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ON ANALYTIC SOLUTIONS OF THE HEAT EQUATION WITH AN OPERATOR

COEFFICIENTA. Vershynina∗ and S. Gefter∗ UDC 517.968; 517.983
Let A be a bounded linear operator on a Banach space and let g a be vector-valued function that is analytic in a
neighborhood of the origin of R. We obtain conditions of the existence of analytic solutions for the Cauchy problem
{

∂u

∂t
= A2 ∂

2
u

∂x2 ,

u(0, x) = g(x).
Moreover, we consider a representation of the solution of this problem as a Poisson integral and

study the Cauchy problem for the corresponding inhomogeneous equation. Bibliography: 22 titles.

1. IntroductionThe Cau
hy theorem on analyti
 solutions of di�erential equations with analyti
 
oeÆ
ients is well known inthe theory of ordinary di�erential equations (see, e.g., [1℄). For the 
lass of so-
alled normal partial di�erentialequations, a similar theorem had been proved by Cau
hy and Kovalevskaya [2{4℄. Moreover, Kovalevskaya [5℄showed that if an equation is not normal, then a Cau
hy problem for this equation may fail to have analyti
solutions. Let us 
onsider the famous example of Kovalevskaya:










�u�t = a2 �2u�x2 ;u(0; x) = b1− x (1)(in what follows, it is 
onvenient for us to 
onsider an arbitrary 
oeÆ
ient b in the initial 
ondition).It is easy to 
he
k that the following power series:
∞
∑n;m=0 (m+ 2n)!m!n! a2nbtnxm (2)is a formal solution of problem (1). Therefore, for a 6= 0 and b 6= 0, the Cau
hy problem (1) does not havesolutions that are analyti
 in a neighborhood of zero. The resear
h initiated by Kovalevskaya was 
ontinued innumerous papers (see, e.g., [6{18℄).In this paper, we 
onsider the following operator analog of the Cau
hy problem (1):











�u�t = A2 �2u�x2 ;u(0; x) = b1− x; (3)and a more general Cau
hy problem:






�u�t = A2 �2u�x2 ;u(0; x) = g(x): (4)Here A is a bounded linear operator on a Bana
h spa
e E, b ∈ E, and g is a ve
tor-valued fun
tion that isanalyti
 in a neighborhood of the origin. By formal analogy with the equation in (1), Eq. (4) is also 
alled \theheat equation." Note that in some interesting examples, our \heat equation" is a hyperboli
 partial di�erentialequation (see Remark 3.7). We 
onsider solutions of the Cau
hy problem (4) that are analyti
 in a neighborhoodof the origin of R×R. By a solution of problem (4) we mean a lo
al analyti
 solution, i.e., a ve
tor-valued fun
tionof real variables t and x that is analyti
 in a neighborhood of zero, satis�es the equation in this neighborhood,
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and satis�es the initial 
ondition in a neighborhood of the origin of R. The formal solution of Cau
hy problem(3) looks like the s
alar one:
∞
∑n;m=0 (m+ 2n)!m!n! A2nbtnxm: (5)It is obvious that if A = 0, then the fun
tion u(t; x) = ∞

∑n=0 bxn = b1−x is an analyti
 solution of problem (3).Similarly, there exists an analyti
 solution of problem (3) if A is a nilpotent operator, i.e., Ak = 0 for some k. Wealso 
onsider more general operators that are 
lose to zero in the spe
tral sense (namely, quasinilpotent ones).Re
all that an operator A is 
alled quasinilpotent if the spe
trum �(A) of A 
onsists of the single point � = 0.We show that series (5) 
an be 
onvergent in a neighborhood of the origin if A is a quasinilpotent operatorsatisfying some additional assumption (see Proposition 3.2).Now we formulate the main result of our paper.Theorem 3.8. The following 
onditions are equivalent:(1) The Cau
hy problem (3) has an analyti
 solution for ea
h ve
tor b ∈ E;(2) the Cau
hy problem (4) has an analyti
 solution for any ve
tor-valued fun
tion g(x) that is analyti
 in aneighborhood of zero;(3) the operator A is quasinilpotent, and the Fredholm resolvent FA2(z) = (1− zA2)−1 of the operator A2 is anentire fun
tion of exponential type (i.e., ‖FA2(z)‖ ≤ Ce�|z| for some 
onstants C and �).Moreover, if these 
onditions are ful�lled, then the solution of the Cau
hy problem (4) is unique and has thefollowing expli
it form: u(t; x) = g(x) + ∞
∑n=1 tnn!A2ng(2n)(x)(see Remark 5:2).Thus, if the Cau
hy problem (4) has an analyti
 solution for any analyti
 initial 
ondition, then the operatorA is 
lose to zero in the spe
tral sense. In parti
ular, in the �nite-dimensional 
ase, the equation from the Cau
hyproblem (4) is of the form �uk�t = m

