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ON ANALYTIC SOLUTIONS OF THE HEAT EQUATION WITH AN OPERATOR
COEFFICIENT

A. Vershynina* and S. Gefter* UDC 517.968; 517.983

Let A be a bounded linear operator on a Banach space and let g a be vector-valued function that is analytic in a
neighborhood of the origin of R. We obtain conditions of the existence of analytic solutions for the Cauchy problem

ou _ p20%u

{ ot =479 Moreover, we consider a representation of the solution of this problem as a Poisson integral and
u(0,) = g(a).

study the Cauchy problem for the corresponding inhomogeneous equation. Bibliography: 22 titles.

1. INTRODUCTION

The Cauchy theorem on analytic solutions of differential equations with analytic coefficients is well known in
the theory of ordinary differential equations (see, e.g., [1]). For the class of so-called normal partial differential
equations, a similar theorem had been proved by Cauchy and Kovalevskaya [2-4]. Moreover, Kovalevskaya [5]
showed that if an equation is not normal, then a Cauchy problem for this equation may fail to have analytic
solutions. Let us consider the famous example of Kovalevskaya:

ou o2 0%u

= 2
8t 8.1' (1)
U(O,:U) = 1—=x

(in what follows, it is convenient for us to consider an arbitrary coefficient b in the initial condition).
It is easy to check that the following power series:

> 2n)! .
Z (m_f_' 'T’L) aantnmm (2)
Sp—— m:m.

is a formal solution of problem (1). Therefore, for a # 0 and b # 0, the Cauchy problem (1) does not have
solutions that are analytic in a neighborhood of zero. The research initiated by Kovalevskaya was continued in
numerous papers (see, e.g., [6-18]).

In this paper, we consider the following operator analog of the Cauchy problem (1):

Ou 2 62u7

ot 6232 (3)
’U,(O, :L') = 1 E z’

and a more general Cauchy problem:
ou 0%u
— A2

ot o2’ (4)
w(0,z) = g(x).

Here A is a bounded linear operator on a Banach space E, b € E, and g is a vector-valued function that is
analytic in a neighborhood of the origin. By formal analogy with the equation in (1), Eq. (4) is also called “the
heat equation.” Note that in some interesting examples, our “heat equation” is a hyperbolic partial differential
equation (see Remark 3.7). We consider solutions of the Cauchy problem (4) that are analytic in a neighborhood
of the origin of R xR. By a solution of problem (4) we mean a local analytic solution, i.e., a vector-valued function
of real variables t and z that is analytic in a neighborhood of zero, satisfies the equation in this neighborhood,
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and satisfies the initial condition in a neighborhood of the origin of R. The formal solution of Cauchy problem

(3) looks like the scalar one:

Z (m_f_'2'n) Aantn m. (5)
m:m.
n,m=0

It is obvious that if A = 0, then the function u(t,z) = > bz™ = |’ is an analytic solution of problem (3).

Similarly, there exists an analytic solution of problem (3) if A is a nilpotent operator, i.e., A¥ = 0 for some k. We
also consider more general operators that are close to zero in the spectral sense (namely, quasinilpotent ones).
Recall that an operator A is called quasinilpotent if the spectrum o(A) of A consists of the single point A = 0.
We show that series (5) can be convergent in a neighborhood of the origin if A is a quasinilpotent operator
satisfying some additional assumption (see Proposition 3.2).

Now we formulate the main result of our paper.

Theorem 3.8. The following conditions are equivalent:
(1) The Cauchy problem (3) has an analytic solution for each vector b € E;

(2) the Cauchy problem (4) has an analytic solution for any vector-valued function g(z) that is analytic in a
neighborhood of zero;

(3) the operator A is quasinilpotent, and the Fredholm resolvent Fy=(z) = (1 — zA%)~! of the operator A2 is an
entire function of exponential type (i.e., |Faz(2)| < CePl?l for some constants C and ().

Moreover, if these conditions are fulfilled, then the solution of the Cauchy problem (4) is unique and has the
following explicit form:

( +Z A2n 2n) )

(see Remark 5.2).

