PROBLEM OF THE WEEK - FALL 2014 - WEEK 4

QUESTION 1

[Proposed by Dr. Paulsen] Let A and B be two $n \times n$ matrices with real entries, so $A, B \in M_n(\mathbb{R})$. Define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \det(A + Bx)$$

(i) Show that $f^{(3)}(x) = 3! \det B$.

(ii) Show that in general $f^{(n)}(x) = n! \det B$.

For example, when
$$n = 3$$
 and $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then det $B = 2$ and $f(x) = \det \begin{bmatrix} 1+x & 0 & 2 \\ 2+3x & 2+2x & 0 \\ 0 & 0 & 1+x \end{bmatrix} = (1+x)(1+x)(2+2x)$

Then

.

$$f'(x) = 6(1+x)^2$$

$$f''(x) = 12(1+x)$$

$$f^{(3)}(x) = 12 = 3! \cdot \det B$$

QUESTION 2

[Proposed by Alex Bearden] Find a sequence (x_n) of non-negative real numbers such that the series $\sum_n x_n$ converges, but the sequence (nx_n) does **not** converge to 0.