Motivational Problems
 Application of Differentiation

MAT1450: Accelerated Calculus Sec 17957 Fall 2017
Due date is in class on Sep 26, 2017 - optional

1. A Bird Who Knew Calculus. Ornithologists have determined that some species of birds tend to avoid flights over large bodies of water during daylight hours. It is believed that more energy is required to fly over water than land because air generally rises over land and falls over water during the day. A bird with these tendencies is released from an island that is 5 km from the nearest point B on a straight shoreline, flies to a point C on the shoreline, and then flies along the shoreline to its nesting area D.

Assume that the bird instinctively chooses a path that will minimize its energy expenditure. Points B and D are 13 km apart.
(a) In general, if it takes 1.4 times as much energy to fly over water as land, to what point C should the bird fly in order to minimize the total energy expended in returning to its nesting area?
(b) Let W and L denote the energy (in joules) per kilometer flown over water and land, respectively. What would a large value of the ratio W L mean in terms of the bird's flight? What would a small value mean? Determine the ratio W L corresponding to the minimum expenditure of energy.
(c) What should the value of W L be in order for the bird to fly directly to its nesting area D? What should the value of W L be for the bird to fly to B and then along the shore to D?
(d) If the ornithologists observe that birds of a certain species reach the shore at a point 4 km from B, how many times more energy does it take a bird to fly over water than land?
2. Rainwater collection system. A $1125 \mathrm{ft}^{3}$ open-top rectangular tank with a square base $x \mathrm{ft}$ on a side and $y \mathrm{ft}$ deep is to be built with its top flush with the ground to catch runoff water. The costs associated with the tank involve not only the material from which the tank is made but also an excavation charge proportional to the product $x y$.

If the total cost is

$$
c=5\left(x^{2}+4 x y\right)+10 x y
$$

what values of x and y will minimize it?
3. Making the Most of the USPS. The U.S. Postal Service will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 108 in . What dimensions will give a box with a square end the largest possible volume?

Suppose that instead of having a box with square ends you have a box with square sides so that its dimensions are h by h by w and the girth is $2 h+2 w$. What dimensions will give the box its largest volume now?

4. Building a home.

(a) A window is in the form of a rectangle surmounted by a semicircle. The rectangle is of clear glass, whereas the semicircle is of tinted glass that transmits only half as much light per unit area as clear glass does. The total perimeter is fixed. Find the proportions of the window that will admit the most light. Neglect the thickness of the frame.

(b) The trough in the figure is to be made to the dimensions shown. Only the angle θ can be varied. What value of θ will maximize the trough's volume?

(c) The 8 -ft wall shown here stands 27 ft from the building. Find the length of the shortest straight beam that will reach to the side of the building from the ground outside the wall.

5. Mathematics of Coughing. When a foreign object lodged in the trachea (windpipe) forces a person to cough, the diaphragm thrusts upward causing an increase in pressure in the lungs. This is accompanied by a contraction of the trachea, making a narrower channel for the expelled air to flow through. For a given amount of air to escape in a fixed time, it must move faster through the narrower channel than the wider one. The greater the velocity of the airstream, the greater the force on the foreign object. X rays show that the radius of the circular tracheal tube contracts to about two-thirds of its normal radius during a cough. According to a mathematical model of coughing, the velocity v of the airstream is related to the radius r of the trachea by the equation

$$
v(r)=k\left(r_{0}-r\right) r^{2}, \quad \frac{1}{2} r_{0} \leq r \leq r_{0}
$$

where k is a constant and r_{0} is the normal radius of the trachea. The restriction on r is due to the fact that the tracheal wall stiffens under pressure and a contraction greater than $\frac{1}{2} r_{0}$ is prevented (otherwise the person would suffocate).
(a) Determine the value of r in the interval $\left[\frac{1}{2} r_{0}, r_{0}\right]$ at which v has an absolute maximum. How does this compare with experimental evidence?
(b) What is the absolute maximum value of v on the interval?
(c) Sketch the graph of v on the interval $\left[0, r_{0}\right]$.

