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The Falling Slinky

Robert J. Vanderbei

Abstract. It is an interesting and counterintuitive fact that a Slinky released from a hanging
position does not begin to fall all at once but rather each part of the Slinky only starts to fall
when the collapsed part above it reaches its level. The analyses published so far have given
physical arguments to explain this property of Slinkies. In particular, they have relied on the
fact that a perturbation to a Slinky travels through the Slinky as a wave and therefore has a
certain propagation speed. Releasing a Slinky that was being held at the top is a perturbation
at the top, and it takes time for that perturbation to propagate downward. This “high-level”
analysis is, of course, correct. But, it is also interesting to analyze the dynamics from a purely
mathematical perspective. We present such a careful mathematical analysis. It turns out that
we can derive an explicit formula for the solution to the differential equation, and from that
solution, we see that the effect of gravity exactly counteracts the tension in the Slinky. The
mathematical analysis turns out to be as interesting as the physics.

1. INTRODUCTION. Consider a Slinky that is held at one end while the rest of it
hangs freely. Assume that the Slinky is suspended in this manner until all transient
oscillatory motions dissipate, that is, until the Slinky reaches a suspended static equi-
librium. Suppose that the Slinky is then released and begins to fall. As it falls due to
gravity, it also shrinks in extent due to the contracting force in the Slinky itself. Back in
1993, M. G. Calkin [1] published an analysis showing that the net effect of these two
dynamics exactly counteract each other and that the full extent of the Slinky remains
utterly at rest except for the top, which falls due to gravity and gathers more and more
of the Slinky as it falls. The bottom of the Slinky therefore remains motionless until
the full Slinky is completely compressed, at which point the whole thing falls down-
ward together. This surprising effect fascinated Martin Gardner [3]. Here’s a video
illustrating the phenomenon [7]:

http://www.princeton.edu/~rvdb/WebGL/Slinky.html

A few papers have already appeared (see, e.g., [2,4, 5, 6]) describing this phenomenon
and explaining in physical terms why it makes sense for the stretched part of the Slinky
to remain motionless. In this paper, we describe a simple mathematical model for the
dynamics of a real Slinky, and we give a careful mathematical explanation for this
behavior. One’s first thought is that the gravitational effect should be quadratic in time,
whereas the compressive effect should be sinusoidal, and therefore, any motionless
property should be only approximate. But, it turns out that the dynamics are more
complicated than that, and in fact, the two effects do indeed perfectly cancel each other
out. It is also an interesting side note that the analysis requires the explicit formula for
the roots of a cubic equation.

In Section 2, we start by modeling the Slinky as a chain of n 4 1 bodies each having
mass m, and we assume that each adjacent pair of bodies is connected by a spring hav-
ing spring constant k. We present a detailed analysis of this (overly simplified) discrete
approximation to the problem. Then, in Section 3, we consider the continuum limit of
the discrete approximation. Not surprisingly, this limit turns out to be an instance of

http://dx.doi.org/10.4169/amer.math.monthly.124.1.24
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Figure 1. Three frames from a slow-motion video of a falling Slinky as captured by the author using his
iPhone in Slo-Mo mode.

the wave equation with particular initial values and boundary conditions. We show
that the “stretched” part of the Slinky remains motionless until the collapsed part from
above gets to it. In these sections, the Slinky is implicitly assumed to be porous. In
other words, the discrete bodies can pass freely through each other. Section 4 consid-
ers the more realistic case of a nonporous Slinky. Even here it is possible to derive very
explicit formulas for the motion.

2. DISCRETE APPROXIMATION. Consider n + 1 bodies, numbered O to n, of
equal mass in a line and having springs connecting each adjacent pair of bodies. We
are interested in the interplay between the effects of gravity and the effects of the
springs. In particular, we imagine holding the “top” body, body 0, and letting the rest
of them hang below as they are pulled downward by gravity but held in equilibrium by
the springs. Let

Yo
Vi
y = 2

Yn
denote the vertical heights of the n + 1 masses. According to Newton’s second law of
motion, the mass of a body times its acceleration is equal to the sum of all the forces
acting directly on that body. In the present context, there are two types of forces: (i)

forces from the springs pulling on adjacent bodies and (ii) the force of gravity pulling
each body downward. Hence, we have

my = —kAy — mge,

where y denotes the second derivative of y with respect to time #, g denotes the accel-
eration due to gravity, e denotes the vector of all ones, and

r1 =1 T O 7
—1 —1 1
-1 -1 1
A = +
1 -1 —1
L 01 L - 1
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As we analyze this differential equation, it will be convenient to have the vector y and
its derivatives on the left of the equals sign and all other terms on the right:

my + kAy = —mge. (1)
Static initial conditions. Suppose that initially the masses are hanging in such a way
that the downward force due to gravity exactly matches the upward force due to the

springs so that the Slinky remains stationary—at least until we let go of body 0. Let’s
pick our coordinate system so that

y0(0) =0.

