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Example. Prove that lim,_, o 3/n = 1.

Solution. The sequence x, = ¢/n — 1 is clearly positive, so we only need to bound it
from above by a sequence converging to 0. For that we employ the binomial expansion

s (o (o e

Forgetting all terms but one, we can write

which translates to x, < ./ ﬁ, for n > 2. The sequence ‘/"—ET, n > 2, converges to 0,
and hence by the squeezing principle, (x,), itself converges to 0, as desired. O

The third example was published by the Romanian mathematician T. Lalescu in 1901
in the Mathematics Gazette, Bucharest.

Example. Prove that the sequence a, = "V/(n + 1)! — v/nl,n > 1, is convergent and
find its limit.

Solution. The solution we present belongs to M. Tena. It uses Stirling’s formula

n=amn(2) e, witho <6, <1,
e
which will be proved in Section 3.2.11. Taking the nth root and passing to the limit, we
obtain

. n
lim =e.
n—o00 /'yt
We also deduce that
. n+1 . n+1 n
li - = 1i =e.
n—o0 n! n—oo n n n!

Therefore,

lim Hl.-*-—l)' ' = lim [ "@+» ((n 4+ 1Hhn = lim nnenyf (1 + 1) !
n—»o0o " nl n—»o0 (n!)n-H - ne>00 —“n!
n+1

n

n
1 =a}
= lim <"+'"+ ) =lim< )
n—00 ,"/n! n—o00 n n!




( . on+ 1)“"‘"—%#{
= lim =e.

n—oo /pnl
Taking the nth root and passingto the limit, we obtain

) n+1/(n + ])|
lim =1

noo n! ’
and hence
. ay VACE))
lim — = lim ———~— —1=0.
n—oo n! n—00 '"/Il!
Thus, if we set
ay an
b = 1 + Iy — ’
" ( !

then lim,,_, o b, = e. From the equality

<n+l/(n +—1)!)n a"_"_,‘/,ﬁ
/n!
we obtain

a, =1n (——HV' wt 1)!)" (Inb,)™" (’_')_1
n = \,/n—' n W .
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The right-hand sideisa product of three sequences that converge, respectively,to 1 = Ine,

l=1Ine, and L. Therefore, the sequence (a,), converges to the limit L

Apply these methods to the problems below.

313. Compute

lim {sin (7[\/712 +n+ 1)’ .

n—>oo

34, Letg be a positive integer and y a positive real number. Prove that

k

A, (Z) (%)A (1 N %)H - euu- k!

(]

3 .
15, Let (xx), be a sequence of positive integers such that x,, = n? foralln > 1. Isit

true that lim,, o0 X, = 00?
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316.

317.

3 Real Analysis

Let (a,), be a sequence of real numbers with the property that for any n > 2 there
exists an integer k, 2 < k < n, such thata, = “7‘ Prove that lim, o a, = 0.

Given two natural numbers k and m let ay, az, ..., ax, by, by, . .., b,, be positive
numbers such that

Yar+ a4+ Y=o+ b+ + o,

for all positive integers n. Prove thatk = m and a1a; - - - ay = b1by - - - b,.

318. Prove that
" 1
lim 112/ *Hdx = =,
n—»o0 0 2
319. Let a be a positive real number and (x,),>) a sequence of real numbers such that

320.

x1 =a and

n—1

Xpp1 = (n+ 2)x, — kak, foralln > 1.
k=1

Find the limit of the sequence.

Let (x,)n>1 be a sequence of real numbers satisfying

Xntm < Xp+Xm, n,m>1.

Show that lim,—,c 3 exists and is equal to inf,5; 2.

321. Compute
k
) n k ;!“H
L33 (;ﬁ) -
322. Let b be an integer greater than 5. For each pos_itive integer n, consider the number

computing the limit. The first is due to Karl Weierstrass.

x,=11...122...25,
S N e’

n—1 n

written in base b. Prove that the following condition holds if and only if 5 = 10:

There exists a positive integer M such that for any integer n greater than
M, the number x, is a perfect square.

