A _second order linear differential equation_ is an equation which can be written in the form

\[y'' + p(x)y' + q(x)y = f(x) \]

where \(p, q, \) and \(f \) are continuous functions on some interval \(I. \)

The functions \(p \) and \(q \) are called the _coefficients_ of the equation.
The function f is called the **forcing function** or the **nonhomogeneous term**.

\[
y'' + p(x) y' + q(x) y = f(x)
\]
“Linear”

Set \(L[y] = y'' + p(x)y' + q(x)y \). \(\text{eq} \)

* \(L(c_1 y_1 + c_2 y_2) = c_1 L[y_1] + c_2 L[y_2] \)

Then, for any two twice differentiable functions \(y_1(x) \) and \(y_2(x) \),

\(L[y_1(x) + y_2(x)] = L[y_1(x)] + L[y_2(x)] \)

and, for any constant \(c \),

\(L[cy(x)] = cL[y(x)] \).

That is, \(L \) is a **linear differential operator**.
THEOREM: Given the second order linear equation (1). Let \(a \) be any point on the interval \(I \), and let \(\alpha \) and \(\beta \) be any two real numbers. Then the initial-value problem

\[
\begin{align*}
y'' + p(x) y' + q(x) y &= f(x), \\
y(a) &= \alpha, \quad y'(a) = \beta
\end{align*}
\]

has a unique solution.
The linear differential equation

\[y'' + p(x)y' + q(x)y = f(x) = 0 \] \hspace{1cm} (1)

is homogeneous if the function \(f \) on the right side is 0 for all \(x \in I \). That is,

\[y'' + p(x)y' + q(x)y = 0. \] \hspace{1cm} (H)

is a linear homogeneous equation.
If f is not the zero function on I, that is, if $f(x) \neq 0$ for some $x \in I$, then

$$y'' + p(x)y' + q(x)y = f(x)$$

is a **linear nonhomogeneous** equation.

Important Note: Linear differential equations DO NOT HAVE singular solutions.
Section 3.2. Homogeneous Equations

\[y'' + p(x)y' + q(x)y = 0 \quad (H) \]

where \(p \) and \(q \) are continuous functions on some interval \(I \).

The zero function, \(y(x) = 0 \) for all \(x \in I \), \((y \equiv 0) \) is a solution of (H).

The zero solution is called the trivial solution. Any other solution is a non-trivial solution.
Basic Theorems

THEOREM 1: If \(y = y_1(x) \) and \(y = y_2(x) \) are any two solutions of (H), then
\[
u(x) = y_1(x) + y_2(x)
\]
is also a solution of (H).

\[
u'' + p(x)\nu' + q(x)\nu = [y_1'' + y_2'' + p(x)(y_1 + y_2)] + [y_1' + p(x)y_1' + q(x)y_1] + [y_2' + p(x)y_2' + q(x)y_2] = 0 + 0 = 0
\]
The sum of any two solutions of (H) is also a solution of (H). (Some call this property the **superposition principle**).
Proof: \(\text{II. Way} \).

\(y_1 \) and \(y_2 \) are soln of \((\mathbb{H}) \).

\[L[y_1] = 0 \quad \text{and} \quad L[y_2] = 0 \]

\[L[y_1 + y_2] = L[y_1] + L[y_2] \]

\[= 0 + 0 \]

Thus, \(y_1 + y_2 \) is also a soln of \((\mathbb{H}) \).
THEOREM 2: If \(y = y(x) \) is a solution of (H) and if \(C \) is any real number, then

\[
u(x) = Cy(x)\]

is also a solution of (H).

Any constant multiple of a solution of (H) is also a solution of (H).

Proof: \(L[y] = 0 \) since \(y \) is a sol. of (H).

Then \(L[Cy] = C \underbrace{L[y]} = C \cdot 0 = 0 \)

\(\Rightarrow Cy \) is a sol. of (H).
DEFINITION: Let \(y = y_1(x) \) and \(y = y_2(x) \) be functions defined on some interval \(I \), and let \(C_1 \) and \(C_2 \) be real numbers. The expression \(C_1y_1(x) + C_2y_2(x) \) is called a **linear combination** of \(y_1 \) and \(y_2 \).
Theorems 1 & 2 can be restated as:

THEOREM 3: If \(y = y_1(x) \) and \(y = y_2(x) \) are any two solutions of (H), and if \(C_1 \) and \(C_2 \) are any two real numbers, then

\[
y(x) = C_1 y_1(x) + C_2 y_2(x)
\]

is also a solution of (H).