Setting the acceleration y equal to zero for each of the other bodies, we get

mg .
yj—l(O)_zy](O)+yj+l(0):7’ ]21,2,...,}'1—1,
mg
Yu-1(0) — ¥, (0) = s

To find an explicit formula for the initial solution, we look for a solution of the form
y;(0) = aj + bj*. Plugging this guess into the equations above, it is easy to deduce
that

b:% and a:—%(lfl-{-l/Z).
Hence,
mg ( 1. . .
y,-(O):—T n]—Ej(]—l) ) j=0,1,2,...,n. 2)

Particular solution. The general solution to a nonhomogeneous differential equation
is the sum of a particular solution to the nonhomogeneous equation plus the general
solution to the associated homogeneous equation. In this subsection, we will exhibit a
particular solution to the nonhomogeneous equation.

If we let all n 4+ 1 masses start together superimposed on each other at the origin,
then there are no spring forces, and all masses fall downward due to gravity. Hence,
we expect that

gr*
=——¢
yp )

is a particular solution to the differential equation. Indeed, it is easy to see that
yp = —ge
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and that

Hence,
myp + kAyp = —mge
as required.
Homogeneous solution. The associated homogeneous equation is given by
my + kAy = 0.
We look for solutions of the form
y=e"'c
for some symmetric matrix B and some vector c. Differentiating twice, we get
j = B%%'c = B?y,
and so
m¥y +kAy =mB*y + kAy = 0.

This equation is satisfied if we pick

[ k
B =4,/ —+VAi,
m

where 4/ A denotes the positive semidefinite square root of the positive semidefinite
matrix A and i denotes, as usual, the square root of —1. Hence, the general solution to
the homogeneous equation can be written as

Yy = e«/k/m«/Xichr +e—~/k/m«/zizc7,

and the general solution to the original equation is the sum of a particular solution and
the homogeneous solution:

2
VR Ait g R At s,

y=e )

Solution with given initial conditions. To find the solution to our hanging Slinky
that’s been released at time ¢ = 0, we just need to use the initial conditions to solve for
¢, and c_. Plugging ¢t = 0 into our solution, we get

y0) =cy +c_.

Next, using the fact that the velocity vector vanishes at t = 0, we get that
: k . k .
y(0) = —x/chJr— —VAic.=0,
m m
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from which we deduce that ¢, = c¢_. Putting these facts together, we get that

C. =2¢C :&
+ - 5
and so
= ST A T )87
Y= 2 Y 2 ¢
gr
— cos (,/k/m VA r) y0) - e
k t? K ot gt?
Y R S () -
( w2 T w )y() 2 ¢

Our main interest is in the position of the bottom-most mass, y,, as a function of time:

yn([) = efy(l),

where e, denotes the n + 1 vector that is all zeros except for a one in the last position.

Now, if we refer to the equations that defined our initial conditions, we see that all
but the Oth element of Ay(0) is equal to —mg/k and the Oth element turns out to be
mgn/k. So,

mg
——e

Ay(0) = .

mg
+7 (n+1) e,

where ey denotes the n 4 1 vector that is one in the Oth position and zero elsewhere.
From this, it follows that

Hence, the quadratic term in the Taylor series expansion of the cosine exactly cancels
the quadratic acceleration due to gravity term.

Finally, let us consider the other terms in the Taylor series expansion. Since the row
sums of the A matrix all vanish, it follows, as mentioned before, that Ae = 0. Hence,
for j > 1,

ATHy(0) = % (n+1) Aleg.

It is easy to see that Aey is all zeros except for the first two elements. Similarly, A%e is
all zeros except for the first three elements. By induction, it is easy to check that A/ey is
zero in all but the first j 4+ 1 elements. Hence, the last, i.e., (n 4 1)st, element remains
zero until j = n. Therefore, the last component of the vector vanishes in the Taylor
series until the #>" term. Hence, the motion of the bottom mass in the chain appears to
remain fixed until time is sufficiently great that the #>* term becomes significant.

