge, it
cannot behave “too badly.” This fact follows from Lemma 2.41 together with
BMCT.

Theorem 2.42 (Bolzano–Weierstrass). Every bounded sequence of real
numbers has a convergent subsequence (a subsequence with a limit in R). That
is, if {an} is a sequence such that |an| ≤ M for all n ≥ N , then there exist
a number l in the interval [−M,M ] and a subsequence {ank

} such that {ank
}

converges to l.

Proof. Let {an} be a bounded sequence of real numbers. By Lemma 2.41, it
has a monotonic subsequence, say {ank

}. Because {an} is bounded, so is every
subsequence of {an}. Hence by BMCT, {ank

} converges.

Next we remark that {sinn} is a bounded sequence. What is the behavior
of sinn as n → ∞? According to Theorem 2.42, there must exist at least one
number l in [−1, 1] such that some subsequences {sinnk} will converge to l.
A discussion of this surprising fact is beyond the scope of this book. However,
we can prove that every number l in [−1, 1] has this property.

We note that the Bolzano–Weierstrass theorem says nothing about unique-
ness, for if an = (−1)n, then a2n → 1 and a2n−1 → −1 as n → ∞.

Example 2.43. Fix r such that 0 < r < 1, and consider the sequence
{an}n≥1, where an = rn. Then an > 0 for all n ≥ 1, and the sequence is
decreasing, because

an − an+1 = (1− r)rn > 0.
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Thus, {an}, being a decreasing sequence that is bounded below by zero, con-
verges; call the limit a. Also, since

a2n = (rn)(rn),

{a2n} converges to a2. On the other hand, {a2n} is a subsequence of {an},
and hence by the uniqueness of the limit, we have a2 = a, i.e., a = 0 or 1.
Clearly a 	= 1, since {rn} is decreasing and r < 1. Hence {rn} converges to 0
whenever 0 < r < 1 (see also Theorem 2.34).

By the squeeze rule, the inequalities

−|r|n ≤ rn ≤ |r|n

show that limn→∞ rn = 0 for −1 < r < 0 also.
The same idea may be used to show that limn→∞ a1/n = 1 for 0 < a < 1

(see also Example 2.18(a)). •
2.1.8 Questions and Exercises

Questions 2.44.

1. If an → a as n → ∞, must the set {n : an 	∈ (a− ε, a+ ε)}, where ε > 0,
be finite?

2. Is it true that a sequence {an} is null iff {|an|} is null?
3. Is every convergent sequence null? How about the converse?
4. Is the sum of two null sequences always null?
5. Does an alternating sequence always converge? Does it always diverge?
6. Is every convergent sequence monotone? Is every monotone sequence con-

vergent?
7. Can a bounded sequence be convergent without being monotone?
8. Does every divergent increasing sequence diverge to ∞? How about a

divergent decreasing sequence?
9. Can we say that {a5, a4, a1, a2, a3, a6, a7, . . .} is a subsequence of {an}n≥1?
10. Does every sequence have at most a countable number of subsequences?

Does there exist a sequence with an uncountable number of subsequences?
11. Suppose that {an} and {bn} are two sequences such that one converges to

0 while the other is bounded. Does {anbn} converge? If so, to what limit?
12. Suppose that {an} is bounded and α ∈ (0, 1) is fixed. Does {αnan} con-

verge? If so, does it converge to 0?
13. Suppose that {an} is a bounded convergent sequence such that |an| ≤ M

and the sequence has limit a. Must |a| ≤ M?
14. Suppose that {an} is increasing and bounded above by M . Must we have

an → L for some L? Must L ≤ M?
15. Suppose that {an} is decreasing and bounded below by m. Must we have

an → l for some l? Must l ≥ m?
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16. Let {an} be a sequence of nonnegative real numbers, p ∈ N, and a ∈
[0,∞). Is it true that {an} converges to a if and only if {a1/pn } converges
to a1/p?

17. Let {an} be a null sequence of nonnegative real numbers, and p ∈ R. Must
{apn} be a null sequence? Is {1/np} a null sequence?

18. Let {an} be a sequence of positive real numbers. Is it true that {an}
diverges to ∞ if and only if {1/an} converges to 0?

19. If {an} is a sequence of real numbers such that {an/n} converges to l for
some l 	= 0, must {an} be unbounded?

20. If {an} converges to 0, must {(−1)nan} converge to 0?
21. If {an} converges to a nonzero real number a, must {(−1)nan} oscillate?
22. If {an} diverges to ∞, must {(−1)nan} oscillate?
23. If {|an|} converges to |a|, must {an} be convergent either to a or to −a?

How about when a = 0? Does the sequence {(−1)n} address your concern
for this question?

24. If {an} converges and {bn} diverges, must {anbn} be divergent? Must
{an + bn} be divergent?

25. If {an} and {bn} are divergent, must {anbn} be divergent? Must {an+bn}
be divergent?

26. Suppose that {an} is an unbounded sequence of nonzero real numbers.
Does {an} diverge to ∞ or −∞? Must {|an|} be divergent to ∞? Must
{1/an} be bounded?

27. Suppose that {an} is bounded. Must {1/an} be bounded? Must {an/n}
be convergent?

28. If {an} and {anbn} are both bounded, must {bn} be bounded?
29. If a1 = 1 and an+1 = an + (1/an) for n ≥ 1, must {an} be bounded?
30. If {an} and {bn} are both increasing, must {anbn} be increasing?
31. Suppose that {an} and {bn} are two sequences of real numbers such that

|an − bn| < 1/n for large n, and an → a as n → ∞. Does bn → a as
n → ∞?

32. If {an} is a sequence such that {(an−1)/(an+1)} converges to zero, does
{an} converge?

33. If {an} converges to a, must {a2n} converge to a2? Does {apn} converge to
ap if p ∈ N?

34. Suppose that bn → b as n → ∞ and b 	= 0. Must there exist an R > 0 and
a positive integer N such that |bn| ≥ R for all n ≥ N?

