University of Houston Tin Lam

Problem of the Week Fall 2014, Week 1

Problem 1: Find Y30, k2.

Solution 1: We know by induction that 37, k = &
1

n(n + 1). (Or derive this as Gauss did by
pairing off (n,1), (n — 1,2), etc. each with sum n + 1.)

Note that (k+1)% = k3 + 3k% + 3k + 1.
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Note the left-hand side is a telescoping sum, which evaluates to (n + 1)3 — 1.
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Back to the original problem:

Yk = é(5o)(51)(101) = 42925.

Problem 2: Show f :(0,00) — R defined by f(z) = x coth(z) is strictly increasing.
Solution 2: By definition of coth(),
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f(x) = zcoth(z) =
We will apply the quotient rule of differentiation, and have:
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The denominator is positive for > 0 due to the square, and that e = e™* only when x = 0.
Note that g(z) := €?* — e72* — 4z, and ¢'(z) = 2(e® — e ®)2. ¢'(z) > 0 for all > 0. Since
g(0) = 0 and that g is strictly increasing, g(x) > 0 for z > 0. f’(x) > 0 for all x > 0, hence it is
strictly increasing.