∑j=1 
kj �2uj�x2 ; k = 1; : : : ;m (m = dimE);where the matrix C = (
kj) is nilpotent (see Corollary 3.4). Certainly, in the given parti
ular 
ase, this fa
t is asimple 
orollary of the general theorem obtained by Mizohata (see [10, Se
. 3, Theorem 1℄).Theorem 3.8 
an be 
onsidered as one more illustration of unusual properties of obje
ts 
onne
ted withquasinilpotent operators (see, for example, [19, Se
s. 4.6 and 4.10℄ and [22℄).Some examples of expli
it solutions of the Cau
hy problem (3) are given in Se
. 3 (see Corollaries 3.3{3.5,Example 3.6, and Remark 3.7).Our study of the Cau
hy problem (4) is based on the 
on
ept of A-holomorphi
 formal power series (seeDe�nition 2.1), whi
h was investigated in the paper [22℄. In [22℄, this 
on
ept was used in the study of holomorphi
solutions of the equation z2Aw′ + g(z) = w, where A is a quasinilpotent linear operator on a Bana
h spa
e. Letus note that ea
h 
ondition of the Theorem 3.8 is equivalent to the A2-holomorphi
ity of the formal power series (�) = ∞
∑n=0 (2n)!n! �n (see Proposition 2.9). The 
on
ept of A-holomorphi
ity is 
onsidered in Se
. 2.In Se
. 4, we 
onsider a representation of the solution of the Cau
hy problem (4) as a Poisson integral. Inour situation (i.e., if A is quasinilpotent), the operator analog of the heat kernel HA(t; �) = 12A√�t exp {− �24A2t}
ertainly has no usual sense. We 
onsider HA as a ve
tor-valued distribution, where the spa
e of \test fun
tions"is the spa
e of all 
onvergent power series with 
oeÆ
ients from E (see De�nition 4.1 and Proposition 4.3). Thenwe show that the solution of the Cau
hy problem (4) 
an be represented as the 
onvolution of HA with the initial
ondition g (see Theorem 5.1).In Se
. 5, we study the Cau
hy problem for the inhomogeneous equation:

{ �u�t = A2 �2u�x2 + f(t; x);u(0; x) = 0:
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We show that if the 
onditions of Theorem 3.8 are ful�lled, then the analyti
 solution of this Cau
hy problem
an be found as a series with respe
t to the \small parameter" A (see Theorem 5.1):u(t; x) = ∞
∑k=0A2kuk(t; x):

2. PreliminariesLet E be a 
omplex Bana
h spa
e, let A : E → E be a bounded linear operator, let b ∈ E, and letf(�) = ∞
∑n=0 
n�n be a formal power series with 
oeÆ
ients from C. De�nef(zA) = ∞

∑n=0 
nAnzn; z ∈ C; (6)and f(zA)b = ∞
∑n=0 
nAnbzn; z ∈ C: (7)Then f(zA) is a power series with 
oeÆ
ients from the algebra B(E) of all bounded operators in the spa
eE, and f(zA)b is a power series with 
oeÆ
ients from E. The radius of 
onvergen
e of series (6) is denoted byRA(f), and that of series (7) is denoted by RA;b(f).De�nition 2.1. The power series f(�) is 
alled A-holomorphi
 if RA(f) > 0 and (A; b)-holomorphi
 if RA;b(f) >0. It is obvious that an A-holomorphi
 power series is (A; b)-holomorphi
 for all ve
tors b ∈ E, and RA;b(f) ≥RA(f). Moreover, if |z| < RA(f), then the sum of the series in the right-hand side of equality (7) is the resultof the a
tion of the operator f(zA) on b.Remark 2.2. Assume that the power series f has a positive radius of 
onvergen
e R(f). Then this series isA-holomorphi
 for ea
h bounded operator A. Moreover, if �(A) is the spe
tral radius of the operator A and

