Math 1431

If you e-mail me, please mention your course (1431) in the subject line.

Be considerate of others in class. Respect your friends and anyone during the lecture.

Check your CASA account for quiz due dates; don’t miss any quizzes.

BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in.

Bubble in Popper Number.

Popper #

Question# 1
If \(f(x) = \frac{5x^3 + x^2 + x}{x^2} \), \(f'(1) = ? \)

a) 7
 b) 5
 c) 4
 d) 2
 e) None

\[f(x) = 5x + 1 + \frac{1}{x} \]

\[f'(x) = 5 \sin x + 4 \cos x \]

Question# 2
If \(f(x) = 5 \cos x + 4 \sin x \), \(f'(\pi) = ? \)

a) -5
 b) 4
 c) -4
 d) 1
 e) None

\[f'(x) = -5 \sin x + 4 \cos x \]
Question# If \(f(x) = \tan x + 6\cot x \), \(f''\left(\frac{\pi}{4}\right) = ? \)

a) -10
b) 7
c) -12
d) 14
e) None

Recall--

Power Rule

If \(f(x) = x^n \), where \(n \) is any positive integer, then \(f'(x) = nx^{n-1} \).

Slope of the tangent line at \(x = a \) = Derivative of the function at \(x = a \).

\[m_{\text{tangent}} = f'(a) \quad \text{and} \quad m_{\text{normal}} = -\frac{1}{m_{\text{tangent}}} = -\frac{1}{f'(a)}. \]

Derivatives of the Six Trig Functions:

\[
\begin{align*}
(sin x)' &= \cos x \\
(cos x)' &= -\sin x \\
(tan x)' &= sec^2 x \\
(cot x)' &= -csc^2 x \\
(sec x)' &= sec x \cdot tan x \\
(csc x)' &= -csc x \cdot cot x
\end{align*}
\]
Higher Order Derivatives:

\[f(x) = x^4 + x^3 + x^2 + 2x + 10 \]

The first derivative of \(f \) :
\[f'(x) = 4x^3 + 3x^2 + 2x + 2 \]

The second derivative of \(f \) :
\[f''(x) = \left[f'(x) \right]' = 12x^2 + 6x + 2 \]

The third derivative of \(f \) :
\[f'''(x) = \left[f''(x) \right]' = 24x + 6 \]

The fourth derivative of \(f \) :
\[f^{(4)}(x) = \left[f'''(x) \right]' = 24 \]

The fifth derivative of \(f \) :
\[f^{(5)}(x) = \left[f^{(4)}(x) \right]' = 0 \]

In general, \(f^{(n)} \) stands for the \(n \)th order derivative of \(f \).

The functions \(f', f'', f''', f^{(4)}, \ldots, f^{(n)} \) are called the derivatives of \(f \) of orders 1, 2, 3, \ldots, \(n \), respectively.

Remark:

\(f^{(4)}(x) \) stands for the fourth order derivative of \(f(x) \), while \(f^4(x) \) means \(\left[f(x) \right]^4 \).

To see a variant of this notation, let \(y = x^5 \):

\[y' = 5x^4, \quad y'' = 20x^3, \quad y''' = 60x^2, \quad \text{and so on.} \]
With the **double-\(d\) notation**, the second order derivative is:

\[
\frac{d^2 y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) \quad \text{or} \quad \frac{d^2}{dx^2}[f(x)] = \frac{d}{dx}\left[\frac{d}{dx}[f(x)]\right],
\]

and the third order derivative is:

\[
\frac{d^3 y}{dx^3} = \frac{d}{dx}\left(\frac{d^2 y}{dx^2}\right) \quad \text{or} \quad \frac{d^3}{dx^3}[f(x)] = \frac{d}{dx}\left[\frac{d^2}{dx^2}[f(x)]\right],
\]

and so on.