35. If {a2n} converges, must {an} be convergent?
36. Suppose that {a2n} converges and an > 0. Can {an} be convergent? Can

{an} be convergent?
37. If {a2n} converges to a, must {|an|} converge to

√
a?

38. If {a3n} converges to a3, must {an} converge to a?
39. Can there exist a divergent sequence that is monotone?
40. Can there exist a divergent sequence {sn} such that sn+1 − sn → 0 as

n → ∞?
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41. If {an} is an increasing sequence of real numbers that is bounded above
and L = limn→∞ an, must we have an ≤ L for all n?

42. If {an} is a decreasing sequence of real numbers that is bounded below
and L = limn→∞ an, must we have an ≥ L for all n?

43. If 0 < a < 1, does it follow that limn→∞ a1/2
n

= 1? Does it follow that
limn→∞ a1/3

n

= 1?
44. Let an = (1 + 1/n)n and bn = (1 + 1/n)n+k, where k is a fixed integer.

Do we have limn→∞ an = limn→∞ bn = e?

Exercises 2.45.

1. Show that

lim
n→∞

n

2n+ 3
=

1

2
, lim

n→∞
3n+ 1

2n+ 1
=

3

2
, and lim

n→∞
n3 − 3

n4
= 0.

If ε = 0.001 is chosen, find N in each case such that for n ≥ N we have

∣
∣
∣
∣

n

2n+ 3
− 1

2

∣
∣
∣
∣
< 0.001,

∣
∣
∣
∣

3n+ 1

2n+ 1
− 3

2

∣
∣
∣
∣
< 0.001, and

∣
∣
∣
∣

n3 − 3

n4

∣
∣
∣
∣
< 0.001.

2. Construct three sequences such that an ≤ bn ≤ cn for all n ≥ N ,
limn→∞ an = L and limn→∞ cn = M for some real numbers L,M , but
limn→∞ bn does not exist.

3. Suppose that {an}n≥1 and {bn}n≥1 are two sequences of real numbers
such that limn→∞ an = ∞ and limn→∞ bn = L, where 0 < L ≤ ∞. Show
that limn→∞ anbn = ∞. Using this, show that

lim
n→∞

n3 − 3

n+ 2
= ∞ and lim

n→∞
3n

n2 + (−1)n
= ∞.

4. Which of the following sequences are monotone? bounded? convergent?

{
(−1)n(n+ 2)

n

}

,
{

2(−1)n
}

,
{ n

2n

}

, {log(n+ 1)− logn} ,
{
3n− 5

2n

}

.

5. For p > 0 and |c| < 1, prove that {cn}, {npcn}, and {np/n!} are all null
sequences.

6. Using BMCT, show that a1/n → 0 as n → ∞, where 0 < a < 1. Is it
possible to use BMCT to show that n1/n → 1 as n → ∞?

7. Which is larger in each of the following:

(i) 10001000 or 1001999? (ii)
(

1 + 1
100000

)100000

or 2?

8. Define an recursively by a1 =
√
2 and an+1 =

√

2 +
√
an for all n ≥ 1.

Show that the sequence {an}n≥1 is convergent. Find its limit.
9. Define an recursively by a1 =

√
2 and an+1 =

√
2 + an for all n ≥ 1. Show

that the sequence {an}n≥1 converges to 2.
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10. For each of the following sequences, show that there is a number L such
that an → L. Find also the value of L.
(a) {an}, where a1 = 1 and an+1 = 1 +

√
an for n ≥ 1.

(b) {an}, where a1 = 3 and an+1 = 3 +
√
an for n ≥ 1.

(c) {an}, where a1 = L (L > 1) and an+1 =
√
an for n ≥ 1.

(d) {an}, where a1 > 0, a2 > 0, and an+2 =
√
an +

√
an+1 for n ≥ 1.

(e) {an}, where a1 = 1 and an+1 = 1
4 (2an + 3) for n ≥ 1.

(f) {an}, where a1 = 1 and an+1 = an/(1 + an) for n ≥ 1.
(g) {an}, where a1 = α > 0 and an+1 =

√

(αβ2 + a2n)/(α+ 1) (β > α).
11. Suppose that a sequence {an} of real numbers satisfies 7an+1 = a3n + 6

for n ≥ 1. If a1 = 1
2 , prove that the sequence increases and find its limit.

What happens if a1 = 3
2 or a1 = 5

2?
12. Test each of the sequences given below for convergence. Find its limit if

it converges.
(a) a1 = 1 and an+1 =

√
5an. (b) a1 = 1 and an+1 =

√
5 an.

(c) a1 = 1 and an+1 =
√
5 + an.

13. Show that if a1 > b1 > 0, an+1 =
√
anbn, and bn+1 = (an + bn)/2, then

{an} and {bn} both converge to a common limit.
14. Let {an} be a sequence of positive real numbers such that an+1 ≤ ran for

some r ∈ (0, 1) and for all n. Prove that {an} converges to 0.
15. In the following problems, state whether the given sequence {an} is con-

vergent or divergent. If it is convergent, then determine its limit. Here an
equals

(a) 2 + (−1)n. (b) n(2 + (−1)n) (c) n cos
(nπ

2

)

.

(d) 22008/n. (e)
3n2 − logn

n2 + 3n3/2
. (f)

√

n+ 3
√
n−√

n.

(g) n2008/n. (h) n1/(n+2008). (i) (n+ 1)1/(log(1+n)).

(j)
5n + 6n

1 + 7n
. (k) (log n)1/n. (l)

√

n(n+ 1)− n.

(m)
(n!)1/n

n
. (n) logn− log(n+ 1). (o)

1

n
sin

(nπ

6

)

+
5n+ 1

7n+ 6
.

(p) (an+ 7)1/n. (q)
an − a−n

an + a−n
. (r) (n+ 2008)1/n.

