Math 1431 DAY 36
Dr. Melahat Almus
almus@math.uh.edu

If you e-mail me, please mention your course (1431) in the subject line.

OFFICE HOURS: MWF 11-11:30am, MW 1-2:15pm at 621 PGH.

BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in. Bubble in Popper Number.

Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Review for Test 4

Number of Questions: MC: 8 (8x6=48pts) FR: 4 +one bonus!

On the last question (problem12 / 13) (optimization), there are two options. Choose one of the problems; if you solve both, only the first one will be graded.

Time: 50 minutes

Topics covered: Chapters 4 and 5.

Reserve a seat for Test 4.

Take Practice Test 4.

Review sheet is posted on my website.

Go over the class notes, solve the review problems, practice test, past quizzes and EMCFs.

If you miss the test, you will get a 0 on this test. Final replaces one missed test OR the lowest test grade (if it is better).

We will solve some of these problems in class as time permits; the remaining problems will be solved in the after class notes.
1. If $f(x) = x^5 + 4x^3 + 2$, find $[f^{-1}]'(7)$.

2. If f is invertible and $f(1) = 3, f(3) = 5, f(5) = 1, f'(1) = 4, f'(3) = 7, f'(5) = -2$

 $[f^{-1}]'(5) = ?$

3. Are the following functions invertible? Justify your answer.

 $f(x) = x^2 - 2x$

 $f(x) = 6x + \sin(2x)$

 $f(x) = x^3 + 2x$
4. Find the derivatives:

\[y = e^{2x^3 + 4x} \]

\[y = xe^{\tan x} \]

\[y = 4^{5x^2 + 1} \]

\[y = 4\ln(x^3 + \sqrt{x}) \]

\[y = \log_5(x^2 + \sin(9x)) \]

\[y = \ln(\sqrt{x^4 + \cos(2x)}) \]
5. Find the slope of the tangent line to the curve \(f(x) = 4xe^{2x} \) at \(x=0 \).

Exercise: Give the intervals where \(f(x) \) is increasing.
6. Find the derivatives:

 a. \(y = \cosh(2x^3) + \sinh(5x); \quad y'(0) = ? \)

 b. \(y = \arcsin(x^3 + 1) \)

 c. \(f(x) = 4\arctan(6x) \)
7. Find the derivative using logarithmic differentiation.

\[y = (4x + 2)^{\sin x} \]
8. Use differentials to approximate $\sqrt{23}$.

9. Evaluate the following limits if they do exist.
 a. $\lim_{x \to 0} \frac{x - e^x + 1}{2x^2}$
b. \[\lim_{{x \to 0}} \frac{e^{2x} - 2\sin x - 1}{e^x - x - 1} \]

c. \[\lim_{{x \to 1^+}} \left(\frac{1}{\ln(x)} - \frac{1}{x - 1} \right) \]
d. \[
\lim_{x \to 0} 10x \sin \left(\frac{4}{x} \right)
\]
Optimization Problems:

Two options; chose one of the problems!!! If you solve both, only the first one will be graded.

10. Maximize the volume of a box –open on top – which has a square base and composed of 600 square inches of material.
11. A rectangle is drawn such that the upper corners are on the curve $y = \sqrt{16 - x^2}$ and the lower corners are on the x-axis. What is the largest possible area?
12. A rectangle is drawn in such a way that its base is on the x-axis, its left side is on the y-axis and its top right corner is on the line $y=-\frac{3}{4} x + 6$. What are the dimensions of the rectangle with the largest possible area? What is the maximum area?
13. 4 congruent squares will be cut from the corners of a paper that measures 24x45 ft to make an open top box. How much should be cut from the corners to maximize the volume of the box?