Thus, if the Cauchy problem (4) has an analytic solution for any analytic initial condition, then the operator
A is close to zero in the spectral sense. In particular, in the finite-dimensional case, the equation from the Cauchy
problem (4) is of the form

ch]az, :1,...,m (m:dlmE),

where the matrix C' = (c;) is nilpotent (see Corollary 3.4). Certainly, in the given particular case, this fact is a
simple corollary of the general theorem obtained by Mizohata (see [10, Sec. 3, Theorem 1]).

Theorem 3.8 can be considered as one more illustration of unusual properties of objects connected with
quasinilpotent operators (see, for example, [19, Secs. 4.6 and 4.10] and [22]).

Some examples of explicit solutions of the Cauchy problem (3) are given in Sec. 3 (see Corollaries 3.3-3.5,
Example 3.6, and Remark 3.7).

Our study of the Cauchy problem (4) is based on the concept of A-holomorphic formal power series (see
Definition 2.1), which was investigated in the paper [22]. In [22], this concept was used in the study of holomorphic
solutions of the equation 2% Aw’ + g(z) = w, where A is a quasinilpotent linear operator on a Banach space. Let
us note that each condition of the Theorem 3.8 is equivalent to the A2-holomorphicity of the formal power series

> (2n)!
P(() = Z ( nl) ¢" (see Proposition 2.9). The concept of A-holomorphicity is considered in Sec. 2.
n!
n=0
In Sec. 4, we consider a representation of the solution of the Cauchy problem (4) as a Poisson integral. In
2
our situation (i.e., if A is quasinilpotent), the operator analog of the heat kernel H4(t,§) = 2Ai/7rt exp {—43%}

certainly has no usual sense. We consider H 4 as a vector-valued distribution, where the space of “test functions”
is the space of all convergent power series with coefficients from E (see Definition 4.1 and Proposition 4.3). Then
we show that the solution of the Cauchy problem (4) can be represented as the convolution of H4 with the initial
condition g (see Theorem 5.1).

In Sec. 5, we study the Cauchy problem for the inhomogeneous equation:

6u_ »0%u
{at 420+ (),
u(0,z) = 0.
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We show that if the conditions of Theorem 3.8 are fulfilled, then the analytic solution of this Cauchy problem
can be found as a series with respect to the “small parameter” A (see Theorem 5.1):

u(t,z) = Z ARy (t, x).
k=0

2. PRELIMINARIES
Let E be a complex Banach space, let A : E — E be a bounded linear operator, let b € E, and let

f(¢) = Z cn (" be a formal power series with coefficients from C. Define

n=0
f(zA) = Z e A"2",  z e C, (6)
n=0
and -
f(zA)b =) c,A"bz", z€C. (7)
n=0

Then f(zA) is a power series with coefficients from the algebra B(E) of all bounded operators in the space
E, and f(zA)b is a power series with coefficients from E. The radius of convergence of series (6) is denoted by
RA(f), and that of series (7) is denoted by R4 p(f).

Definition 2.1. The power series f(C) is called A-holomorphic if Ra(f) > 0 and (A, b)-holomorphic if Ra »(f) >
0.

It is obvious that an A-holomorphic power series is (4, b)-holomorphic for all vectors b € E, and R4,(f) >
R4(f). Moreover, if |z| < Ra(f), then the sum of the series in the right-hand side of equality (7) is the result
of the action of the operator f(zA) on b.

Remark 2.2. Assume that the power series f has a positive radius of convergence R(f). Then this series is
A-holomorphic for each bounded operator A. Moreover, if p(A) is the spectral radius of the operator A and
|z|p(A) < R(f), then f(zA) is well defined as the action of the holomorphic function f on the operator zA.

Example 2.3. Assume that b € ker A™ for some m € N. Then

m—1

f(zA)b = Z cnA"Dbz",

n=0

i.e., every power series f(() is (4, b)-holomorphic.

If the space F is finite-dimensional, then the converse statement also holds in the situation which is most
interesting for us (see [22, Proposition 1.4]).

Proposition 2.4. Let dim E < oo, let f be a power series, and let the radius of convergence of f be 0. If f is
(A, b)-holomorphic, then b € ker A™ for some m € N.

In the Hilbert space case, the following analog of Proposition 2.4 is true.
Proposition 2.5. Let E be a Hilbert space, let f(() = Z c (" be a power series, and let the radius of conver-
n=0
gence of f be equal to zero. If A is a normal bounded operator and f is (A,b)-holomorphic, then b € ker A.
Proof. Let Ra(f) > 0. According to the vector analog of the Cauchy-Hadamard formula,
1
Rap(f)

Let us show that there exists lim /||A"b||. According to the spectral theorem, we can identify E with L2(X, )

for some measure space (X, 1) and consider A as the multiplication operator:

= lim {/|cal||A"b] < oo.