(s)
an + n

an − n
. (t)

an

n!
(a ∈ R). (u) n(a1/n − 1).
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2.2 Limit Inferior, Limit Superior, and Cauchy
Sequences

Consider a sequence of real numbers {an}n≥1. Then for each fixed k ∈ N, let

Mk = sup{ak, ak+1, . . .} := sup{an : n ≥ k}
if the sequence is bounded above, and Mk = ∞ if it is not bounded above.
Clearly, Mk ≥ Mk+1 for every k. Similarly, let

mk = inf{ak, ak+1, . . .} := inf{an : n ≥ k}
if the sequence is bounded below, and mk = −∞ if it is not bounded below.
Clearly, mk ≤ mk+1 for every k. Consequently,

m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 ≤ · · · ≤ Mk+1 ≤ Mk ≤ · · · ≤ M2 ≤ M1.

Since every monotone sequence has a limit (see Theorem 2.30 if we also allow
±∞), the limits

M = lim
k→∞

Mk and m = lim
k→∞

mk

both exist. So m ≤ M . We call M and m the limit superior and the limit
inferior, respectively, of {an}. We denote these limits by

M = lim sup
n→∞

an and lim
n→∞ an, and m = lim inf

n→∞ an or limn→∞an,

respectively. Thus,

lim sup
n→∞

an = lim
k→∞

sup
n≥k

an and lim inf
n→∞ an = lim

k→∞
inf
n≥k

an.

The right-hand sides of these are always meaningful, provided it is understood
that the values of ∞ and −∞ are allowed. Note that

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

M = ∞ if {an} is not bounded above,
m = −∞ if {an} is not bounded below,
M = −∞ if lim

n→∞ an = −∞,

m = ∞ if lim
n→∞ an = ∞.

For instance:

(a) For the sequence {an}n≥1, where an = 1/n, we have

m1 = inf{1, 1/2, 1/3, . . .} = 0, m2 = inf{1/2, 1/3, 1/4, . . .} = 0,

and mk = 0 for each k ≥ 1. Therefore, it is clear that

m = limmk = 0, i.e., lim inf an = 0.
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Similarly, we see that

M1 = sup{1, 1/2, 1/3, . . .} = 1, M2 = sup{1/2, 1/3, 1/4, . . .} =
1

2
,

and Mk = 1/k for each k ≥ 1. Therefore,

M = limMk = 0, i.e., lim sup an = 0.

(b) lim supn→∞(−1)n = 1 and lim infn→∞(−1)n = −1.
(c) limn→∞ n2 = ∞, and so lim supn→∞ n2 = lim infn→∞ n2 = ∞.
(d) lim supn→∞(−n) = −∞ and lim supn→∞ n = ∞.
(e)

lim sup
n→∞

rn =

⎧

⎨

⎩

∞ if |r| > 1,
1 if |r| = 1,
0 if |r| < 1,

and lim inf
n→∞ rn =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞ if r > 1,
1 if r = 1,
0 if |r| < 1,
−1 if r = −1,
−∞ if r < −1.

(f) If an = (−1)n(1 + 1/n), then lim supn→∞ an = 1 and lim infn→∞ an =
−1. Also, we note that a2n → 1, a2n−1 → −1 as n → ∞, and the sequence
{an} has no subsequences that can converge to a limit other than 1 or
−1. Note also that

sup{an : n ≥ 1} =
3

2
and inf{an : n ≥ 1} = −2.

The reader is warned not to confuse the supremum of a set with the limit
superior of a sequence, and similarly the infimum of a set with the limit
inferior of a sequence.

(g) lim supn→∞ (−1)n/n = 0 = lim infn→∞ (−1)n/n, because for k ≥ 1,

Mk = sup

{
(−1)k

k
,
−(−1)k

k + 1
,
(−1)k

k + 2
, . . .

}

=

⎧

⎪⎨

⎪⎩

1

k + 1
if k is odd,

1

k
if k is even,

and

mk =

⎧

⎪⎨

⎪⎩

− 1

k
if k is odd,

− 1

k + 1
if k is even,

so that Mk → 0 and mk → 0 as k → ∞.
(h) For the sequence {(−1)nn}n≥1 = {. . . ,−5,−3,−1, 2, 4, 6, . . .}, we have

inf{(−1)nn : n ∈ N} = −∞ and lim inf(−1)nn = −∞
and

sup{(−1)nn : n ∈ N} = ∞ and lim sup(−1)nn = ∞.
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Lemma 2.46. Suppose that {an} is a sequence of real numbers with

L = lim sup
n→∞

an and � = lim inf
n→∞ an.

Then for every ε > 0 there exist integers N1 and N2 such that
{
an − L < ε for all n ≥ N1,
an − L > −ε for infinitely many n ≥ N1,

and {

an − � > −ε for all n ≥ N2,
an − � < ε for infinitely many n ≥ N2,

respectively.

Proof. By the definition of the limit superior, since L = limk→∞ Mk, there
exists an integer N1 such that

| sup{ak, ak+1, . . .} − L| = |Mk − L| < ε for all k ≥ N1,

so that
ak ≤ sup{ak, ak+1, . . .} < L+ ε for all k ≥ N1.

That is,
ak < L+ ε for all k ≥ N1.

Again, since Mk ≥ Mk+1 for every k ≥ 1, we have

L ≤ sup
k≥1

Mk. (2.1)

In particular, this gives

L ≤ M1 = sup{a1, a2, a3, . . .}.
Thus, by the definition of supremum, there exists an n1 such that an1 > M1−ε,
so that

an1 > L− ε.

Now taking k = n1 in (2.1), we obtain that

L ≤ Mn1 = sup{an1 , an1+1, . . .},
and so there exists an n2 such that

an2 > Mn1 − ε > L− ε.

Proceeding indefinitely, we obtain integers n1 < n2 < · · · < nk < · · · such
that

ank
> L− ε for all k ∈ N,

which proves the second inequality for the case of limit superior.
Similarly, since � = limk→∞ mk, there exists an integer N2 such that

ak ≥ inf{ak, ak+1, . . .} > L− ε for all k ≥ N2.
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Theorem 2.47. For any sequence of real numbers {an}, we have

lim
n→∞ an = L if any only if lim sup

n→∞
an = lim inf

n→∞ an = L.