Any linear combination of solutions of (H) is also a solution of (H).
NOTE: \[y(x) = C_1 y_1(x) + C_2 y_2 x \]

is a two-parameter family which "looks like" the general solution. \[y'' + p(x) y' + q(x) y = 0 \]

Is it???
Some Examples from Chapter 1:

\[y_1 = \cos 3x \quad \text{and} \quad y_2 = \sin 3x \]

\[
\begin{align*}
y_1' &= -3\sin 3x \\
y_1'' &= -9\cos 3x \\
y_2' &= 3\cos 3x \\
y_2'' &= -9\sin 3x
\end{align*}
\]

are solutions of

\[
y_1'' + 9y_1 = -9\cos 3x + 9(\cos 3x) = 0 < \text{YEO}
\]

\[\rightarrow y'' + 9y = 0 \quad \text{(Exer. 1.3 #5)} \]

\[
y_2'' + 9y_2 = -9\sin 3x + 9(\sin 3x) = 0 \quad \text{YES}
\]

\[
y = C_1 \cos 3x + C_2 \sin 3x
\]

\[y = c_1 y_1 + c_2 y_2 \]

is the general solution.
\[y_1 = x^2 \quad \text{and} \quad y_2 = x^2 \ln x \]

are solutions of

\[y'' - \frac{3}{x} y' + \frac{4}{x^2} y = 0 \quad (\text{Exer. 1.3 \#6}) \]

\[y = C_1 x^2 + C_2 x^2 \ln x \]

is the general solution.
Example: \[y'' - \frac{1}{x} y' - \frac{15}{x^2} y = 0 \]

a. Solutions

\[y_1(x) = x^5, \quad y_2(x) = 3x^5 \]

General solution: \[y = C_1 x^5 + C_2 (3x^5) \] ??

\[y_2 = 3x^5 = 3y_1 \]

That is, is EVERY solution a linear combination of \(y_1 \) and \(y_2 \)?
Gen. solution: \[y = C_1 x^5 + C_2 (3x^5) \]

\[= (C_1 + 3C_2) x^5 = M x^5 \]

\[u(x) = x^{-3} \text{ is a solution} \]

\[u'(x) = -3x^{-4} \]
\[u''(x) = 12x^{-5} = \frac{12}{x^5} \]

Consider this DE set \[y = x^r \] find \(r \) such that \(y \) is a soln of 1.

\[y' = rx^{r-1} \]
\[y'' = r (r-1)x^{r-2} \]

\[r (r-1)x^{r-2} - \frac{1}{x} rx^{r-1} - \frac{15}{x^2} x^{r-2} = 0 \]

\[r (r-1)x^{r-2} - 15x^{r-2} = 0 \]

\[r^2 - r - 15 = 0 \]

\[r = -3, r = 5 \]

\[y_1 = x^{-3}, \quad y_2 = x^5 \]
Gen. solution: $y = C_1 x^5 + C_2 (3x^5)$

Initial value problems.

$$y(1) = 11 \quad y'(1) = 3$$

Let y be the solution of (1), such that $y(1) = 11$ and $y'(1) = 3$.

Therefore, $y = C_1 x^5 + C_2 (3x^5)$.

$$y' = 5C_1 x^4 + 15C_2 x^4$$

$$\begin{align*}
y(1) &= C_1 + 3C_2 = 11 \\
y'(1) &= 5C_1 + 15C_2 = 3
\end{align*}$$

Solving the system:

$$0.5C_1 + 0.5C_2 = -52$$

No solutions!
b. Solutions:

\[y_1(x) = x^5, \quad y_2(x) = x^{-3} \]

Yes.

General solution: \(y = C_1x^5 + C_2x^{-3} \) ?

