If you e-mail me, please mention your course (1431) in the subject line.

Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Check your CASA account for quiz due dates; don’t miss any quizzes.

Purchase popper scantrons from UH Bookstore. Bring one scantron to every class.

BBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in.

Bubble in Popper Number.

POPPERS

<table>
<thead>
<tr>
<th>Question#</th>
<th>(\lim_{x \to 0} \frac{\tan^2(6x)}{2x^2} =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 0</td>
<td>b) 18</td>
</tr>
</tbody>
</table>
Chapter 2

Section 2.1 – The Definition of the Derivative

Goal: Given a function, find the slope of the tangent line at the point \((a, f(a))\).

Definition: A function \(f\) is said to be **differentiable at** \(a\), if the limit

\[
\lim_\limits{h \to 0} \frac{f(a + h) - f(a)}{h}
\]

exists.

The value of this limit is called the **derivative of** \(f\) **at** \(a\) and is denoted by \(f'(a)\).

In other words, we define

\[
f'(a) = \lim_\limits{h \to 0} \frac{f(a + h) - f(a)}{h},
\]

provided that the limit exists.
Note that \(f'(a) \) is a real number and gives the slope of the tangent line at \((a, f(a))\). This number is also said to be the slope of the graph of \(f \) at \((a, f(a))\).

Remarks:

1. Since \(f'(a) \) is the slope of the tangent line at \((a, f(a))\), using the point-slope equation of a line, we can write the equation of the tangent line:
 \[y - f(a) = f'(a)(x - a). \]

2. \(f'(a) \) is often referred to as the rate of change in \(f(x) \) at \(x = a \).

Question#

Given \(f(x) \) is a differentiable function, what does \(f'(1) \) represent?

a) The derivative of \(f \) at \(x = 1 \).
b) The slope of the tangent line at \(x = 1 \).
c) The rate of change of \(f \) at \(x = 1 \).
d) All of the above
e) None of these.
Example 1: Find the slope of the line tangent to the function \(f(x) = x^2 \) at the point \((3,9)\). Write the equation of the tangent line.

Exercise: Find \(g'(1) \) given that

\[g(x) = \sqrt{x}. \]
The Derivative as a Function

Definition:

Given a function \(f \), the **derivative** of \(f \) is the function \(f' \) defined as:

\[
f'(x) = \lim_{{h \to 0}} \frac{f(x + h) - f(x)}{h}, \quad \text{provided the limit exists.}
\]

The domain of \(f'(x) \) is the set of all points where the defining limit exists, that is, all \(x \) for which \(f \) is **differentiable**.

To **differentiate** a function means to find its derivative.

Remark: 1. To apply this definition, \(f \) must be defined at some open interval containing \(x \). It is important to also note that when taking the limit, the variable is \(h \) and \(x \) is fixed.

2. Wherever \(f'(x) \) is defined, it is the slope of the graph of \(f \) at \((x, f(x))\) and it also gives the rate of change in \(f(x) \).
Example: Given \(f(x) = x^2 + 5x + 1 \), find \(f'(x) \) using the definition.

Exercise: Find the derivative of \(f(x) = x^2 + 5x + 1 \).

Exercise: Find the derivative of \(f(x) = \sqrt{x + 2} \).

Exercise: Find the derivative of \(f(x) = \frac{1}{x + 5} \).
Differentiability

A function f is **differentiable at a** if

$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$$

exists. If this limit fails to exist, we say that the function is not differentiable at a.

If a function is differentiable at every number in an open interval I, we say that the function is **differentiable on I**. For example, the function $f(x) = \sqrt{x}$ is differentiable on the interval $(0, \infty)$.

What is the relation between continuity and differentiability?

Fact: If f is differentiable at a, then it is continuous at a.

However, the converse of this statement is not always true. A function can be continuous at a without being differentiable. For example, $f(x) = |x|$ is continuous at every real number but it is not differentiable at 0.
When is a function not differentiable at a point?

- The first problem that makes a function f not differentiable at a is discontinuity at a.

- Another issue is having a “sharp corner”, a cusp, or a vertical tangent.

The first graph is not differentiable at 1 since one-sided derivatives do not coincide. The left-hand derivative at 1 is -1, but the right-hand derivative is 0. We may refer to this case as f having a *sharp corner* at 1. On the second graph, there is a *vertical tangent* at 0. And, on the last graph there is a *cusp* at 0. We will discuss vertical tangents and cusps in detail later.
Example: Is this function differentiable at $x=1$?

$$f'(x) = \begin{cases} 2x, & \text{if } x > 1 \\ 5x - 3, & \text{if } x \leq 1 \end{cases}$$

Check:

1) Is f continuous at $x=1$? (If not, can’t be differentiable!)

2) Do we have: “Right derivative at $x=1$ equals the left derivative at $x=1$”?

Right derivative: $f'_{+}(1) = 2$

Left derivative: $f'_{-}(1) = 5$

Observe the graph:

We will discuss this further after covering the rules of differentiation…
Section 2.2 – Derivatives of Polynomials and Trig Functions

Fact: If \(f(x) = k \), where \(k \) is a real number, then \(f'(x) = \).

Fact: If \(f(x) = x \), then \(f'(x) = \)

Now, here’s the formula to find the derivatives of power functions:

Fact: Power Rule

If \(f(x) = x^n \), where \(n \) is any positive integer, then \(f'(x) = nx^{n-1} \).

Examples:

\[f(x) = x^2; \quad f'(x) = \]

\[f(x) = x^3; \quad f'(x) = \]

\[f(x) = x^4; \quad f'(x) = \]
\[f(x) = \frac{1}{x}; \quad f'(x) = \]

\[f(x) = \frac{1}{x^2}; \quad f'(x) = \]

Theorem: Let \(k \) be a real number. If \(f \) and \(g \) are differentiable at \(x \), then so are \(f + g \), \(f - g \) and \(k \cdot f \). Moreover,

- \((f \pm g)'(x) = f'(x) \pm g'(x)\),
- \((k \cdot f)'(x) = k \cdot f'(x)\).

Theorem: Derivatives of Polynomials

Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 \) be a polynomial function. The derivative is:

\[f'(x) = a_n \cdot n \cdot x^{n-1} + a_{n-1} \cdot (n-1) \cdot x^{n-1} + \ldots + a_2 \cdot 2x + a_1. \]
Examples:
\[f(x) = x^3 + x^2 + x + 2; \quad f'(x) = \]
\[f(x) = 5x^{10} - 6x^3 + 12; \quad f'(x) = \]

Example:
\[f(x) = 2x^5 + x^4 - 5x + 6; \quad f'(1) = \]

POPPER #

Question# \[f(x) = x^3 + 2x + 5, \quad f'(0) = ? \]

a) 5 b) 3 c) 4 d) 2 e) 0

Question#
If \[f(1) = 5 \text{ and } f'(1) = 6, \] what is the equation of tangent line at \(x = 1 \)?

a) \(y = 5x + 6 \)
b) \(y = 6x+5 \)
c) \(y= 6x -1 \)
d) \(y= 6x+1 \)
e) None