Proof. If L = ±∞, then the equivalence is a consequence of the definitions of
limit superior and limit inferior. Therefore, we assume that lim an = L, where
L is finite.

⇒: Given ε > 0, there exists an N ∈ N such that

|an − L| < ε, i.e., L− ε < an < L+ ε for all n ≥ N,

and so
L− ε < MN = sup{aN , aN+1, . . .} ≤ L+ ε.

Thus, {Mk}k≥N is a bounded monotone sequence and hence converges.
That is,

L− ε ≤ lim
N→∞

MN = lim sup
n→∞

an ≤ L+ ε.

Since ε is arbitrary, lim supn→∞ an = L. A similar argument gives
lim infn→∞ an = L.

⇐: Conversely, suppose that L = lim supn→∞ an = lim infn→∞ an = �.
Since � = L, by Lemma 2.46 we conclude that there exists N = max{N1, N2}
such that

L− ε < ak < L+ ε for all k ≥ N.

This proves that limk→∞ ak = L, as desired.

For any bounded sequence {an}, we see that {Mk − mk} is increasing
and converges to M − m. Thus, using Theorem 2.47, we may formulate the
definition of convergence of a sequence as follows.

Theorem 2.48. A sequence {an} of real numbers is convergent if and only if
it is bounded and {Mk −mk} converges to zero, where Mk = sup{an : n ≥ k}
and mk = inf{an : n ≥ k}.

Alternatively, Theorem 2.42 can be seen (without using Lemma 2.41) as
an immediate consequence of the following result, which in particular, shows
that there are subsequences converging to m and M . Moreover, m and M
are, respectively, the smallest and the largest possible limits for convergent
subsequences.

Theorem 2.49. Let {an} be a bounded sequence of real numbers and let

S = {x ∈ R : ank
→ x for some subsequence ank

}.

If m = lim inf an and M = lim sup an, then {m,M} ⊂ S ⊂ [m,M ].
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Proof. First we prove that M ∈ S. For this, we need to show that there exists
a subsequence {ank

}k≥1 such that for each given ε > 0, there exists an integer
N such that

|ank
−M | < ε for all k ≥ N .

By Lemma 2.46, there exists an integer N1 such that

ak < M + ε for all k ≥ N1 (2.2)

and n1 < n2 < · · · < nk < · · · such that

ank
> M − ε for all k ∈ N. (2.3)

Combining (2.2) and (2.3), we infer that

M − ε < ank
< M + ε, i.e., |ank

−M | < ε for all nk ≥ N ,

and so M is the limit of a subsequence of {an}. The assertion about m has a
similar proof. Thus, {m,M} ⊂ S.

Next we prove that S ⊂ [m,M ]. We assume that ank
→ x as k → ∞. We

shall show that x ∈ [m,M ]. Equation (2.2) shows that

an < M + ε for sufficiently large n,

and so
ank

< M + ε for sufficiently large k.

The limit inequality rule gives that

x ≤ M + ε,

and since ε > 0 is arbitrary, it follows that x ≤ M . The proof for m ≤ x is
similar.

Corollary 2.50. A sequence {an} of real numbers converges if and only if S
is a singleton set. That is, lim an exists.

In view of Theorem 2.49, we have the following equivalent definition: If
{an} is a bounded sequence of real numbers, then M and m, the limit supe-
rior and the limit inferior of {an}, are respectively the greatest and the least
subsequential limits of {an}.
Theorem 2.51. Suppose that {an}n≥1 and {bn}n≥1 are two bounded se-
quences of real numbers. Then we have the following:

(a) lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn.
(b) lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn.
(c) lim supn→∞ an ≤ lim supn→∞ bn and lim infn→∞ an ≤ lim supn→∞ bn if

an ≤ bn for all n ≥ 1.
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(d) lim supn→∞(anbn) ≤
(

lim supn→∞ an

)(

lim supn→∞ bn

)

if an > 0,

bn > 0.

(e) lim infn→∞(anbn) ≥
(

lim infn→∞ an

)(

lim infn→∞ bn

)

if an > 0, bn > 0.

Proof. (a) and (b):

Method 1: As usual, for each fixed k ∈ N, let

Mk = sup{ak, ak+1, . . .} and Pk = sup{bk, bk+1, . . .}.

Then
an ≤ Mk and bn ≤ Pk for all n ≥ k,

and therefore
an + bn ≤ Mk + Pk for all n ≥ k,

which shows that Mk + Pk is an upper bound for

{ak + bk, ak+1 + bk+1, . . .}.

Consequently,

sup{ak + bk, ak+1 + bk+1, . . .} ≤ Mk + Pk,

and thus

lim sup
k→∞

{ak + bk, ak+1 + bk+1, . . .} ≤ lim
k→∞

(Mk + Pk) = lim
k→∞

Mk + lim
k→∞

Pk,

which, by the definition, is equivalent to (a). The proof of (b) is similar and
so will be omitted.

Method 2: Since {an+bn}n≥1 is a bounded sequence (by hypothesis), Lemma
2.46 shows that there exist integers N1, N2, N3, and N4 such that

ak < La + ε/2 for all k ≥ N1 and ak > �a − ε/2 for all k ≥ N2

and

bk < Lb + ε/2 for all k ≥ N3 and bk > �b − ε/2 for all k ≥ N4,

respectively. Here

La = lim sup an, �a = lim inf an, Lb = lim sup bn, and �b = lim inf bn.

Thus,
ak + bk < La + Lb + ε for all k ≥ max{N1, N3}

and

ak + bk > �a + �b − ε for all k ≥ max{N2, N4}.
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Since ε > 0 is arbitrary, (a) and (b) follow.
(c) Since an ≤ bn for all n ≥ 1, it follows that

Mk ≤ Pk and mk ≤ pk,

where mk = inf{ak, ak+1, . . .} and pk = inf{bk, bk+1, . . .}. Taking the limit as
k → ∞ yields the desired conclusion.

Observe that if an = (−1)n and bn = (−1)n+1, then we have

an + bn = 0 for all n ≥ 0, lim sup an = 1 = lim sup bn.