Suppose \(y(1) = 11 \) \[y' = 5C_1x^4 - 3C_2x^{-4} \]
\(y'(1) = 3 \)

Let \(u = u(x) \) be any solution of the equation

\[
\begin{align*}
 y(1) &= C_1 + C_2 = 11 \quad \text{(3)} \\
 y'(1) &= 5C_1 - 3C_2 = 3 \\
 -8C_2 &= -52 \Rightarrow C_2 = \frac{52}{8} \\
 8C_1 &= 36 \Rightarrow C_1 = \frac{36}{8}.
\end{align*}
\]

\[y = \frac{36}{8} x^5 + \frac{52}{8} x^{-5} = \frac{9}{2} x^5 + \frac{13}{2} x^{-3}. \]
The general case: Let

\[y = C_1 y_1(x) + C_2 y_2(x) \]

be a two parameter family of solutions of (H). When is this the general solution of (H)?

Answer: When \(y_1 \) and \(y_2 \) ARE NOT CONSTANT MULTIPLES OF EACH OTHER.
DEFINITION: Let \(y = y_1(x) \) and \(y = y_2(x) \) be solutions of (H). The function \(W \) defined by

\[
W[y_1, y_2](x) = y_1(x)y'_2(x) - y_2(x)y'_1(x)
\]

is called the **Wronskian** of \(y_1, y_2 \).

Determinant notation:

\[
W(x) = y_1(x)y'_2(x) - y_2(x)y'_1(x)
\]

\[
W[y_1, y_2] = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}
\]
THEOREM 4: Let \(y = y_1(x) \) and \(y = y_2(x) \) be solutions of equation (H), and let \(W(x) \) be their Wronskian. Exactly one of the following holds:

(i) \(W(x) = 0 \) for all \(x \in I \) and \(y_1 \) is a constant multiple of \(y_2 \) AND

\[
y = C_1 y_1(x) + C_2 y_2(x)
\]

IS NOT the general solution of (H) OR
(ii) \(W(x) \neq 0 \) for all \(x \in I \) and

\[
y = C_1 y_1(x) + C_2 y_2(x)
\]

IS the general solution of (H)

\[
W(x^5, 3x^5) = \begin{vmatrix} x^5 & 3x^5 \\ 5x^4 & 15x^4 \end{vmatrix} = 15x^9 - 15x^9 = 0.
\]

\(W(x) \) is a solution of

\[
y' + p(x)y = 0.
\]

Since \(W[y_1, y_2] = 0 \), \(y = c_1 y_1 + c_2 y_2 \) is not the general solution

See Section 2.1, Special Case.

The Proof is in the text.
Fundamental Set; Solution basis

DEFINITION: A pair of solutions

\[y = y_1(x), \quad y = y_2(x) \]

of equation (H) forms a fundamental set of solutions (also called a solution basis) if

\[W[y_1, y_2](x) \neq 0 \quad \text{for all} \quad x \in I. \]

\[y_1 = x^5, \quad y_2 = x^{-3} \]

\[W(x^5, x^{-3}) = \begin{vmatrix} x^5 & x^{-3} \\ 5x^4 & -3x^{-4} \end{vmatrix} = -3x - 5c = -8x \neq 0 \]
Section 3.3. Homogeneous Equations with Constant Coefficients

Fact: In contrast to first order linear equations, there are no general methods for solving

$$y'' + p(x)y' + q(x)y = 0. \quad (H)$$

But, there is a special case of (H) for which there is a solution method, namely
\[y'' + ay' + by = 0 \quad (1) \]

where \(a \) and \(b \) are constants.

Solutions: (1) has solutions of the form

\[
\begin{align*}
\{ & y'' + ay' + by = 0 \quad \bigcirc \\
& y = e^{rx}, \quad y' = re^{rx}, \quad y'' = r^2 e^{rx} \\
& r^2 e^{rx} + ar e^{rx} + be^{rx} = 0 \\
& e^{rx} [r^2 + ar + b] = 0, \quad e^{rx} \neq 0, \\
& r^2 + ar + b = 0.
\end{align*}
\]
$y = e^{rx}$ is a solution of (1) if and only if

$$y'' + ay' + by = 0$$

$$r^2 + ar + b = 0 \quad (2)$$

Equation (2) is called the **characteristic equation** of equation (1)
Note the correspondence:

Diff. Eqn: \(y'' + ay' + by = 0 \)

\(\Rightarrow \) Char. Eqn: \(r^2 + ar + b = 0 \)

The solutions of

\(y'' + ay' + by = 0 \)

are determined by the roots of

\(r^2 + ar + b = 0. \)
There are three cases:

1. \(r^2 + ar + b = 0 \) has two, distinct real roots, \(r_1 = \alpha, \ r_2 = \beta \).
 \[r^2 - 5r + 6 = 0, \quad r_1 = 2, \quad r_2 = 3 \]

2. \(r^2 + ar + b = 0 \) has only one real root, \(r = \alpha \).
 \[r^2 - 4r + 4 = 0 \quad r = 2 \quad \text{double} \]

3. \(r^2 + ar + b = 0 \) has complex conjugate roots, \(r_1 = \alpha + i\beta, \ r_2 = \alpha - i\beta, \ \beta \neq 0 \).
 \[\alpha, \beta \in \mathbb{R} \quad i^2 = -1 \]
 \[r^2 + 6r + 13 = 0 \]
 \[r_1 = -3 + 2i, \quad r_2 = -3 - 2i \]
Case I: Two, distinct real roots.

\[r^2 + ar + b = 0 \] has two distinct real roots:

\[r_1 = \alpha, \quad r_2 = \beta, \quad \alpha \neq \beta. \]

Then

\[y_0 = e^{\alpha x} \]

are solutions of

\[y'' + ay' + by = 0. \]

\[
W(e^{\alpha x}, e^{\beta x}) = \begin{vmatrix}
\alpha x & \beta x \\
\alpha e & \beta e
\end{vmatrix} = \beta e^{\alpha x + \beta x} - \alpha e^{\alpha x + \beta x} = e^{\alpha x + \beta x} (\beta - \alpha)
\]

\[W \neq 0, \text{ for } \alpha \neq \beta. \]

The general solution of

\[y = c_1 e^{\alpha x} + c_2 e^{\beta x}. \]
$y_1 = e^{\alpha x}$ and $y_2 = e^{\beta x}$ are not constant multiples of each other, \(\{y_1, y_2\} \) is a fundamental set,

$$W[y_1, y_2] = \begin{vmatrix} e^{\alpha x} & e^{\beta x} \\ \alpha x & \beta x \end{vmatrix} = (\beta - \alpha)e^{x(\alpha + \beta)} \neq 0$$

General solution:

$$y = C_1 e^{\alpha x} + C_2 e^{\beta x}$$

Case 1: If the roots of characteristic equation are distinct and real then the solution of (4) is

$$y = c_1 e^{\alpha x} + c_2 e^{\beta x}$$
Example 1: Find the general solution of

\[y'' - 3y' - 10y = 0. \]

(see Example 6, Chapter 1 - Notes)

\[r^2 - 3r - 10 = 0 \]
\[(r - 5)(r + 2) = 0 \]
\[r_1 = 5, \quad r_2 = -2 \]
\[y_1 = e^{5x}, \quad y_2 = e^{-2x} \]
\[-2 \pm 5. \]

\[W(y_1, y_2) \neq 0, \quad \text{Thus} \]
\[y = c_1 e^{5x} + c_2 e^{-2x} \quad \text{general} \]

Solve DE.

\[2y'' - 5y' - 3y = 0 \quad \text{solve DE.} \]

\[\begin{align*}
2r^2 - 5r - 3 &= 0 \\
(r - 3)(2r + 1) &= 0 \\
r_1 &= -\frac{1}{2}, \quad r_2 = 3
\end{align*} \]

\[\begin{align*}
\text{distinct and real} \\
y &= c_1 e^{-\frac{1}{2}x} + c_2 e^{3x}
\end{align*} \]
\(y'' - y' - 6y = 0 \)

\(r^2 - r - 6 = 0 \)

\((r-3)(r+2) = 0 \)

\[r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\(a = 1, \ b = -1, \ c = -6. \)

Distinct real roots:

\(r_1 = 3, \ r_2 = -2 \)

