Math 1432

Dr. Melahat Almus

almus@math.uh.edu

http://www.math.uh.edu/~almus

Visit CASA regularly for announcements and course material!

If you email me, please mention the course (1432) in the subject line.

Purchase Popper scantrons with your section number from UH Bookstore.

Respect your friends. Do not distract anyone during lectures.
Section 7.4 - Volume

Part 2 - Finding the volume of a solid of revolution: DISKS and WASHERS

Recall:

Volume of a disk with base radius \(r \) and thickness \(h \): \(V = \pi r^2 h \)
Volume by DISKS and WASHERS

Volume by Disks for Rotation About the x-axis

$$V = \int_a^b A(x) \, dx = \int_a^b \pi [R(x)]^2 \, dx.$$

Volume by Disks for Rotation About the y-axis

$$V = \int_c^d A(y) \, dy = \int_c^d \pi [R(y)]^2 \, dy.$$
Disk Method:

Revolving about the x-axis: \[V = \int_a^b \pi [f(x)]^2 \, dx \]

Revolving about the y-axis: \[V = \int_c^d \pi [g(y)]^2 \, dy \]

Example: Let \(R \) be the region bounded by the x-axis and the graphs of \(y = \sqrt{x} \) and \(x = 4 \). Sketch and shade the region \(R \). Label points on the x and y-axis.

a) Give the formula for the volume of the solid generated when the region \(R \) is rotated about the x-axis.

\[V = \int_0^4 \pi \cdot (\sqrt{x})^2 \, dx \]

\[V = \int_0^4 \pi x \, dx \]

\[V = \pi \left[\frac{x^2}{2} \right]_0^4 \]

\[V = \pi \left[8 - 0 \right] \]

\[V = 8\pi \]

b) Find the volume for the solid in (a).
Example: Let R be the region bounded by the y-axis and the graphs of \(y = 2\sqrt{x} \) and \(y = 2 \). Sketch and shade the region R. Label points on the x and y-axis.

a) Give the formula for the volume of the solid generated when the region R is rotated about the y-axis.

\[
V = \pi \int_0^2 (y^2) \, dy
\]

b) Find the volume for the solid in (a).
Example: Consider the region in the first quadrant enclosed by \(y = 4 - x^2 \).

Set up the integral that gives the volume of the solid formed by revolving this region about the x-axis.

\[
V = \int_{0}^{2} \pi \left(4 - x^2 \right)^2 \, dx
\]
Example: Let R be the region in the first quadrant bounded by the y-axis and the graphs of \(y = x^2 \) and \(y = 9 \). Sketch and shade the region R.

Give the formula for the volume of the solid generated when the region R is rotated about the y-axis. Find the volume for the solid.

\[
V = \int_0^9 \pi (\sqrt{y})^2 \, dy
\]

\[
= \pi \int_0^9 y \, dy
\]

\[
= \pi \left[\frac{y^2}{2} \right]_0^9
\]

\[
= \frac{81\pi}{2}
\]
Example: Rotate the region enclosed by \(y = \sqrt{\sin x}, \ 0 < x < \pi, \) about the x-axis. Determine the volume of the solid formed.

\[
V = \int_0^\pi \pi \cdot \left(\sqrt{\sin x} \right)^2 \, dx
\]

\[
V = \pi \left[-\cos x \right]_0^\pi = 2\pi
\]

Exercise: Let \(R \) be the region bounded by the graph of \(f(x) = \frac{1}{\sqrt{x+1}} \) and the x-axis for \(x \in [0,8] \). Set up the formula that gives the volume of the solid generated by rotating \(R \) about the x-axis.

\[
V = \int_0^8 \pi \cdot \left(\frac{1}{\sqrt{x+1}} \right)^2 \, dx
\]

\[
V = \pi \left[\ln(x+1) \right]_0^8 = \pi \cdot \ln 9
\]
What if we rotate around a different line?

Example: Consider the region enclosed by \(y = \sqrt{x}, x = 1, x = 4 \) and \(y = 1 \). Give the formula for the volume of the solid formed by revolving this region around the line \(y = 1 \).

\[
V = \pi \int_1^4 (\sqrt{x} - 1)^2 \, dx
\]

Example: Consider the region enclosed by \(y = x^2, y = 0, x = 3 \). Set up the integral that gives the volume of the solid formed by revolving this region around the line \(x = 3 \).

\[
V = \pi \int_0^9 (3 - \sqrt{y})^2 \, dy
\]
WASHERS

When we apply the same idea (parallel cross sections) to a region that is not containing the axis of revolution, we might get “washers” instead of disks.

Revolving about the x-axis: \[V = \int_{a}^{b} \pi \left([f(x)]^2 - [g(x)]^2 \right) dx \]

Revolving about the y-axis: \[V = \int_{c}^{d} \pi \left([F(y)]^2 - [G(y)]^2 \right) dy \]