(Ab)(z) = a(z)b(z), where a € L(X,p).
801



Then /|| Amb|| = ZY/I |a(z)|?™|b(x)|?du, and this sequence converges to the norm of a(z) in the space L™= (X, uyp),
X

where dpy, = |b(x)|2dpu. On the other hand, lim %/|¢,| = co. Hence, lim {/||A7b|| = 0. Therefore, a(z) = 0
up-almost everywhere, i.e., a(z)b(z) = 0 p-almost everywhere. Thus, Ab=0. O

Using Example 2.3, it is easy to find examples of (A,b)-holomorphic formal power series that are not A-
holomorphic. However, using the Baire category theorem, one can prove the following statement (see [22,
Theorem 1.5]).

Theorem 2.6. If the formal power series f is (A,b)-holomorphic for all b € E, then it is A-holomorphic.

The following statement shows that if A is not quasinilpotent, then the concept of A-holomorphic formal
power series coincides with the usual concept of holomorphic power series (see [22, Proposition 1.7]).

Proposition 2.7. If the operator A has a positive spectral radius, then a power series f is A-holomorphic if and
only if it has a positive radius of convergence. Thus, if f has zero radius of convergence and f is A-holomorphic,
then A is quasinilpotent.

The following two formal power series play an important role in our further study:

o(0) = Sonic and (o)=Y Pen

Lemma 2.8. Let A: E — E be a bounded linear operator and let b € E. Then
(1) ¢ is (A, b)-holomorphic if and only if ¢ is (A,b)-holomorphic;
(2) ¢ is A-holomorphic if and only if p is A-holomorphic.

Proof. It is enough to notice that, according to the Stirling formula,

!
K/Qn) ~ an and ¥n! ~ " O
n! e e

Recall that an entire function g(z) with values in a Banach space is called a function of exponential type if
llg(2)|| < CePl*l for some constants C' and . Recall also that a bounded linear operator A is quasinilpotent if
and only if its Fredholm resolvent (1 — zA4)™! is an entire function (see [19, Chap. 4]).

Proposition. The Fredholm resolvent (1 — zA)™1 of the operator A is an entire function of exponential type if

and only if the series ¢¥(¢) = >_ (277!)!(" is A-holomorphic.
n=0

Proof. Tt follows from Lemma 2.8 that we can consider the power series p(¢) = > n!¢™ instead of ¥(¢). Let ¢

n=0
be A-holomorphic. Then
1

Ra(y)
and the operator A is quasinilpotent. Now identity (8) is equivalent to the statement that the entire function

(1—2A4)"1 = > A"2" is of exponential type (see [21, p. 95]). O
n=0

= lim {/nl]A"] < +o0, 8)

Let us give an example where the function ¥(zA) can be computed explicitly.
Example 2.10. Let E = C[0,1] and let A; be the integration operator:

S

(A15)(s) = / by)dy, be E.
0

It is well known that

n 1 [ n—1
e =, L, / (5 — )" bly)dy, Q
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1
[AT]] <

o’ and A; = A%, where

1] ()
(Ab)(s)—\/ﬂo/\/s_ydy.

It is easy to check that the series ¢ is Aj-holomorphic and Ra, (1)) = 1/4, i.e., ¢ is A%-holomorphic and
R 2(¢p) = 1/4. For the explicit calculation of the operator ¢(zA?), note that

1+Z_:1 272;!1))2!(;)% = ﬂl_ﬂ, 2] < 1.

Hence,
= 2n)! T, 2

= 1
Zn!(n—l)!(2) (1 — 22)3/2 lz| <1,

n=

and

— () ., 2 1
Zn!((n—)n!7 = oy DIy (10)

Now from (9) and (10) we deduce that

b(y)dy

1= dz(s — )32 |z| < 1/4. (11)

(b (2A2)b)(s) = b(s) + 22 / (
0

3. MAIN RESULT

Let E be a Banach space, let A : E — E a bounded linear operator, and let g be a E-valued function that is
analytic in a neighborhood of zero. In this section, we consider the problem of solution existence for the Cauchy
problem

Ou _A262u
ot = 0z’ (12)
u(0,z) = g(x).