We may also consider

an =

{
0 if n = 2k,
(−1)k+1 if n = 2k − 1,

and bn =

{

(−1)k if n = 2k,
0 if n = 2k − 1,

so that

an + bn =

{
(−1)k if n = 2k,
(−1)k+1 if n = 2k − 1.

In either case, the equalities in (a) and (b) of Theorem 2.51 do not always
hold.

If

an =

{
1 if n is odd,
2 if n is even,

and bn =

{
2 if n is odd,
1 if n is even,

we see that equality in each of (d) and (e) of Theorem 2.51 does not hold.

2.2.1 Cauchy Sequences

If a sequence {an} of real numbers converges to a number a, then the terms an
of the sequence are close to a for large n, and hence the terms of the sequence
themselves are close to each other “near a.” This intuition led to the concept of
Cauchy1 sequence, which helps us in deducing the convergence of a sequence
without necessarily knowing its limit. Moreover, unlike theorems (such as
BMCT) that deal only with monotone sequences, we have theorems on Cauchy
sequences that deal with sequences that are not necessarily monotone.

Definition 2.52 (Cauchy sequence). A sequence {an} ⊂ R is called a
Cauchy sequence if for each ε > 0 there is a positive integer N such that
m,n ≥ N implies |an − am| < ε. Equivalently, we say that a sequence {an} is
Cauchy if for each ε > 0 there is a positive integer N such that

|an+p − an| < ε for all n ≥ N and for all p ∈ N.

1 Augustin-Louis Cauchy (1789–1857) is one of the important mathematicians who
placed analysis on a rigorous footing.
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For example, if an = (−1)n−1/n, then {an} is Cauchy; for

|an − am| =
∣
∣
∣
∣

(−1)n−1

n
− (−1)m−1

m

∣
∣
∣
∣
≤ 1

n
+

1

m
<

2

n
if m > n.

Our first result is algebraic.

Theorem 2.53. Every convergent sequence is a Cauchy sequence.

Proof. Suppose that an → a as n → ∞, and let ε > 0 be given. Then there
exists an N such that

|an − a| < ε

2
for all n ≥ N.

Therefore, for m,n ≥ N , we must have

|an − am| = |(an − a)− (am − a)| ≤ |an − a|+ |am − a| < ε

2
+

ε

2
= ε,

and hence {an} is a Cauchy sequence.

Theorem 2.53 gives a necessary condition for convergence. Equivalently,
if a sequence is not Cauchy, then it cannot be convergent. Thus, Theorem
2.53 can be used to show the divergence of several nontrivial sequences. For
example, we have the following:

(a) Neither {n}n≥1 nor {1 + (−1)n}n≥1 is Cauchy.
(b) If sn =

∑n
k=1 1/k, then {sn}n≥1 is not Cauchy, because for any n ∈ N

(with m = 2n),

s2n − sn =

2n∑

k=1

1

k
−

n∑

k=1

1

k
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
> n

( 1

2n

)

=
1

2
.

Thus, the sequence {sn} is not convergent.
(c) Similarly, if sn =

∑n
k=1 1/(2k − 1), then {sn}n≥1 is not Cauchy (and

hence is not convergent), because for any n ∈ N,

s2n − sn =
2n∑

k=1

1

2k − 1
−

n∑

k=1

1

2k − 1

=
1

2n+ 1
+

1

2n+ 3
+ · · ·+ 1

2n+ 2n− 1

> n
( 1

4n− 1

)

> n
( 1

4n

)

=
1

4
.

(d) Finally, consider the sequence {xn} given by

x0 = 0 and xn+1 =
10xn + 6

5
for n ≥ 0.
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Then {xn} does not converge, because it is not Cauchy. Indeed,

xn > 0 for all n ≥ 1 and xn+1 − xn = xn +
6

5
>

6

5
,

showing that {xn} is not Cauchy.

We also remark that a sequence {sn} that satisfies the condition

sn+1 − sn → 0 as n → ∞
is not necessarily a Cauchy sequence (e.g., sn as above or sn = logn).

Theorem 2.54. Cauchy sequences are bounded.

Proof. The proof is similar to that of the corresponding result for convergent
sequences (see Theorem 2.7). For the sake of completeness we include a proof
here. Consider a Cauchy sequence {an}n≥1. Then by definition, there exists
a positive integer N ∈ N such that

|am − an| < ε = 1 for all n > m ≥ N .

That is, with m = N , we have |an| < 1 + |aN | for all n > N . We conclude
that {an}n≥1 is bounded.

An interesting fact which that Cauchy sequences important is that the
converse of Theorem 2.53 is also true. Our next task is to prove this result,
which is also called the general principle of convergence.

Theorem 2.55 (Completeness criterion for sequences). A sequence is
convergent if and only if it is a Cauchy sequence.

Proof. The first half of the theorem has already been proved. Thus, we have
to show that every Cauchy sequence of real numbers converges. To do this,
we begin with a Cauchy sequence {an}. Then {an} is bounded by Theorem
2.54. Let ε > 0. Then there exists an N = N(ε) such that

|an − am| < ε

2
whenever n > m ≥ N. (2.4)

Method 1: In particular, taking m = N in (2.4), it follows that

|an − aN | < ε

2
, i.e., − ε

2
+ aN < an <

ε

2
+ aN for all n > N.

This shows that aN − (ε/2) and aN + (ε/2) are, respectively, lower and upper
bounds for the set

Xn = {an, an+1, . . .} if n > N.
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Note that Xn ⊇ Xn+1 ⊇ · · · and if Mn = supXn, then Mn ≥ Mn+1 ≥ · · · .
Thus, for n > N ,

aN − ε

2
≤ inf{an, an+1, . . .}

︸ ︷︷ ︸

≤ sup{an, an+1, . . .} ≤ aN +
ε

2
,

which gives

sup{an, an+1, . . .} ≤ aN +
ε

2
≤ inf{an, an+1, . . .}+ ε

2
+

ε

2
︸ ︷︷ ︸

,

so that for n > N ,

sup{an, an+1, . . .} ≤ inf{an, an+1, . . .}+ ε.

