Inequalities

Selected by prof. Andrew Török

September 30, 2016

Facts to remember:

- A continuous function $f: M \rightarrow \mathbb{R}$ on a compact set M reaches its maximum and minimum values on M.
- A closed and bounded set of \mathbb{R}^{n} is compact (the converse is also true).

Problems:

1. Find

$$
\min _{a, b \in \mathbb{R}} \max \left(a^{2}+b, a+b^{2}\right)
$$

2. Find all positive integers n for which the equation

$$
n x^{4}+4 x+3=0
$$

has a real root.
3. Let a, b, c be the sides of a right triagle, with c the hypothenuse. Prove that

$$
a+b \leq c \sqrt{2}
$$

4. Rearrangement Inequality. Assume $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ are two families of real numbers (repetitions are allowed in both families). Say we arrange the a 's in increasing order,

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{n}
$$

and permute the b 's. Then the sum $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$ is maximized if the b 's are also in increasing order, and minimized when the b 's are in decreasing order.
[More precisely, should use "non-decreasing" instead of "increasing" and "non-increasing" instead of "decreasing".]
5. Chebyshev's inequality. If $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ then

$$
n\left(\sum_{k=1}^{n} a_{k} b_{k}\right) \geq\left(\sum_{k=1}^{n} a_{k}\right)\left(\sum_{k=1}^{n} b_{k}\right)
$$

On the other hand, if $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$, then the inequality above is reversed. [Can be proven using the Rearrangement Inequality.]
6. If $a, b, c \geq 0$ and $(a+1)(b+1)(c+1)=8$ then $a b c \leq 1$. Extend to more variables?
7. Prove that any polynomial (in one variable) with real coefficients that takes only non-negative values can be written as the sum of the square of two polynomials.
8. Arithmetic Mean - Geometric Mean, a.k.a AM-GM If $x_{1}, x_{2}, \ldots, x_{n} \geq 0$ then

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \ldots x_{n}}
$$

with equality only if all the variables are equal. [We proved this already using induction, now try to prove it directly.]
9. If $a, b, c \geq 0$ then

$$
9 a^{2} b^{2} c^{2} \leq\left(a^{2} b+b^{2} c+c^{2} a\right)\left(a b^{2}+b c^{2}+c a^{2}\right)
$$

10. Cauchy-Schwarz For a_{k}, b_{k} complex numbers (but enough to prove it for $\left|a_{k}\right|,\left|b_{k}\right|$, so for real numbers)

$$
\sum_{k=1}^{n}\left|a_{k}\right|^{2} \sum_{k=1}^{n}\left|b_{k}\right|^{2} \geq\left|\sum_{k=1}^{n} a_{k} b_{k}\right|^{2}
$$

with equality if and only if

$$
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}
$$

11. Prove that the finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ of positive numbers is a geometric progression if and only if

$$
\left(a_{0} a_{1}+a_{1} a_{2}+\cdots+a_{n-1} a_{n}\right)^{2}=\left(a_{0}^{2}+a_{1}^{2}+\cdots+a_{n-1}^{2}\right)\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)
$$

12. Let a_{k} be positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=1, n \geq 2$. Then

$$
\frac{a_{1}}{1+a_{2}+a_{3}+\cdots+a_{n}}+\frac{a_{2}}{1+a_{1}+a_{3}+\cdots+a_{n}}+\cdots+\frac{a_{n}}{1+a_{1}+\cdots+a_{n-1}} \geq \frac{n}{2 n-1}
$$