By a solution of problem (12) we mean a local analytic solution, i.e., a vector-valued function of real variables
t and x that is analytic in a neighborhood of zero, satisfies the equation in this neighborhood, and the initial
condition in a neighborhood of the point zy = 0.

At first, consider only an algebraic situation in which g is a formal power series.

Lemma 3.1. Let g(z) = > b,,z™ be a formal power series with coefficients from E. Then the Cauchy problem
m=0

(12) has a unique formal solution

= (m+ 2n)! n " m S n (2n
u(t,az) = Z ( min! ) A2 bm+2ntL r = Z n,A2 9(2 )(:U)
n,m=0 o n=0

Proof. Assume that

o0
u(t,x) = Z CnmtT™,

n,m=0

cnm € E, is a formal solution of the Cauchy problem (12). After a formal substitution into the equation, we see
that

> 4 Deppimt"a™ = > (m+2)(m + 1) A% pot"a™
n,m=0 n,m=0
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and

oo oo
E comx™ = E bx™
m=0 m=0

Hence,
(n+1enpim = (m+2)(m + 1) A%chmiz
and
cOm—bma n7m>07
ie.,
2
Com = (mf '”) A2 ion,  nym > 0.
m!n!
Thus,

. 2n)!
u(t,z) = Z (m + 2n) AP ot ™

m!n!
n,m=0

is the unique formal solution.

o0
It is easy to check that this solution can be represented as u(t,z) = 3 ' A?"¢(>")(z), and the expression on

n=0

the right-hand side is a well-defined formal power series in variables ¢, z. The lemma is proved. O

Now for b € E we consider the following special Cauchy problem:

ou 0%
8t_A6m2’
0,0)="
u0,2)=, _ -

(13)

Proposition 3.2. The Cauchy problem (13) has a solution if and only if the formal power series ¥(() =

oo
> (273)! (™ is (A%, b)-holomorphic (see Definition 2.1). Moreover, the solution is unique, and it can be represented

n=0
by the following two series:

u(t,xz) = Z ] A2 bt"
n,m=0 o

tA? = (2n)!  AZbt"
u(t’x)_d)((l—x )l—x Z n! (1 —x)2ntl’

and

[t| < T, |z| < R, where R € (0,1) and T = (1 — R)*R 42 4(1).
Proof. According to Lemma 3.1, the unique formal solution of the Cauchy problem (13) is

= (m+2n npgngm
u(t,x) = Z ( ] ) APt

n,m=0

Assume that this series converges for |t| < T and |z| < R, where R € (0,1). Since

i (m+2n)! 1
" = o]’
= min! (1 —z)2ntl

m!n!

I (1 — g)2nt1
— nl (1-x)™

Therefore,

n—0o0 n! (1 —z)2ntl

2n)! 1
lim K/( n) | A2nb|| < +o00,
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i.e., ¢ is (A?,b)-holomorphic.
On the other hand, let ¢ be (A?,b)-holomorphic. Then the power series > (2:!)!A2nb(1_;)"2n+1 converges if
n=0

llf‘ » < Ra2;(¢). Therefore, if R € (0,1), then the power series u(t,z) = Y (mA2m)! g2npgngm converges

In!
(1—=) n,m=0 e

for |z| < R, [t| < (1 — R)*Ra2,(¢), and

> (2n)!  A2ptn
u(t,z) = Z nl (1 gyt It <T, |z|<R. O

According to 2.4 and 2.5, we deduce the following corollaries from Proposition 3.2.

Corollary 3.3. Let dim E < +o0o. Then the Cauchy problem (13) has a solution if and only if b € ker A* for
some k € N. Moreover, if b € ker A2NT1, then the solution of this problem is of the form

N

(2n)!  A2ptn
u(t,z) =) nl (1 )it teR, |z| <1
n=0

Corollary 3.4. Let dim E < 4+o00. Then the Cauchy problem (13) has a solution for each vector b € E if and
only if the operator A is nilpotent.

Corollary 3.5. Let E be a Hilbert space, let b € E, and let A be a bounded normal operator. Then the Cauchy
problem (13) has a solution if and only if b € ker A.

Now we give an example of a nontrivial explicit solution of Cauchy problem (13).

