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Problem 1: Find
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Solution 1: We know by induction that
∑n

k=1 k = 1
2n(n+ 1). (Or derive this as Gauss did by

pairing off (n, 1), (n− 1, 2), etc. each with sum n+ 1.) Note that (k+ 1)3 = k3 + 3k2 + 3k+ 1.
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Note the left-hand side is a telescoping sum, which evaluates to (n+ 1)3 − 1.
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Back to the original problem:
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(50)(51)(101) = 42925.

Problem 2: Show f : (0,∞) → R defined by f(x) = x coth(x) is strictly increasing.

Solution 2: By definition of coth(),

f(x) = x coth(x) = x
ex + e−x
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.

We will apply the quotient rule of differentiation, and have:
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The denominator is positive for x > 0 due to the square, and that ex = e−x only when x = 0.
Note that g(x) := e2x − e−2x − 4x, and g′(x) = 2(ex − e−x)2. g′(x) > 0 for all x > 0. Since
g(0) = 0 and that g is strictly increasing, g(x) > 0 for x > 0. f ′(x) > 0 for all x > 0, hence it is
strictly increasing.
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