General soln:

\[y = c_1 e^{3x} + c_2 e^{-2x} \]
Example 2: Find the general solution of

\[sr^2 - 11r + 28 = 0 \]

\[y'' - 11y' + 28y = 0. \]

Characteristic Eq.

\[(r-7) (r-4) = 0, \quad r_1 = 7, \quad r_2 = 4\]

Real distinct

Solution: \[y = c_1 e^{7x} + c_2 e^{4x} \]
Case II: Exactly one real root.

\[r = \alpha; \quad (\alpha \text{ is a double root}). \] Then

\[y_1(x) = e^{\alpha x} \]

is one solution of \(y'' + ay' + by = 0. \)

\[
\begin{align*}
y &= C_1 y_1 + C_2 y_2, \\
y_1 &= e^{\alpha x}, \quad y_1 + C y_2
\end{align*}
\]

We need a second solution which is independent of \(y_1. \)

If \(r_1 \) and \(r_2 \) are repeated roots,

\[
\text{Solve } \begin{align*} y'' - 10y' + 25y &= 0 \\
\text{find soln of DE.}
\end{align*}
\]

\[
\begin{align*}
\text{characteristic eq: } & r^2 - 10r + 25 = 0 \\
& (r-5)^2 = 0 \\
& r = 5 \text{ double}
\end{align*}
\]

\[
y = C_1 e^{5x} + C_2 xe^{5x}
\]
NOTE: In this case, the characteristic equation is

\[
(r - \alpha)^2 = r^2 - 2\alpha r + \alpha^2 = 0
\]

so the differential equation is

\[
y'' - 2\alpha y' + \alpha^2 y = 0
\]
Case II. Double Root \(\alpha \): \(r^2 + br + c = 0 \)
\(r_1 = r_2 = \alpha \quad (r-\alpha)^2 = 0 \)

\[y = Ce^{\alpha x} \] is a solution for any constant

\(y_1 = e^{\alpha x} \), we still need \(y_2 \). I can't pick \(C \). Replace \(C \) by a function \(u \) which is to be determined so that

\[y_2 = Ce^{\alpha x} = Cy_1 \Rightarrow w = 0, \quad y_1, y_2 \text{ will not form a basis.} \]

\[(r-\alpha)^2 = 0 \Rightarrow r^2 - 2\alpha \, r + \alpha^2 = 0 \quad \text{characteristic Eq.} \]

\[y'' - 2\alpha \, y' + \alpha^2 \, y = 0 \]

is a solution of: \(y'' - 2\alpha \, y' + \alpha^2 \, y = 0 \)

\[
\begin{align*}
y_1 &= e^{\alpha x} \\
y_2 &= u(x)e^{\alpha x}
\end{align*}
\]

\[
\begin{align*}
y'' &= 10 \, y' + 25 \, y = 0 \\
r^2 - 10 \, r + 25 = 0 \Rightarrow (r-5)^2 = 0 \\
y_1 &= e^{\alpha x} \\
y_2 &= u(x)e^{\alpha x} \\
y_2' &= \alpha \, \frac{du}{dx} + u \, e^{\alpha x} \\
y_2'' &= \alpha^2 \, u \, e^{\alpha x} + 2 \, e^{\alpha x} \, u' + u \, e^{\alpha x}
\end{align*}
\]

\[y'' - 2\alpha \, y' + \alpha^2 \, y = 0 \quad \text{(DE)} \]

\[\alpha^2 \, u \, e^{\alpha x} + 2 \, e^{\alpha x} \, u' + e^{\alpha x} \, u'' = -7 \alpha \,(\alpha \, e^{\alpha x} + u \, e^{\alpha x}) \]

\[2 \, e^{\alpha x} \, u' + e^{\alpha x} \, u'' - 2 \alpha \, u \, e^{\alpha x} = 0 \]

\[\Rightarrow e^{\alpha x} \,(u'' + 2 \, u' - 2 \alpha \, u') = 0 \quad u'' = 0 \quad \text{or} \quad (2 - 2\alpha)u' = 0 \]

\[u' = 0 \]
\[u'' = 0 \]
\[u' = \alpha \Rightarrow u = \alpha \]

* when the roots are repeated. \(r_1 = r_2 = \alpha \)