Example 3.6. Let E = C[0,1] and let A be the square root from an integration operator:

1 [ by
(Ab)(s) = \/ﬂ_/\/s—ydy'

0

Then 1 is A%-holomorphic, and R4z () = 1/4 (see Example 2.10). According to Proposition 3.2, the solution
of the Cauchy problem (13) is of the form

tA? b 1 ‘

t,x) = -1,1), |t 1—2)%
uba)=v( T n)y e wECLD, < (1)
Now equality (11) in Example 2.10 shows that

b(s) b(y)dy

e = 7 w2 [ e
0

(14)

€(-1,1), |t| < (1 —2)* s €[0,1].

0 B

Remark 3.7. Example 3.6 shows that the series sum )(zA42%) = Zo (ZTZ)!AQ”Z” presents implicitly in a formula
n=

for a solution of the 2-D wave equation with some special initial conditions. Indeed, in this example, the Cauchy

problem (13) can be written in the following form:

ou / 8%u
at (t,.’I,',S) - / 81’2 (t,.’l?,y)dy,
0
_ b(s)
u(0,z,s) = 1 ° € [0,1].

805



Thus, the function (¢, z, s) satisfies the partial differential equation:
0 (6u> _ d%u
Os\ot/)  Oz?

and the conditions u(0, z,s) = j’(j;, s € [0,1], and %’t‘ (t,z,0) = 0.
Now from (14) we conclude that the function

b(s) b(y)dy
1—m+%/kﬂ—@ —dt(s — y))B/2

0

1
u(t, z,s) = €(-L1), [t < (1-2),

s € [0, 1], is a solution of Eq. (15). If b € C1[0,1], then the function u(t,z, s) is differentiable with respect to s.
%u _

otos = Bx . By a linear substitution, this equation can

In this case, Eq. (15) may be rewritten in the usual form
be reduced to the wave equation.

Finally, consider the Cauchy problem (12) with an arbitrary analytic vector-valued function g, where

= Z bnz™, |x| < R(g).
m=0

Theorem 3.8. The following conditions are equivalent:
(1) The Cauchy problem (13) has an analytic solution for each vector b € E;

(2) the Cauchy problem (12) has an analytic solution for each vector-valued function g(x) that is analytic in a
neighborhood of zero;

(3) the operator A is quasinilpotent (i.e., the spectrum of A contains of the point 0 only), and the Fredholm
resolvent (1 — zA%)~! of the operator A® is an entire function of exponential type.

Moreover, if at least one of these conditions is true, then the Cauchy problem (12) has a unique analytic
solution

u(t,x) = Z (m +2n)t A" ot ™

m!n!
n,m=0

and this series converges for |t| < Ty, |z| < Ro, where Ty = apR 2 (¢)R(9)?, Ro = BoB1R(g), and ay, Bo, B1 are
arbitrary constants satisfying the conditions ap, Bo, 1 € (0,1) and g < B (1 — Bo)>.

Proof. According to Proposition 3.2 and Theorem 2.6, condition (1) is equivalent to the fact that the power

series ¥(() = >, (217!)!0’ is A%-holomorphic. Hence, conditions (1) and (3) are equivalent (see Lemma 2.8
n=0
and Proposition 2.9). It is obvious that (1) follows from (2). We claim that condition (2) follows from the
AZ2-holomorphicity of the power series ¥(¢). According to Lemma 3.1,
. 2n) ..
u(t,z) = Z (m + 2n) A" ot ™

m!n!
n,m=0

is the unique formal solution of the Cauchy problem (12). Now we show that there exist positive Tp and Ry
such that this series converges for |t| < To,|z| < Ro. Consider ¢, ¢z, c3,c4 € (0,1) with ¢3 < clcz(l —¢y)? (for

example, ¢; = 9/10, co = 3/4, ¢ = 1/8, and ¢4 = 1/2) and 71 = ¢; R42(¢)). Then the series Z ( ||A2”||r

converges. Therefore, there exists a constant M; such that

2 M
(”Hm%”< lon=0,1,....
n! i
Let ro = c2R(g). Then there exists a constant My > 0 such that ||b,,| < ff,?, m =0,1,.... Hence,
2