Thus, by definition,

lim sup an ≤ sup{an, an+1, . . .} ≤ inf{an, an+1, . . .}+ ε ≤ lim inf an + ε.

Since this holds for every ε > 0, we have

lim sup
n→∞

an ≤ lim inf
n→∞ an.

The reverse inequality always holds, so that

lim sup
n→∞

an = lim inf
n→∞ an.

Hence {an} converges by Theorem 2.47.

Method 2: Assume that {an} is a Cauchy sequence. Then by the Bolzano–
Weierstrass theorem (Theorem 2.42), {an} has a convergent subsequence, say
{ank

}. Let a = limk→∞ ank
. Then there exists an N1 such that

|ank
− a| < ε

2
whenever k > N1.

We need to show that a = limn→∞ an. Choose k large enough that nk > N
and k > N1. Then because {an} is Cauchy, (2.4) is also satisfied with m = nk.
Thus, {an} converges, because

|an − a| ≤ |an − ank
|+ |ank

− a| < ε

2
+

ε

2
= ε whenever n > N.

Definition 2.56 (Contractive sequence). A sequence {an}n≥1 is said to
be contractive if there exists a constant λ ∈ (0, 1) such that |an+1 − an| ≤
λ|an − an−1| for all n ≥ 2.

Theorem 2.57. Every contractive sequence is Cauchy (and hence convergent
by Theorem 2.55). What happens if one allows λ = 1?
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Proof. Assume that {an}n≥1 is a contractive sequence. We find that a1 	= a2;
otherwise, {an} reduces to a zero sequence, which converges trivially. We see
that

|an+1 − an| ≤ λn−1|a2 − a1|,
and so for m > n ≥ N , we have

|am − an| = |(am − am−1) + (am−1 − am−2) + · · ·+ (an+1 − an)|
= [λm−2 + λm−3 + · · ·+ λn−1]|a2 − a1|
=

λn−1(1− λm−n)

1− λ
|a2 − a1|

<
λn−1

1− λ
|a2 − a1| ≤ λN−1

1 − λ
|a2 − a1|.

Since λ ∈ (0, 1), given ε > 0, we can choose N = N(ε) such that

λN−1

1− λ
|a2 − a1| < ε,

showing that |am − an| < ε for all m > n ≥ N . Thus {an} is a Cauchy
sequence and hence converges.

Note that if an =
√
n, then

an+1 − an =
√
n+ 1−√

n =
1√

n+ 1 +
√
n
<

1√
n+

√
n− 1

= an − an−1,

but {√n} is not a Cauchy sequence.

Example 2.58. Define an inductively by

an+1 = 1
2 (an + an−1) for n ≥ 2,

where a1 and a2 are fixed real numbers. Does the sequence {an} converge? If
it converges, what is its limit?

Solution. For definiteness, we may assume that a1 < a2. For n ≥ 2, we have

an+1 − an = −1

2
(an − an−1) = · · · =

(

− 1

2

)n−1

(a2 − a1). (2.5)

Method 1: If n is even, then the factor on the right, namely (−1/2)n−1(a2−
a1), is negative, and so an+1 − an < 0, and if n is odd, this factor is positive,
and so the reverse inequality holds. Thus {a2n} is decreasing, whereas {a2n+1}
is increasing. Observe that {an} is not a monotone sequence but is bounded.
By BMCT, both {a2n+1} and {a2n} converge. In order to show that {an}
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converges, it suffices to prove that these odd and even sequences converge to
the same limit. We now begin by observing that (2.5) gives

a2n+1 = a2n +
(

− 1

2

)2n−1

(a2 − a1),

showing that limn→∞ a2n+1 = limn→∞ a2n. Therefore, {an} converges to a
limit l, say. To obtain the limit, it suffices to note from the definition that

an+1 +
an
2

= an +
an−1

2
= · · · = a2 +

a1
2
.

Now allow n → ∞ and get that

l +
l

2
= a2 +

a1
2
, i.e., l =

2a2 + a1
3

.

Method 2: One could directly prove the convergence of {an} by showing that
it is Cauchy. Indeed, using (2.5), it follows that for m > n ≥ 2,

|am − an| ≤ |am − am−1|+ · · ·+ |an+1 − an|
= (a2 − a1)

[
1

2m−2
+

1

2m−1
+ · · ·+ 1

2n−1

]

=
a2 − a1
2n−1

[

1 +
1

2
+

1

2m−n−1

]

=
a2 − a1
2n−1

[
1− (1/2)m−n

1− (1/2)

]

<
a2 − a1
2n−2

.

Now let ε > 0 be given. Choose N large enough that

a2 − a1
2N−2

< ε.

Thus for all m > n ≥ N , we have

|am − an| < ε,

showing that {an} is a Cauchy sequence and therefore converges. To get the
limit value, by (2.5), we may write an+1 as

an+1 = a1 + (a2 − a1) + (a3 − a2) + · · ·+ (an+1 − an)

= a1 + (a2 − a1)

[

1− 1

2
+ · · ·+

(

− 1

2

)n−1
]

→ a1 + (a2 − a1)
( 1

1 + 1/2

)

=
2a2 + a1

3
as n → ∞,

so that {an} converges to (2a2 + a1)/3, as desired. •
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Lemma 2.59. Let {an} be a sequence of positive numbers. Then we have

lim inf
n→∞

an+1

an
≤ lim inf

n→∞ a1/nn ≤ α := lim sup
n→∞

a1/nn ≤ L := lim sup
n→∞

an+1

an
.

Proof. We need to prove that α ≤ L. This is obvious if L = ∞, and so we
assume that 0 ≤ L < ∞. To prove α ≤ L, it suffices to show that

α ≤ λ for any λ with L < λ. (2.6)

So we let L < λ. Then since

L = lim sup
an+1

an
= lim

k→∞

[

sup
{an+1

an
: n ≥ k

}]

< λ,

there exists a natural number N such that

sup
{an+1

an
: n ≥ N

}

< λ,

which gives
an+1

an
< λ for all n ≥ N,

so that for n ≥ N ,

an = aN

(aN+1

aN

)(aN+2

aN+1

)

· · ·
( an
an−1

)

< λn−NaN .