3. CONTINUUM SOLUTION. Now let’s study the limit as n tends to infinity.

Before taking limits, we need to scale things appropriately. First, rather than having
each body have mass m, we will assume that each body has mass m/n so that the total
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mass is roughly m. Also, we need to scale the spring constant appropriately. It turns
out that the correct choice there is to increase the spring constant in direct proportion to
the number of masses: kn instead of k. With these rescalings, the differential equation
(1) becomes

..+k A
Y m 1/n?

y = —ge. (3)

We also change our indexing from a simple index j that counts the bodies to a real
number x that represents the fraction of the distance from the top of the Slinky to the
bottom. So, x = O represents the top, x = 1 represents the bottom, and, in general, the
index j is replaced by x = j/n. With this notation, all rows of the matrix A/(1/n?)
except the first and the last converge to the negative of the second derivative of height
y with respect to the variable x:

A a2

U2 ox

The first row (corresponding to x = 0) and the last row (corresponding to x = 1)
require a different scaling. Rather than 1/n? in the denominator, we need 1/n. So, for
these two cases, we must divide (3) by n before taking limits. Doing this and taking
limits, we see that the right-hand side and the first term on the left-hand side both
vanish, and so we are left with

a
a—y(x, 1)=0, forxe{0 1}ands > 0.
X
In the continuum limit, the initial conditions given by (2) become

y(x,0) = g (x — l)c2> .

To summarize, the differential equation that defines the continuum problem is a par-
ticular solution to the wave equation

" = K 0 1150
—5 X, - — —5 X, = &8> <X < . > s
o2 m 0x2 g
1

y(x,0) = —% <x—§x2>, 0<x<l1,

dy

—(x,00 = 0, 0<x<l,

ot

dy

—(x,1) = 0, xe€{0,1}, t >0.

dx

To solve this wave equation, we must find a particular solution to the differential equa-
tion and then the most general solution to the associated homogeneous equation.
A particular solution is easy to produce:

(x, 1) : r°
X, 1) = ——gt".
yp 28
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Checking that this is a solution is trivial. The general solution to the homogeneous
equation is also easy to write down:

ya(x, 1) = fi (x +/k/m t) ,

where f. are arbitrary functions. Again, it is trivial to check that such a function
satisfies the homogeneous wave equation

2

92 k d
o = = S5 =0,

12

So, the general solution to the nonhomogeneous equation is

y(x,t)=f+(x+/w7t)+f-(x—mt)—%gtz-

All that remains is to use the boundary conditions to discover the exact form of f, and
f—. From the boundary conditions at # = 0, we see that

mg X
0= o+ o =-"8x(1-3), 0=x=1l @

a—y(X,O)=\/Efi(x)—\/zf’(x)=0, 0<x<1. (5)
dat m m

From (4), we see that f,.(0) + f-(0) = 0. Without loss of generality, we may assume
that f,(0) = f-(0) = 0. From (5), we deduce that f(x) = f'(x) for 0 < x < 1.
Hence, it follows that

and

X

fr(0) = f(x) = ‘%XO‘E)’ 0<x<l1.

Finally, from the boundary conditions at x = 0 and x = 1, we get, after a trivial change
of variables:

f@&)y=—f(=t) and fA+1)=—f (-1, fort>0.

(Note: we have dropped the subscript & since the two functions are the same.) These
last conditions tell us that we can extend the formula for f beyond the interval [0, 1]
by successive reflection operations. It is now easy to check that f is a periodic function
with period 2 defined by

X k X X),

mg
fx) = T (x mod 2) (2 — x mod 2).
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The temporal evolution of the Slinky. Finally, we can analyze the motion of the
Slinky. Consider a fixed location x on the Slinky. From our analysis above, we have

yx, 1) = f(x +Vk/mt)+ f(x —Vk/mt) — %gﬂ.

It is easy to check that for 0 <t < \/m/k x and 0 < x < 1, both arguments to the
function f in the formula for y are in the main interval [0, 2], and therefore, the for-
mula is quite simple in this case:

mg k k
)’(X,t)z——4k ()H—‘/Zt) (2—x—,/;t>
mg | k | k I,
—E(X— Et)(2—x+ Zt)—igl

- —’;Llfx(z —x)

= y(x,0).