Example: \(f(x) = x^4 - x^2 + 5x; \quad f''(1) = ?\)

\[
f'(x) = 4x^3 - 2x + 5
\]

\[
f''(x) = 12x^2 - 2
\]

\[
f''(1) = 12(1)^2 - 2 = 10
\]

Example: \(f(x) = x^5 + x; \quad \frac{d^2 f}{dx^2} = ?\)

\[
f'(x) = 5x^4 + 1
\]

\[
f''(x) = 20x^3
\]
Example: \(y = 10 \cos t \); \(\frac{d^3 y}{dt^3} = ? \)

\[
\begin{align*}
\frac{dy}{dt} &= -10 \sin t \\
\frac{d^2 y}{dt^2} &= -10 \cos t \\
\frac{d^3 y}{dt^3} &= 10 \sin t
\end{align*}
\]

\[
\left(u \cdot v \right)' = \frac{u'}{v} - \frac{u}{v'}
\]

\[
f(x) = (x^5 + x^3 - x^2) \cdot (10x^7 - x^6 + x)
\]

\[
f'(x) = ?
\]
Section 2.3 – Differentiation Rules

Theorem: The Product Rule

If \(f \) and \(g \) are differentiable at \(x \), then so is the product \(fg \). Moreover,

\[
(fg)'(x) = f'(x)g(x) + f(x)g'(x)
\]

This formula may be written as:

\[
(uv)' = u'v + uv' \quad \text{or} \quad \frac{d}{dx}(u \cdot v) = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}.
\]

This rule can be extended to the product of more functions:

\[
(uvw)' = u'vw + uv'w + uvw' \quad \text{or} \quad \frac{d}{dx}(u \cdot v \cdot w) = \frac{du}{dx} \cdot v \cdot w + u \cdot \frac{dv}{dx} \cdot w + u \cdot v \cdot \frac{dw}{dx}.
\]

Example: Find the derivative of \(h(x) = x^3 \cos(x) \).

\[
h'(x) = (x^3)' \cdot \cos x + x^3 \cdot (\cos x)'
\]

\[
h'(x) = 3x^2 \cdot \cos x + x^3 \cdot (-\sin x)
\]

\[
h'(x) = 3x^2 \cos x - x^3 \cdot \sin x
\]
Example: If \(y = (2x + 5)(x^4 + x^2 + 6) \), \(\frac{dy}{dx} = ? \)

\[
\frac{dy}{dx} = 2 \cdot (x^4 + x^2 + 6) + (2x + 5) \cdot (4x^3 + 2x)
\]

\[
\left. \frac{dy}{dx} \right|_{x=1} = 2 \cdot (8) + 7 \cdot (6) = 16 + 42 = 58
\]
Theorem: The Reciprocal Rule

If f is differentiable at x and $f(x) \neq 0$, then so is the reciprocal $\frac{1}{f}$. Moreover,

$$
\frac{d}{dx}\left[\frac{1}{f(x)} \right] = -\frac{f'(x)}{[f(x)]^2}
$$

Exercise: For $g(x) = \frac{1}{x^2 - x}$, find $g'(2)$.

$$
g'(x) = - \frac{[f'(x)]}{[f(x)]^2} \quad \text{where} \quad f(x) = x^2 - x
$$

$$
g'(x) = - \frac{(2x-1)}{(x^2-x)^2}
$$

$$
g'(2) = - \frac{2 \cdot 2 - 1}{(4 - 2)^2} = - \frac{3}{4}
$$
Theorem: The Quotient Rule

If \(f \) and \(g \) are differentiable at \(x \) and \(g(x) \neq 0 \), then the quotient \(f / g \) is differentiable at \(x \) and

\[
\left(\frac{f}{g} \right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}
\]

This formula may be written as:

\[
\left(\frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2}
\]

Example: Find the derivative of \(f(x) = \frac{2x}{x^2 + 5} \).

\[
f'(x) = \frac{(2x)' \cdot (x^2 + 5) - (2x) \cdot (x^2 + 5)'}{(x^2 + 5)^2}
\]

\[
f'(x) = \frac{2 \cdot (x^2 + 5) - 2x \cdot 2x}{(x^2 + 5)^2}
\]

\[
f'(x) = \frac{10 - 2x^2}{(x^2 + 5)^2}
\]
Example: Find the derivative of \(f(x) = \frac{\sin x}{5x + 2} \).