|z|�(A) < R(f), then f(zA) is well de�ned as the a
tion of the holomorphi
 fun
tion f on the operator zA.Example 2.3. Assume that b ∈ ker Am for some m ∈ N. Thenf(zA)b = m−1
∑n=0 
nAnbzn;i.e., every power series f(�) is (A; b)-holomorphi
.If the spa
e E is �nite-dimensional, then the 
onverse statement also holds in the situation whi
h is mostinteresting for us (see [22, Proposition 1.4℄).Proposition 2.4. Let dimE < ∞, let f be a power series, and let the radius of 
onvergen
e of f be 0. If f is(A; b)-holomorphi
, then b ∈ ker Am for some m ∈ N.In the Hilbert spa
e 
ase, the following analog of Proposition 2.4 is true.Proposition 2.5. Let E be a Hilbert spa
e, let f(�) = ∞
∑n=0 
n�n be a power series, and let the radius of 
onver-gen
e of f be equal to zero. If A is a normal bounded operator and f is (A; b)-holomorphi
, then b ∈ ker A.Proof. Let RA;b(f) > 0. A

ording to the ve
tor analog of the Cau
hy{Hadamard formula,1RA;b(f) = limn→∞
n√|
n|‖Anb‖ <∞:Let us show that there exists limn→∞

n√‖Anb‖. A

ording to the spe
tral theorem, we 
an identify E with L2(X;�)for some measure spa
e (X;�) and 
onsider A as the multipli
ation operator:(Ab)(x) = a(x)b(x); where a ∈ L∞(X;�):
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Then n√‖Anb‖ = 2n√∫X |a(x)|2n|b(x)|2d�, and this sequen
e 
onverges to the norm of a(x) in the spa
e L∞(X;�b),where d�b = |b(x)|2d�. On the other hand, limn→∞
n√|
n| = ∞. Hen
e, limn→∞

n√‖Anb‖ = 0. Therefore, a(x) = 0�b-almost everywhere, i.e., a(x)b(x) = 0 �-almost everywhere. Thus, Ab = 0. �Using Example 2.3, it is easy to �nd examples of (A; b)-holomorphi
 formal power series that are not A-holomorphi
. However, using the Baire 
ategory theorem, one 
an prove the following statement (see [22,Theorem 1.5℄).Theorem 2.6. If the formal power series f is (A; b)-holomorphi
 for all b ∈ E, then it is A-holomorphi
.The following statement shows that if A is not quasinilpotent, then the 
on
ept of A-holomorphi
 formalpower series 
oin
ides with the usual 
on
ept of holomorphi
 power series (see [22, Proposition 1.7℄).Proposition 2.7. If the operator A has a positive spe
tral radius, then a power series f is A-holomorphi
 if andonly if it has a positive radius of 
onvergen
e. Thus, if f has zero radius of 
onvergen
e and f is A-holomorphi
,then A is quasinilpotent.The following two formal power series play an important role in our further study:'(�) = ∞
∑n=0n!�n and  (�) = ∞

∑n=0 (2n)!n! �n:Lemma 2.8. Let A : E → E be a bounded linear operator and let b ∈ E. Then(1)  is (A; b)-holomorphi
 if and only if ' is (A; b)-holomorphi
;(2)  is A-holomorphi
 if and only if ' is A-holomorphi
.Proof. It is enough to noti
e that, a

ording to the Stirling formula,n√ (2n)!n! ∼ 4ne and n√n! ∼ ne : �Re
all that an entire fun
tion g(z) with values in a Bana
h spa
e is 
alled a fun
tion of exponential type if
‖g(z)‖ ≤ Ce�|z| for some 
onstants C and �. Re
all also that a bounded linear operator A is quasinilpotent ifand only if its Fredholm resolvent (1− zA)−1 is an entire fun
tion (see [19, Chap. 4℄).Proposition. The Fredholm resolvent (1− zA)−1 of the operator A is an entire fun
tion of exponential type ifand only if the series  (�) = ∞

∑n=0 (2n)!n! �n is A-holomorphi
.Proof. It follows from Lemma 2.8 that we 
an 
onsider the power series '(�) = ∞
∑n=0n!�n instead of  (�). Let 'be A-holomorphi
. Then 1RA(') = limn→∞

n√n!‖An‖ < +∞; (8)and the operator A is quasinilpotent. Now identity (8) is equivalent to the statement that the entire fun
tion(1− zA)−1 = ∞
∑n=0Anzn is of exponential type (see [21, p. 95℄). �Let us give an example where the fun
tion  (zA) 
an be 
omputed expli
itly.Example 2.10. Let E = C[0; 1℄ and let A1 be the integration operator:(A1b)(s) = s