To summarize: Not only does the bottom of the Slinky remain motionless for a certain
period of time, but every point on the Slinky (except the very top) remains motionless
for a period of time. For parts close to the top (small values of x), the time of station-
arity is brief, and as we move lower, this time period gets longer. The bottom of the
Slinky remains motionless for 0 <t < \/m/k.

A plot of y(x, t) versus ¢, for some choices of x between zero and one, is shown in
Figure 2.

4. THE REALISTIC CASE: INELASTIC COLLISIONS. It is clear from Figure
2 that the bodies can freely pass through each other as the chain of bodies falls. A
real Slinky is not “porous” like this. Instead, we should assume that the balls can’t
pass through each other. It’s easy to code up a simulation of such a motion. A Matlab
program that computes the path of the balls is shown in Figure 3. The output of this
Matlab code is shown in Figure 4.

From these numerical computations, it is clear that each body in the nonporous
chain remains stationary until the collapsed bodies from above collide with it. Based
on this observation, we can derive a formula for the position of the top of the continuum
Slinky as a function of time. Let 1 (¢) denote the center of mass of the system at time
t. For time t = 0, we compute the center of mass to be

! mg [ 1 1 mg
0) = ,0dx = —— — —x?)dx = ———2.
n(0) /Oy(X)x X 0<x ZX)X 3%

Once released, the center of mass of the Slinky accelerates downward at rate g, so at
time ¢, we have

Img 1 ,

oy Y2 _lmg 1
pit) = u(0) = g’ = —2 == — e ©6)

We now assume that a certain proportion of the top of the Slinky has collapsed to the
bottom position of that proportion. Let x; denote this proportion at time ¢. So, we have

January 2017] FALLING SLINKY 31

This content downloaded from 129.7.128.205 on Mon, 06 Mar 2017 22:56:05 UTC
All use subject to http://about.jstor.org/terms



The Fall of a Porous Slinky
T T

top-most mass .
discrete "x" locations on slinky|
5 = 4

-10

-50 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

time

Figure 2. A plot of y(x, t) versus 7 for x =0, 1/5,2/5, ..., 1. The mass of the Slinky is taken to be m = 1
kg, distance is measured in meters, time in seconds, and the acceleration due to gravity is ¢ = 9.8m/s?. Also
shown is the temporal evolution of the position of the uppermost mass, which changes as masses pass each
other.

IA

y(xho)! X Xty

y(x, 1) =

A%

y(x,0), X > X

and we can compute the center of mass of this partially collapsed Slinky:

1
wu(t) 2/ y(x, t)dx
0

Xt 1
/ y(xz,O)der/ y(x, 0)dx
0

Xt

1 2
= x,y(x,, 0) — %f (x = %) dx

2 2 3
mg X; mg (1  x; Xx;
=—X— - -+ —=). 7

Equating the right-hand sides of (6) and (7) and simplifying, we see that x, must satisfy
a cubic equation:

3 2

x; x5 1k,
— = =+ =-—t" = 0.
3 2 * 2m
32 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124
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n = 500;

dt = 0.0002;

endtime = 0.8;

iters = round(endtime/dt);

k = 1*n;
m = 1/n;
g = 9.8;

A = full(gallery(’tridiag’,n+1,-1,2,-1));
A(1,1) = 1;

A(end,end) = 1;

e = ones(n+1,1);

t = 0;
j = (0:n)’;
y = —(mxg/kK)*x(n*j - 0.5%j.*%(j-1));

ydot = zeros(n+1,1);
ydot2 = -(k/m)*A*xy - gxe;

ylim([1.1*min(y) 1.1*max(y)1);
xlabel(’time’);
ylabel(’y?);

jo=1;

for iter = 1l:iters
ydot = ydot + ydot2xdt/2;
y = y + ydot*dt/2;

for i = (jO+1):n+1
if y(jo) >= y(i)
jo = i-1;
break;
end
end
ybar = mean(y(1:j0));
ydotbar = mean(ydot(1:j0));
y(1:jO) = ybar;
ydot(1:j0) = ydotbar;

y =y + ydot*dt/2;

ydot2 = -(k/m)*A*xy - gxe;

ydot = ydot + ydot2xdt/2;

t =t + dt;

TT(:,iter) = t(l:end);

YY(:,iter) = y(l:end);
end
plot(TT’,YY’,’b-"); hold on;
plot (mean(TT) ,mean(YY),’r-’); hold off;

Figure 3. Matlab code for n nonporous balls.