\[
f'(x) = \frac{\cos x \cdot (5x + 2) - \sin x \cdot (5)}{(5x + 2)^2}
\]

\[
f'(x) = \frac{(5x + 2) \cdot \cos x - 5 \sin x}{(5x + 2)^2}
\]
Example: Find the slope of the tangent line to the curve \(f(x) = \frac{x^2 + x}{4x + 5} \) at \(x = 1 \).

\[
f'(x) = \frac{(2x+1)(4x+5) - (x^2+x) \cdot (4)}{(4x+5)^2}
\]

\[
f'(1) = \frac{3 \cdot 9 - 2 \cdot 4}{(4 \cdot 1 + 5)^2} = \frac{27 - 8}{81} = \frac{19}{81}
\]
\[
(f + g)' \\
(f - g)' \\
(f \cdot g)' \\
\left(\frac{f}{g} \right)' \\
(f \circ g)' = \text{Composition} \\
(f \circ g)' = \left[f(g(x)) \right]' \\
= f'(g(x)) \cdot g'(x)
\]
ex: \((f \circ g)'(2) = f'(g(2)) \cdot g'(2)\)

\[g\]

easy!

When chain rule?

\[g(x) = x^5 \quad h(x) = 4x + 1\]

Case-1

\[f(x) = \boxed{(4x + 1)^5}\]

\[f'(x) = ?\]

\[\text{(expression)}^5\]

usual = \[\text{deriv. base of }\]

\[\text{deriv. base of}\]

\[\text{chain rule}\]

\[(ugly)^5 \overset{\text{deriv}}{\Rightarrow} 5 \cdot (ugly)^4 \cdot (ugly)'\]
Theorem: The Chain Rule

If \(g \) is differentiable at \(x \) and \(f \) is differentiable at \(g(x) \), then the composition \(f \circ g \) is differentiable at \(x \). Moreover,

\[
(f \circ g)'(x) = f'(g(x)) \cdot g'(x).
\]

This rule is one of the most important rules of differentiation. It helps us with many complicated functions.

Example: Find the derivative of \(h(x) = (2x+1)^3 \).

\[
h'(x) = 3 \cdot (2x+1)^2 \cdot (2x+1)'
\]

\[
h'(x) = 3 \cdot (2x+1)^2 \cdot 2 \quad = \quad 6 (2x+1)^2
\]
Example: Find the derivative of $h(x) = (x^2 + 5x)^4$.

$$h'(x) = 4 \cdot (x^2 + 5x)^3 \cdot (2x + 5)$$

Example: Find the derivative of $h(x) = (x^3 + x + 1)^{10}$.

$$h'(x) = 10 \cdot (x^2 + x + 1)^9 \cdot (3x^2 + 1)$$

$$h'(0) = 10 \cdot (0 + 1)^9 \cdot (3 \cdot 0 + 1) = 10$$
POPPER #

Question# \[y = \sin x, \quad \frac{d^3y}{dx^3} = ? \]

a) \(\cos x \)
b) \(\sin x \)
c) \(-\sin x \)
\[\text{d) } -\cos x \]
e) None

\[\frac{dy}{dx} = \cos x \quad \Rightarrow \quad \frac{d^2y}{dx^2} = \ldots \]

\[\Rightarrow \quad \frac{d^3y}{dx^3} = \ldots \]

Question# \[f(x) = \frac{x}{x+2}, \quad f'(2) = ? \]

a) \(\frac{1}{2} \)
b) \(\frac{1}{4} \)
c) \(\frac{1}{8} \)
\[\text{d) } \frac{1}{16} \]
e) None

\[f'(x) = \frac{1(x+2) - x.1}{(x+2)^2} \]

Question# \[f(x) = x \cos(x), \quad f'(\pi) = ? \]

a) 0
b) 1
c) -1
d) 2
e) None