> m+2n " m . (2n)! M| A2 (m+2n)! /|z
3 o 1l < TS O ()
Z

n! m!(2n r
m=0 ) 2
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120 z[\2n — N pW2N z[\2n
nlr3 (1— \TQ\)Z +1 7T orprdt (1 — Irzl)z +1

for |z| <7y andn=0,1,....
Now let Ty = c3R42(¢)R(g)? and Ry = c2c4R(g). If |t| < Ty and |z| < Ry, then

|t| C3RA2 (@ZJ)R(g)Z _ C3 <1
rr3(1= N2 T e Rpe()GR(92(1- )2 ad(l—a)® "7

i.e., the series
o0

5 1 "
=R U
and ) ad
3 0 (2 g 1 Wt
n=0 m=0

converge. Thus, the series
oo
(m + 2n)!
S A gl

n,m=0
converges for [t| < Tp and |z| < Ro. To complete the proof, it is enough to take g = ¢3, Bo = ¢4, and 1 = 01/202.
The theorem is proved. [

4. SOLUTION REPRESENTATION BY A POISSON INTEGRAL

In the classic case (£ = C and A > 0), it is well known that the solution of the Cauchy problem (12) with a
bounded continuous initial function g(z) can be written as the Poisson integral:

+o0
u(t,z) = 2A}/7rt / exp { - 4222t}g(m —§)d¢.

2
In the vector case, if the operator A is noninvertible, then the expression 2A}/ﬂt exp {— 4154%} has no direct sense.

2p
On the other hand, if E=C, A >0, and g € E[¢], g(§) = > b,&™, then it is easy to check that
m=0

+oo

1 €2 B p @2n)! 5, .
/ZA\/wteXp{_zlAzt}g(f)df—Z . A2, 4.

— 00

This equality gives us a basis for the following definition of the Poisson integral in the space of formal power
series.

Let E be a Banach space and let E[[{]] be the linear space of formal power series with coefficients from E.
For r > 0 and g(¢) = Y bié* € E[[€]], we set

k=0

lgll- = > llolir*,  E.(€) = {g € E[[€]] : lgll- < +oo},
k=0

and E{¢) = |J E-(£). Then (E,(£),]-|]) is a Banach space, and E(£) is the linear space of all convergent power
r>0

series with coefficients from E. We furnish E({) with the topology of inductive limit of Banach spaces E,(£)
(see [20, Chap. 1], where the case E = C is considered in a similar way).
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Definition 4.1. Let A: E — E be a bounded linear operator. For g € E(£) and g(§) = > bip&*, we define
k=0

+o0

1 & B = (2n)! n n
2A/mt / e"p{—4A2t}g(€)df‘,§ pt A bant (16)

— 0o

(we consider the right-hand side of equality (16) as an element of E[[t]]).
Remark 4.2 We note that if A =0, then

e 2
2A1¢m / P { - 432t}g(£)df = g(0).

Proposition 4.3. Assume that A is quasinilpotent and that the Fredholm resolvent of A% is an entire function
of exponential type. Then the series in the right-hand side of equality (16) has a positive radius of convergence.
Moreover, if we define

+o00 9
a0 =, [ en{ = S, o a7)

—0o0

then H 4 is a continuous linear map from E(£) to E(t).

Proof. If g(§) = ioj br&k, then
k=0

2n)! o n
(Hag)t) = ) 420,
n=0
According to 2.9,
1 ./ (2n)!
= lim \/ A% || < +oo.
Rar(w) ~ iV 1470

Therefore,

_Jen)t . K/(2n)z ‘ 1
| \/ A2n| ||bap]| = 1 A2 ¥/ ||ban | < .
Thus, if |t| < Ra2(1))R(g)?, then the series in the right-hand side of equality (16) converges, i.e., Hag € E(t). It
is obvious that H 4 is linear. Let us show that H 4 is continuous. To this end, we show that the all restrictions
Halg, ) : E-(§) — E(t), r > 0, are continuous. Take 7o > 0 and g € E, ({). According to Proposition 2.9,

(27?!)! || A%"|| < M™, n € N, for some M > 0. Let r; = }"\Ej Then

[1Hagllr, = 1A% ban kI < D N1b2nkllrg™ < llglro-
n'

n=0 n=0

Therefore, Hy is a continuous map from E, (§) to E,., (t). Hence, H4 is continuous as a map from E, (§)
to E(t). O

o0
Theorem 4.4. Let g be a vector-valued function that is analytic in a neighborhood of zero and g(x) = > byz™,
m=0

|z| < R(g). Assume that A is quasinilpotent and that the Fredholm resolvent of A% is an entire function of
exponential type. Consider Ty and Ry which were defined in Theorem 3.8. Then the solution of Cauchy problem

(12) can be represented as
+o0 5

uta) =y [en{= S, oo -0 (13)

— 0o
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[t| < To, |x| < Ry, i.e., for each fized x € (—Ry, Ry), the right-hand side of equality (17) is a convergent power
series in t € (—Tp,To) which coincides with the series in the right-hand side of identity (18).