The general solution will be

\[y = c_1 e^{\alpha x} + c_2 xe^{\alpha x} \]
\[y_1 = e^{\alpha x} \] and \[y_2 = xe^{\alpha x} \] are not constant multiples of each other, \(\{y_1, y_2\} \) is a fundamental set,

\[
W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{\alpha x} & xe^{\alpha x} \\ \alpha x e^{\alpha x} & e^{\alpha x} + \alpha xe^{\alpha x} \end{vmatrix} = \frac{e^{\alpha x}}{2\alpha x} \left(e^{\alpha x} \frac{\alpha x}{e^{\alpha x}} - xe \right) = e^{\alpha x} \neq 0
\]

\[y_1 = e^{\alpha x} \neq y_2 = xe^{\alpha x} \text{ form a fundamental set of \textit{sort of the}} \]

General solution:

\[y = C_1 e^{\alpha x} + C_2 xe^{\alpha x} \]
Examples:

1. Find the general solution of

\[y'' + 6y' + 9y = 0. \]

\[r^2 + 6r + 9 = 0 \]

\[(r + 3)^2 = 0 \Rightarrow r = -3 = \lambda \]

Double root -3x -3x

\[y = c_1 e^{-3x} + c_2 xe^{-3x} \]
2. Find the general solution of

\[y'' - 10y' + 25y = 0. \]

\[\rightarrow \text{Find characteristic eq:} \]

\[r^2 - 10r + 25 = 0 \]

\[(r-5)^2 = 0 \Rightarrow r = 5 \quad \text{double root} \]

\[y = c_1 e^{5x} + c_2 xe^{5x} \]

\underline{Ex3} Solve \[y'' - 14y' + 49y = 0 \]

\[r^2 - 14r + 49 = 0. \]

\[(r-7)^2 = 0 \Rightarrow r = 7 \quad \text{double root} \]

\[y = c_1 e^{7x} + c_2 xe^{7x} \]
Case III: Complex conjugate roots.

\[r_1 = \alpha + i \beta, \quad r_2 = \alpha - i \beta, \quad \beta \neq 0 \]

In this case

\[u_1(x) = e^{(\alpha + i\beta)x} \quad u_2(x) = e^{(\alpha - i\beta)x} \]

are ind. solns. of \(y'' + ay' + by = 0 \) and

\[y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x} \]

is the general solution. BUT, these are complex-valued functions!! No good!! We want real-valued solutions!!
Recall from Calculus II:

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + \cdots \]

\[y = c_1 e^{(x + i\beta)x} + c_2 e^{(x - i\beta)x} \text{ instead} \]

\[y = e^{\alpha x} \left[c_1 \cos \beta x + c_2 \sin \beta x \right] \]

\[\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \pm \frac{x^{2n}}{(2n)!} + \cdots \]

\[\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \cdots \pm \frac{x^{2n-1}}{(2n-1)!} + \cdots \]
\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + \cdots \]

\[e^{i\theta} = 1 + (i\theta) + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \cdots + \frac{(i\theta)^n}{n!} + \cdots \]

\[= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} + \cdots \]

\[= 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots\right) \]

\[e^{i\theta} = \cos \theta + i \sin \theta \quad \text{Euler's Formula} \]

\[\theta = \pi, \quad e^{i\pi} = \cos \pi + i \sin \pi = -1 + 0 = -1 \]

\[e^{i\pi} = -1 \Rightarrow e^{i\pi} + 1 = 0 \]
Relationships between the exponential function, sine and cosine

Euler’s Formula: \(e^{i\theta} = \cos \theta + i \sin \theta \)

These follow:

\[
\begin{align*}
e^{i\theta} &= \cos \theta + i \sin \theta \\
e^{-i\theta} &= \cos \theta - i \sin \theta \\
e^{i\theta} + e^{-i\theta} &= 2 \cos \theta \\
2i \sin \theta &= e^{i\theta} - e^{-i\theta} \\
\sin \theta &= \frac{e^{i\theta} - e^{-i\theta}}{2i} \\
e^{i\pi} + 1 &= 0
\end{align*}
\]

\[
\begin{align*}
\sin(-\theta) &= -\sin \theta \\
\cos(-\theta) &= \cos \theta
\end{align*}
\]
\[y = c_1 e^{(\alpha + i\beta)x} + c_2 e^{(\alpha - i\beta)x} \]