The general solution to this cubic equation is

1 1
X = — — MC[ -
2 4quC,

s

where u is any of the three complex roots of unity and

January 2017] FALLING SLINKY
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The Fall of a Solid Slinky

O T T T T T T T

— — center of mass

discrete "x" locations on slinky
1k _
2k i
3k 4
> T e~
4k T~ - 4
~
~
~
~N
~
~
5E 4
6+ i
_’7 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time

Figure 4. A plot of y(x, t) versus ¢ for five of 500 nonporous balls. The solid lines show the motion over time
of every 100th ball. The dashed line shows evolution of the center of mass of the system. As before, the total
mass is taken to be 1 kg, distance is measured in meters, time in seconds, and g = 9.8m/ s2.

1/3

—l+§£t2—|— §£t2 —1—|—3£I2
Ctz 4 2m \/42m ( m )

We need to pick the correct root of unity. It must be picked so as to ensure that x; lies
between 0 and 1. Careful analysis of the case where ¢ is small allows us to determine
which of the three roots of unity is the correct one.

We start by considering the case r = 0. In this case, the cubic equation is easy:

x> x?
?0—?020 — X():O, O, 3/2

Let us try to determine which cube root of unity is associated with 3/2. For t = 0,
we have

Co=-1/2,
and so we get
1
Xo = E(l—i—u—i—l/u).
34 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124
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Clearly, the root u = 1 yields the 3/2 solution, and the other two roots, uy = e=>7//3,

both yield a zero solution. To determine which of these two roots is the correct one,
we consider the case where /k/m t is tiny, say ¢. In this case, we have

1/3
1 3 |
C, ~ (—§+£4si) ~ —§+ii.

Plugging into our equation for x,, we get

1 . 1 e 1
+ o +2mi/3 .
xXTN - —e —_—t—1i) -
' 2 ( 2 /3 > Jot2mi/3 (_% + % i)
3
1 4 1 I3 ‘
=+ e:i:2m/3 (_ = l> + 612711/3—
2 2 /3 - i‘/—%i
_ 1 | 4 o£2mis3 (1 2 i> 1 F2mi/3 1
2 V3 - j—§z

1 ) 2e . 2e
~ =14 e (1 - — ) + T/ (1 + — l))
2 ( V3 V3

_ ii (_eiZm'/3+e:|:2ni/3)

V3

= *e&.

From this computation, we see that u produces x, values that are positive for small ¢
whereas u_ produces negative values. Hence, u . is the correct root.

Finally, we note that as a by-product of this analysis we can compute how long
it takes for the Slinky to fully collapse. The moment of full collapse corresponds to
x; = 1. Hence, from our cubic equation, we get that

Lilke g
6 2m

Solving for t we get

P m
-~ V3K
Figure 4 shows the output produced by the Matlab code shown in Figure 3. The red
curve plots the center of mass as a function of time.
Finally, the author has produced a WebGL online [7] integration of the differential
equation. This dynamic animation can be seen here:

http://www.princeton.edu/~rvdb/WebGL/Slinky.html
S. FINAL REMARKS. Calkin’s 1993 paper [1] provides a detailed analysis equiva-
lent to both the porous and the nonporous continuum cases discussed here. He refers to

these two cases as the “loosely wound spring” and the “tightly wound spring,” respec-
tively. The results are consistent with those presented here, but the derivations are
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based on physical principles that have a mathematical basis but make the paper hard
to follow for someone not familiar with these principles.

In 2001, Graham [4] modeled the Slinky as a pair of masses connected by a spring.
His results are consistent with the results obtained below in case where n = 1.

In 2002, Sawicki [5] discussed the falling Slinky but only computed the stretch
profile before releasing the Slinky.

In 2011, Unruh [6] provided an analysis of both the porous and the nonporous cases.
For the porous case, he started directly with the wave equation and derived the same
results as given here. For the nonporous case, his analysis differs from that presented
here.

In 2012, Cross and Wheatland [2] provided a detailed analysis of the nonporous
case. Their results are equivalent to those obtained here, but again, the deriva-
tion depends on understanding certain physical principles that might not be well-
understood by a general mathematical audience.

It is clear that the results in this paper are not new to the physics community. But, the
unique behavior of the falling Slinky is sufficiently surprising that a rigorous analysis
should also be inspiring to mathematicians.

ACKNOWLEDGMENTS. The author would like to thank his colleague, Jeremy Kasdin, for introducing him
to the problem and for buying him a Slinky to play with. The author would also like to thank the editor and the
referees for their excellent, helpful, and timely comments.
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