Therefore,

a1/nn < λ1−N/na
1/n
N for n ≥ N,

where λ and aN are fixed. Since limn→∞ a1/n = 1 for a > 0 (see Example
2.18(a)), it follows that

α = lim sup a1/nn ≤ λ.

Consequently, (2.6) holds. The proof for the first inequality in the statement
is similar, whereas the middle inequality in Lemma 2.59 is trivial.

Corollary 2.60. Let {an} be a sequence of positive numbers. If L = lim
n→∞

an+1

an
,

then lim
n→∞ a

1/n
n = L.

Example 2.61. Consider an defined by

an =
nn

(n+ 1)(n+ 2) · · · (n+ n)
.
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Suppose we wish to compute lim a
1/n
n (see also Example 7.16(a)). It is easier

to apply Corollary 2.60. Now we have (by Example 2.33)

an+1

an
=

(n+ 1)n(n+ 1)2

nn(2n+ 1)(2n+ 2)
=

(1 + 1/n)n(1 + 1/n)2

(2 + 1/n)(2 + 2/n)
→ e

4
as n → ∞,

and so lim a
1/n
n = e/4. Similarly, it is easy to see that

lim
n→∞

(n!)1/n

n
=

1

e
. •

We shall provide a direct proof of Corollary 2.60 later, in Section 8.1.

However, it is natural to ask the following: if an > 0 for all n and limn→∞ a
1/n
n

exists, does limn→∞ an+1/an exist? Clearly not. For example, set

an = 3−n+(−1)n .

Then an > 0 and a
1/n
n = 3cn/n = e(cn/n) log 3, where

cn
n

=
−n+ (−1)n

n
= −1 +

(−1)n

n
→ −1 as n → ∞,

which shows that a
1/n
n → e− log 3 = 1/3. On the other hand,

an+1

an
=

3cn+1

3cn
= 3cn+1−cn = 3−1−2(−1)n =

{
3 if n is odd,
3−3 if n is even.

This shows that

1

27
= lim inf

n→∞
an+1

an
< 1 < lim sup

n→∞
an+1

an
= 3,

and limn→∞ an+1/an does not exist. The above construction helps to generate
many more examples. For instance, consider an = 2−n+(−1)n .

2.2.2 Summability of Sequences

Our aim here is to attach “in some sense” a limit to divergent sequences, while
realizing at the same time that any “new limit” we define must agree with
the limit in the ordinary sense when it is applied to a convergent sequence.
More precisely, if {sn} possibly diverges, we introduce “another method of
summation” by replacing limn→∞ sn by

lim
n→∞ σn, where σn =

1

n

n∑

k=1

sk.

Here the {σn} are called Cesàro means2 (of order 1). Note that {σn} is pre-
cisely the average of the first n terms of the sequence {sn}, and hence {σn}
is also called a sequence of averages.

2 Ernesto Cesàro (1859–1906) was an Italian mathematician who worked on this
problem in early stage of his career.
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Definition 2.62. If {sn}n≥1 is a sequence of real numbers, then we say that
{sn}n≥1 is (C, 1) summable to L if the new sequence {σn}n≥1 converges to L,
where

σn =
1

n

n∑

k=1

sk.

In this case, we write

sn → L (C, 1) or sn → L (Cesàro) or lim
n→∞ sn = L (C, 1).

Next, consider a sequence {sn} of real numbers such that σn → 0 as
n → ∞ but {sn} is not convergent.

Example 2.63. Suppose that sn = (−1)n−1 for n ≥ 1. Then

σn =

⎧

⎨

⎩

0 if n is even

1

n
if n is odd

, n ∈ N,

and so σn → 0 as n → ∞. Thus, {(−1)n−1}n≥1 is (C, 1) summable to 0, and
we write

lim
n→∞(−1)n−1 = 0 (C, 1). •

All convergent sequences are (C, 1) summable to their limits. More pre-
cisely, we have the following result.

Theorem 2.64. If sn → x, then sn → x (C, 1).

Proof. Suppose that sn → x as n → ∞. We need to prove that

σn =
1

n

n∑

k=1

sk → x as n → ∞.

Clearly, it suffices to prove the theorem for the case x = 0. So we assume that
sn → 0. Then given ε > 0, there exists an N ∈ N such that |sn| < ε/2 for all
n > N . Now for n > N ,

|σn| =
∣
∣
∣
∣
∣

1

n

n∑

k=1

sk

∣
∣
∣
∣
∣
≤ 1

n

[
N∑

k=1

|sk|+
n∑

k=N+1

|sk|
]

=
1

n

(
N∑

k=1

|sk|
)

+
1

n
(n−N)

ε

2
<

M

n
+

ε

2
, M =

N∑

k=1

|sk|.

Note that M is independent of n and 1/n → 0 as n → ∞. Consequently, given
ε > 0, there exists an N1 such that

∣
∣
∣
∣
∣

1

n

n∑

k=1

sk

∣
∣
∣
∣
∣
<

ε

2
+

ε

2
= ε for all n ≥ N1,

and so σn → 0 whenever sn → 0.
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As a consequence of Theorem 2.64, we easily have

(a) limn→∞(1/n)
∑n

k=1 k
1/k = 1;

(b) limn→∞(1/n)
∑n

k=1 n/(
√
n2 + k) = 1;

(c) limn→∞(1/n)
∑n

k=1 1/(2k − 1) = 0.

Theorem 2.64 can also be obtained as a consequence of the following result.

Theorem 2.65. Let {sn} be a sequence of real numbers and {σn} its Cesàro
means of order 1. Then we have

lim inf
n→∞ sn ≤ lim inf

n→∞ σn ≤ α := lim sup
n→∞

σn ≤ L := lim sup
n→∞

sn. (2.7)

In particular, Theorem 2.64 holds.

Proof. We need to prove that α ≤ L. This is obvious if L = ∞, and so we
assume that L < ∞. In order to prove α ≤ L, it suffices to show that

α ≤ λ for any λ with L < λ.