Try to get rid of imaginary terms.

\[y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} e^{i\beta x} = e^{\alpha x}[\cos \beta x + i \sin \beta x] \]

\[= e^{\alpha x} \cos \beta x + ie^{\alpha x} \sin \beta x \]

\[y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} e^{-i\beta x} = e^{\alpha x}[\cos \beta x - i \sin \beta x] \]

\[= e^{\alpha x} \cos \beta x - ie^{\alpha x} \sin \beta x \]

\[\frac{y_1 + y_2}{2} = e^{\alpha x} \cos \beta x, \text{ a real valued soln} \]

\[\frac{y_1 - y_2}{2i} = e^{\alpha x} \sin \beta x \]
\{ y_1 = e^{(\alpha+i\beta)x}, \quad y_2 = e^{(\alpha-i\beta)x} \}

transform into

\{ y_1 = e^{\alpha x} \cos \beta x, \quad y_2 = e^{\alpha x} \sin \beta x \}

\(y_1 \) and \(y_2 \) are not constant multiples of each other, \(\{ y_1, y_2 \} \) is a fundamental set, \(W[y_1, y_2] = \)

\[
\begin{vmatrix}
 e^{\alpha x} \cos \beta x & e^{\alpha x} \sin \beta x \\
 e^{\alpha x} \cos \beta x - e^{2\alpha x} \sin \beta x & e^{\alpha x} \sin \beta x + e^{2\alpha x} \cos \beta x
\end{vmatrix}
\]

\[= \beta e^{2\alpha x} \neq 0, \quad W \neq 0.\]
AND

\[y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x \]

is the general solution.

when the roots of charac. eq are complex conjugate:

\[\alpha \neq \beta, \beta \neq 0 \]

\[y = e^{\alpha x} \left[C_1 \cos \beta x + C_2 \sin \beta x \right] \]
Examples: Find the general solution of

1. \(y'' - 4y' + 13y = 0.\)

 \[r^2 - 4r + 13 = 0, \quad r = \frac{4 \pm \sqrt{16 - 4 \cdot 13}}{2}\]

 \[r = 2 + 3i, \quad \alpha = 2, \quad \beta = 3\]

 \[y = e^{2x} [c_1 \cos 3x + c_2 \sin 3x]\]

2. \(y'' + 6y' + 25y = 0.\)

 \[r^2 + 6r + 25 = 0\]

 \[r = \frac{-6 \pm \sqrt{36 - 4 \cdot 25}}{2} = \frac{-6 \pm 8i}{2}\]

 \[r = -3 + 4i, \quad \alpha = -3, \quad \beta = 4\]

 \[y = e^{-3x} [c_1 \cos 4x + c_2 \sin 4x]\]
Comprehensive Examples:

1. Find the general solution of

\[r^2 + 6r + 8 = 0 \]

\[y'' + 6y' + 8y = 0. \]

\((r + 2)(r + 4) = 0\), \(r = -2, r = -4\) real distinct.

\[y = c_1 e^{-2x} + c_2 e^{-4x} \]

Ex Find the general soln of \(y'' + 9y = 0 \)

\[r^2 + 9 = 0 \Rightarrow r = \pm 3i \]

\(a = 0, \ b = 3\)

\[y = e^{0x} \left[c_1 \cos 3x + c_2 \sin 3x \right] \]

\[y = c_1 \cos 3x + c_2 \sin 3x \]
2. Find a solution basis for

\[\frac{d^2y}{dx^2} - 10 \frac{dy}{dx} + 25y = 0. \]

\[r^2 - 10r + 25 = 0 \]

\[(r - 5)^2 = 0, \quad r = 5 \text{ double root} \]

\[y = c_1 e^{5x} + c_2 xe^{5x} \]
3. Find the solution of the initial-value problem

\[y'' - 4y' + 8y = 0, \quad y(0) = 1, \quad y'(0) = -2. \]