We exhibit two criteria for proving that a sequence is convergent without actually
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Weierstrass’ theorem. A monotonic bounded sequence of real numbers is convergent.
Below are some instances in which this theorem is used.

323. Prove that the sequence (a,),>1 defined by

1 1 1
ap=1+=-+=+---+==—In(n+1), n>1,
2 3 n

is convergent.

324. Prove that the sequence

an=\/1+\/2+\/3+---+\/r7, n>1,

is convergent.

325. Let (a,), be a sequence of real numbers that satisfies the recurrence relation a,.+1 =
Va2 +a, —1,forn > 1. Prove thata; ¢ (=2, 1).

326. 'Using the Weierstrass theorem, prove that any bounded sequence of real numbers
has a convergent subsequence.

Widely used in higher mathematics is the following convergence test.

Cauchy’s criterion for convergence. A sequence (x,), of points in R" (or, in general,
in a complete metric space) is convergent if and only if for any € > 0 there is a positive
integer n, such that whenever n,m > ne, ||x, — x|l < €.

A sequence satisfying this property is called Cauchy, and it is the completeness of
the space (the fact that it has no gaps) that forces a Cauchy sequence to be convergent.
This property is what essentially distinguishes the set of real numbers from the rationals.
In fact, the set of real numbers can be defined as the set of Cauchy sequences of rational
Numbers, with two such sequences identified if the sequence formed from alternating
humbers of the two sequences is also Cauchy.

327. Let (a;)n>1 be a decreasing sequence of positive numbers converging to 0. Prove
that the series S = a; — a; + a3 — as + - - - is convergent.

328. Let ao, by, co be real numbers. Define the sequences (au)n, (b)), (Cu)n TECUr-
sively by

b b, + ¢ c,t+a
any1 = a"—; . ) bn+1 = '—;_", Cutl = ’ ) ”, n= 0.

Prove that the sequences are convergent and find their limits.

e
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329. Show that if the series > a, converges, where (a,), is a decreasing sequence, then
lim,_, o na, = 0.

The following fixed point theorem is a direct application of Cauchy’s criterion for
convergence.

Theorem. Let X be a closed subset of R" (or in general of a complete metric space)
and f : X — X a function with the property that 1f(x) = fFODI < cllx — yll for any
X,y € X, where 0 < ¢ < 1 is a constant. Then [ has a unique fixed point in X.

Such a function is called contractive. Recall that a set is closed if it contains all its
limit points.

Proof. Let xg € X. Recursively define the sequence x, = f(x,_;),n > 1. Then
”xn+1 =Xl <cllx, — Xpogl] <-o- <" lxy — xoll.
Applying the triangle inequality, we obtain

”xn+p — x| < ”xn+p — Xn4p—1 I+ ”xn+p—l - xn+p-2” + o X — Xl

SE@PTAPE L xy — xol)

n

c
=c"(I+c+- -+ Ny — x| < T 1 = xoll.

—c
This shows that the sequence (x,,),, is Cauchy. Its limit x* satisfies f&*) =limyo0 fx,)
= lim,, x, = x*; it is a fixed point of f. A second fixed point y* would give rise to

the contradiction ||x* — y*|| = || f(x*) — SN < cllx* — y*||. Therefore, the fixed
point is unique. ]

Use this theorem to solve the next three problems.

330. Two maps of the same region drawn to different scales are superimposed so that the
smaller map lies entirely inside the larger. Prove that there is precisely one point

on the small map that lies directly over a point on the large map that represents the
same place of the region.

331. Let ¢ and € be real numbers with le] < 1. Prove that the equation x — e sinx = ¢
has a unique real solution.

332. Let c and xg be fixed positive numbers. Define the sequence

1 c
Xp = = <-xn—[ + ——'> ) forn 2 1.
2 Xn—1

Prove that the sequence converges and that its limit is Je.

_— e em