Proof. Let us fix z € (—Ry, Rp) and show that g(z — £) is a convergent power series with respect to . Let
9(€) = > bm&™, [§] < R(g). Since Ry < R(g), R(g)—|x| > 0. Therefore, if [{| < R(g)—|z|, then [z]+|¢] < R(g),
m=0

ie.,

Z ol +1ED™ =D > Chllbmll€l*|2)™* < +oo.

m=0 m=0 k=0

From here it follows that
=Y bul@ - =3 S (-1)*b,,ChekamE Z(Zc,’;bmxm’“>§’“,
m=0 m=0 k=0 k=0 “m=k

€] < R(g) — |z|. Thus, if h(§) = g(xz — &), then h € E({), i.e., the right-hand side of identity (18) is defined
correctly. According to definition 4.1,

—+o00

1 'S 2n n N mon ) o
2A¢wt4 exp{ = oy folo — € = Z A2 (mZ;ncz b2 )
i Azn( i Cerzn m+2nd >tn - i (mn_;syn) A"y ont™z™ = u(t, z),
= m=0 n,m—=0 n.

and this series converges if |t| < Ty, |z| < Ro (see Theorem 3.8). O
Remark 4.5. Equalities (17) and (18) show that a solution u(t, ) of the Cauchy problem (12) can be considered
as a “convolution” of the initial condition g(z) with the “distribution” Hy4.

5. CAUCHY PROBLEM FOR AN INHOMOGENEOUS EQUATION

Let f(t,z) be a vector-valued function that is analytic in a neighborhood of zero and

flt,x) = D" famt"@™, |t| <To, |z < Ro.
n,m=0
Consider the following Cauchy problem
ou , 0%u
= A? t
ot =4 gpg TIH): (19)
u(0,z) =0.

By a solution of this problem we mean a vector-valued function of real variables ¢t and x that is analytic in a
neighborhood of zero, satisfies the equation in this neighborhood, and satisfies the initial condition.

Theorem 5.1. Assume that the operator A is quasinilpotent and that the Fredholm resolvent (1 — zA%)~! of
A? is an entire function of exponential type. Then the Cauchy problem (19) has a unique analytic solution,
which is defined in a rectangle |t| < Ty, |x| < Ry, where Ty = min{Ty, a(1 — 8)*>v*>R42(¢¥)Ro’}, Ri = ByRo,
and «, B, v are arbitrary constants from (0,1). (Recall that Ra2(v) is the radius of convergence of the series

P(zA?) = Y (%)!Az”z”, see Proposition 2.9).
n=0

Proof. Let us find the solution of the Cauchy problem (19) in the following form:

z) =Y Au(t,x). (20)
k=0



It is easy to check that this series formally satisfies the equation

ou _ ,0%
ot A Ox? MEACEY
! 0 0 0?
U Uk+1 U
= = > 1.
ot f(t,x) and ot 92 kE>1

Taking into account the zero initial condition, we obtain the equalities

t
/ f TU) dTO
0

and
t
’uk+1 t :U / Tk+1, di+1, k Z 1.
0
Hence,
t Tk T1 azkf
ug(t,x) = /di/di,l / D2k (10,x)d10, k>0.
0 0 0

To prove that the formal sum (20) is an analytic solution, we consider the functions f and ug, k =0,1,...,
as holomorphic functions of two complex variables z and w in the polydisk |z| < Ty, |w| < Rp. Thus,