So we let L < λ. By the definition of L, it follows that there exists an N such
that sn < λ for all n > N . Now for n ≥ N ,

σn =
1

n

[
N∑

k=1

sk +

n∑

k=N+1

sk

]

<
M

n
+

1

n
(n−N)λ, M =

N∑

k=1

sk.

Fix N , and allow n → ∞, and take limit superior on each side to obtain

α ≤ λ for any λ with L < λ.

It follows that α ≤ L. The proof for the first inequality in (2.7) is similar,
whereas the middle inequality in (2.7) is trivial.

In particular, if limn→∞ sn exists, then so does limn→∞ σn, and they are
equal, proving the second assertion.

Now we ask whether a sequence {sn} that diverges to ∞ can be (C, 1)
summable.

Example 2.66 (Not all divergent sequences are (C, 1) summable). For
instance, consider an = 1 for all n ≥ 1. Then

sn =

n∑

k=1

ak = n and σn =
1

n

n∑

k=1

sk =
1

n

n∑

k=1

k =
n+ 1

2
.

Note that {sn} is a divergent sequence. Since {σn} is not convergent, it follows
that {sn} is not (C, 1) summable. •

We have seen examples of divergent series that are not (C, 1) summable,
but repeating the process of following arithmetic means may lead to a con-
vergent sequence. This idea leads to (C, 2) summable sequences, and further
extension leads to (C, k) summable sequences. We shall discuss this briefly in
Chapter 9.
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2.2.3 Questions and Exercises

Questions 2.67.

1. Is every convergent sequence bounded? Is every bounded sequence con-
vergent?

2. Do sequences always have a convergent subsequence?
3. Must a scalar multiple of a Cauchy sequence be Cauchy? Must a sum of

two Cauchy sequences always be Cauchy?
4. If {a3n−2}, {a3n−1}, and {a3n} converge to the same limit a, must {an}

converge to a?
5. Can an unbounded sequence have a convergent subsequence? Can it have

many convergent subsequences?
6. Let {an} be a Cauchy sequence that has a subsequence {ank

} converging
to a. Must we have an → a?

7. Suppose that we are given a sequence of rational numbers that converges
to an irrational number r. Is it possible to obtain many such sequences
each converging to the same limit r?

8. Suppose that β > 0 is given. Is it possible to construct a sequence of
rational numbers converging to

√
β?

9. Does there exist an example of a bounded sequence having four subse-
quences converging to different limits?

10. Let an = (−1)n. For each fixed N , do we have |an − aN | = 0 for infinitely
many values of n? Does {an} satisfy the Cauchy criterion for convergence?

11. Let an =
√
n and p ∈ N be fixed. Then

an+p − an =
√
n+ p−√

n =
p√

n+ p+
√
n
→ 0 as n → ∞.

Does {an} satisfy the Cauchy criterion for convergence?
12. Is every bounded monotone sequence Cauchy? Is every Cauchy sequence

monotone?
13. Is the sequence {an}, an = 1 + 1

22 + 1
32 + · · ·+ 1

n2 , Cauchy?
14. If an+1 − an → 0 as n → ∞, must {an} be convergent?
15. Does limn→∞(1/n)

∑n
k=1(1/k) exist? If so, what is this limit? If not, must

it be ∞?
16. Does limn→∞(1/

√
n)

∑n
k=1(1/

√
k) exist? If so, what is this limit?

17. Must a constant sequence be (C, 1) summable?

Exercises 2.68.

1. Suppose that p is an integer. Show that if |r| < 1, then the sequence
{nprn}n≥1 converges to zero. In particular, rn → 0 as n → ∞ if |r| < 1.

2. Construct three divergent sequences each having a convergent subse-
quence.

3. If the subsequences {a2n} and {a2n+1} converge to a, prove that {an} also
converges to a.
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4. Suppose that {an} is a sequence of real numbers and limn→∞ an = a,
a 	= 0. For any sequence {bn}, show that
(a) lim supn→∞(an + bn) = limn→∞ an + lim supn→∞ bn.
(b) lim infn→∞(an + bn) = limn→∞ an + lim infn→∞ bn.
(c) lim supn→∞ anbn = limn→∞ an lim supn→∞ bn.
(d) lim infn→∞ anbn = limn→∞ an lim infn→∞ bn.

5. If {a2n} and {a2n+1} are both Cauchy, then show that {an} need not be
Cauchy. How about if {a2n} and {a2n+1} both converge to the same limit?

6. Show that the following sequences are Cauchy:

(a) an =

n−1∑

k=0

(−1)k

k!
. (b) an =

n∑

k=0

1

k!
. (c) an =

n∑

k=1

(−1)k−1

2k − 1
.

7. Define an = sin(nπ/2). Extract subsequences of {an} each having the
stated property below:
(a) converging to 1. (b) converging to −1.
(c) converging to 0. (d) divergent.

8. Suppose that {an} is a sequence such that

|an+2 − an+1| ≤ 3

n
|an+1 − an| for n ≥ 1.

Show that {an} is Cauchy.
9. If |an| < 1/2 and |an+1 − an+2| ≤ (1/8)|a2n+1 − a2n| for all n ∈ N, prove

that the sequence {an} converges.
10. Let a1 = 1 and an+1 = 1 + 1/(1 + an) for all n ≥ 1. Is {an} a Cauchy

sequence? If so, find its limit.
11. Define a1 = 1 and an+1 = 1/(3+an) for n ≥ 1. Show that {an} converges.

Also, find the limit of the sequence.
12. If {xn} is a sequence of real numbers such that xn+1−xn → x, show that

xn/n → x.
13. Show that

(a) lim
n→∞

1

n

n∏

k=1

(2n+ k)1/n =
27

4e
. (b) lim

n→∞
1

n

n∏

k=1

(a+ k)1/n =
1

e
.

14. Show that if {sn} and {tn} are (C, 1) summable to S and T , respectively,
then {sn ± tn} is (C, 1) summable to S ± T .
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