PROBLEM OF THE WEEK - FALL 2014 - WEEK 3 - DUE SEPTEMBER 17

QUESTION 1

(*Proposed by Dr. Climenhaga*) Consider the square lattice of \mathbb{R}^2 whose points are the points in \mathbb{R}^2 with coordinates that are both integers; e.g., (0,0), (1,-3), (400,16).

Is there are regular hexagon (six edge polygon whose edges have equal length and with equiangular vertices) whose vertices all lie on the lattice?

QUESTION 2

Consider the function which takes two points z_1, z_2 in the unit disc $\mathbb{B}^2 = \{z \in \mathbb{R} : |z| < 1\}$ and returns a real number:

$$d(z_1, z_2) = \cosh^{-1} \left(1 + \frac{2|z_1 - z_2|^2}{(1 - |z_1|^2)(1 - |z_2|^2)} \right).$$

Show that $d: \mathbb{B}^2 \times \mathbb{B}^2 \to \mathbb{R}$ is a metric:

(i) $d(z, z) \ge 0$ with equality only when z = 0.

(ii) $d(z_1, z_2) = d(z_2, z_1)$

(iii) For
$$z_3 \in \mathbb{B}^2$$
, $d(z_1, z_2) \le d(z_1, z_3) + d(z_3, z_2)$

Bonus: What are the geodesics when we use this metric?