\[r^2 - 4r + 8 = 0 \]
\[r = \frac{4 \pm \sqrt{16 - 4 \cdot 8}}{2} = \frac{4 \pm 4i}{2} = 2 \pm 2i \]
\[a = 2, \quad \beta = 2 \]
\[y = e^{2x} \left[c_1 \cos 2x + c_2 \sin 2x \right] \text{ the general solution.} \]

\[y(0) = 1 \Rightarrow 1 = c_1 \]

\[y' = 2e^{2x} \left[c_1 \cos 2x + c_2 \sin 2x \right] + e^{2x} \left[-2c_1 \sin 2x + 2c_2 \cos 2x \right] \]
\[-2 = 2c_1 + 2c_2 \Rightarrow -1 = c_1 + c_2, \quad \text{already } c_1 = 1 \]
\[c_2 = -2 \]

\[y = e^{2x} \left[\cos 2x - 2 \sin 2x \right]. \]
4. Find the differential equation that has

\[y = C_1e^{2x} + C_2e^{-3x} \]

as its general solution. (C.f. Chap 1.)

\(r_1 = 2, \quad r_2 = -3 \) real distinct.

\((r-2)(r+3) = r^2 + r - 6 = 0 \) char.

\[r^2 + r - 6 = 0 \]

\[y'' + y' - 6y = 0 \]
5. Find the differential equation that has
\[y = C_1 e^{2x} + C_2 x e^{2x} \]
as its general solution. (C.f. Chap 1.)

\[(r - 2)^2 = 0\]
\[r^2 - 4r + 4 = 0\] Chor. Eq.
\[y'' - 4y' + 4y = 0.\] DE

If roots \(r_1, r_2\) are real & distinct:
\[y = c_1 e^{r_1 x} + c_2 e^{r_2 x}\]

If roots \(r\) double & real
\[y = c_1 e^{rx} + c_2 xe^{rx}\]

If roots are complex conjugate
\[r = \alpha \pm i \beta\]
\[y = e^{\alpha x} \left[c_1 \cos \beta x + c_2 \sin \beta x \right]\]
6. \(y = 5xe^{-4x} \) is a solution of a second order homogeneous equation with constant coefficients.

a. What is the equation?

double root \(= -4 \) characteristic eq:

\[
(r + 4)^2 = 0
\]

\[
 r^2 + 8r + 16 = 0
\]

\[
y'' + 8y' + 16y = 0 \quad \Rightarrow \quad \boxed{\text{AE}}
\]

b. What is the general solution?

\[
y = c_1e^{-4x} + c_2xe^{-4x}
\]
7. \(y = 2e^{2x} \sin 4x \) is a solution of a second order homogeneous equation with constant coefficients.

a. What is the equation?
\[
(r-(2+4i))(r-(2-4i)) = 0
\]
\[
r^2 - 4r + 20 = 0.
\]

b. What is the general solution?
\[
y = e^{2x} \left[c_1 \cos 4x + c_2 \sin 4x \right].
\]
From Exercises 1.3:

18. \(y = C_1 e^x + C_2 e^{-2x} \).

\[(r-1)(r+2) = 0\]
\[r^2 + r - 2 = 0\]
\[y'' + y' - 2y = 0.\]

19. \(y = C_1 e^{2x} + C_2 xe^{2x} \) double \(r = 2 \).

\[(r-2)^2 = 0\] ch. eq.
\[r^2 - 4r + 4 = 0\]
\[y''' - 4y' + 4y = 0.\]
22. \[y = C_1 \cos 3x + C_2 \sin 3x. \]

\[\gamma = 0 + i\beta = 0 + 3i, \]

\[(\gamma - 3i)(\gamma + 3i) = 0 \]

\[r^2 - 3ir - 3ir + 9i^2 = 0 \]

\[r^2 - 9 = 0 \]

\[y'' - 9y = 0. \]

\[\alpha = 2 \quad \beta = 3 \]

24. \[y = C_1 e^{2x} \cos 3x + C_2 e^{2x} \sin 3x. \]

\[(\gamma - (2+3i))(\gamma + (2-3i)) = 0 \]

\[= r^2 - 4r + 13 = 0 \]

\[y'' - 4y' + 13y = 0. \]