- n,, m fnm n+1 m
S fumsa - 3 Jma,
n,m=0
and
_ - (m + 2]{,‘)"!7,' n+k+1,, m
Ulc(sz) = Z m,(n+k+1)|fnmz w,
n,m=0
k=0,1,.., |z| < To, lw| < Ro. Now take a, 3, v, € (0,1), r =Ry, and 5 < min{Tp, a(1 — £)>7*R 42 (¢)) Ro*}.
There exists a constant M; such that || frm|| < Si”rlm, n,m = 0,1,.... Hence, if |2| < s; < s and |w| < r; = Br,
then
|z[Ft1 S (m+2k)!n! /lz|\/|w|\™
<M ) ()
||Uk(Z 'IU)H T'Zk - m|(n + k + 1)| r
Jz]E 0 (m A+ 2k)! /w] ™ n! [2]\ 7
= M 2k (%) (%)
(2k)! r2k Z m!(2k)! \ r Z(n+k+1)! s
m=0 n=0
Jz]E 1 = n! |z[\ "
= M, (2k)! ( )
rk (1 \l:\)zk-H r;) (n+k+1)!\ s
k+1 1 1 M+ (2k)1gk+1
SMI(Qk)!S% |w] e 2| = s1 1( k;) ’ T1)\2k+1p2k
rEh o= ehzern (- By 4y (D=0 (R + DL = )
since
00 t Tk T1 d 1
To
dri_q ... < .
‘Z(n+k+l ‘/ _/Tkl _/l—ro (1 =tk + 1)
n=0 0 0
> (2k
Now set | = aR42(v). Then the series Z ) || A%*{]1¥ converges (see Proposition 2.9). Therefore, there exists
kl
a constant My > 0 such that [|A%*|| < M, (2k)IF k=0,1,.... Hence,

M1M28k+1

e e Pt S
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for all |z|<s1, |w|<ri, and
s s

-1y “a(l - B)22R a2 () Ry?

<1

oo
Thus, the series Z A?*uy, (2, w) converges uniformly at |z| < sy, |w| < 7y for all s; < s and r; < 3Ry, and the
k=0

o0
function u(z,w) = Z A?* (2, w) is holomorphic in the polydisk |z| < T%, |w| < Ry, where
k=0

T; = min{Tp, a(1 — B)2y?Ra>()Ro®} and R; = BvRo.

Therefore, the function u(t, ), which is the sum of the series (20), is analytic in the rectangle |t| < Ty, |z| < Ry,
and is a solution of the Cauchy problem (19). The uniqueness of the solution follows from Lemma 3.1. The
theorem is proved. [

Remark 5.2. Assume that the function f from the Cauchy problem (19) does not depend on ¢, i.e., f(t,z) =
g(x), where g is a vector-valued function that is analytic in a neighborhood of zero. If u(t, ) is a vector-valued
function that is analytic in a neighborhood of zero and v = %‘;, then it is easy to check that u(t,z) is a solution

of the Cauchy problem (19) if and only if v(¢, ) is a solution of the Cauchy problem (12):

ov  ,0%
ot A oz?’
v(0,z) = g(z).

Therefore, the implication (3) = (1) in Theorem 3.8 can be deduced from Theorem 5.1. Moreover, the method
of solution finding for the inhomogeneous equation in the form of a series with respect to degrees of a “small
parameter” can be used to solve the Cauchy problem (12):

Ou 0%u
= A2
ot 0x?’
u(0,) = g(z).
In this case, it is natural to find a solution in the form
= " 2n
ult,2) = g(@) + Y A (@) (21)

n=1

Here gni1 = g;;(a:), ie., gn(z) = g (x), n > 1. If the condition of Proposition 2.9 is fulfilled, then the
convergence of series (21) can be proved in the same way as in Theorem 5.1.

Example 5.3. Assume that the operator A satisfies the condition of Theorem 5.1 and that b € E. Consider the

Cauchy problem:
ou Sz 0%u N b

o T 0x2 1-2
u(0,z) = 0.
Ifv= %‘;, then v is a solution of the Cauchy problem (13):
v 0%u
= A2
ot 02’
v(0,z) = b
=g

Therefore, v(t,z) = 1/)((1t:4;)2) 1Ez (see Proposition 3.2). Hence,

— ' T 2) b _ o (2R)!
ult 7) —/0 w((l—m)QA >1—J;dT_Z o+ A e

811



It

- w

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

<T,|z| < R, where R=ca and T = (1 — @)%, a € (0,1) (see Proposition 3.2).
Translated by A. Vershynina and S. Gefter.
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