∫0 b(y)dy; b ∈ E:It is well known that (An1 b)(s) = 1(n− 1)! s
∫0 (s− y)n−1b(y)dy; (9)
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‖An1‖ ≤ 1n! , and A1 = A2, where (Ab)(s) = 1√� s
∫0 b(y)√s− ydy:It is easy to 
he
k that the series  is A1-holomorphi
 and RA1( ) = 1=4, i.e.,  is A2-holomorphi
 andRA2( ) = 1=4: For the expli
it 
al
ulation of the operator  (zA2), note that1 + ∞

∑n=1 (2n)!(n!)2 (x2 )2n = 1√1− x2 ; |x| < 1:Hen
e,
∞
∑n=1 (2n)!n!(n− 1)! (x2 )2n−2 = 2(1− x2)3=2 ; |x| < 1;and

∞
∑n=1 (2n)!n!(n− 1)!
n−1 = 2(1− 4
)3=2 ; |
| < 14 : (10)Now from (9) and (10) we dedu
e that( (zA2)b)(s) = b(s) + 2z s

∫0 b(y)dy(1− 4z(s− y))3=2 ; |z| < 1=4: (11)
3. Main resultLet E be a Bana
h spa
e, let A : E → E a bounded linear operator, and let g be a E-valued fun
tion that isanalyti
 in a neighborhood of zero. In this se
tion, we 
onsider the problem of solution existen
e for the Cau
hyproblem






�u�t = A2 �2u�x2 ;u(0; x) = g(x): (12)By a solution of problem (12) we mean a lo
al analyti
 solution, i.e., a ve
tor-valued fun
tion of real variablest and x that is analyti
 in a neighborhood of zero, satis�es the equation in this neighborhood, and the initial
ondition in a neighborhood of the point x0 = 0.At �rst, 
onsider only an algebrai
 situation in whi
h g is a formal power series.Lemma 3.1. Let g(x) = ∞
∑m=0 bmxm be a formal power series with 
oeÆ
ients from E. Then the Cau
hy problem(12) has a unique formal solutionu(t; x) = ∞

∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxm = ∞
∑n=0 tnn!A2ng(2n)(x):Proof. Assume that u(t; x) = ∞

∑n;m=0 
nmtnxm;
nm ∈ E, is a formal solution of the Cau
hy problem (12). After a formal substitution into the equation, we seethat
∞
∑n;m=0(n+ 1)
n+1mtnxm = ∞

∑n;m=0(m+ 2)(m+ 1)A2
nm+2tnxm
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and ∞
∑m=0 
0mxm = ∞

∑m=0 bmxm:Hen
e, (n+ 1)
n+1m = (m+ 2)(m+ 1)A2
nm+2and 
0m = bm; n;m ≥ 0;i.e., 
n;m = (m+ 2n)!m!n! A2nbm+2n; n;m ≥ 0:Thus, u(t; x) = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxmis the unique formal solution.It is easy to 
he
k that this solution 
an be represented as u(t; x) = ∞

∑n=0 tnn!A2ng(2n)(x), and the expression onthe right-hand side is a well-de�ned formal power series in variables t; x. The lemma is proved. �Now for b ∈ E we 
onsider the following spe
ial Cau
hy problem:










�u�t = A2 �2u�x2 ;u(0; x) = b1− x: (13)Proposition 3.2. The Cau
hy problem (13) has a solution if and only if the formal power series  (�) =
∞
∑n=0 (2n)!n! �n is (A2; b)-holomorphi
 (see De�nition 2:1). Moreover, the solution is unique, and it 
an be representedby the following two series: u(t; x) = ∞

∑n;m=0 (m+ 2n)!m!n! A2nbtnxmand u(t; x) =  ( tA2(1− x)2 ) b1− x = ∞
∑n=0 (2n)!n! A2nbtn(1− x)2n+1 ;

|t| < T , |x| < R, where R ∈ (0; 1) and T = (1−R)2RA2;b( ).Proof. A

ording to Lemma 3.1, the unique formal solution of the Cau
hy problem (13) isu(t; x) = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbtnxm:Assume that this series 
onverges for |t| < T and |x| < R, where R ∈ (0; 1). Sin
e

∞
∑m=0 (m+ 2n)!m!n! xm = 1(1− x)2n+1 ;u(t; x) = ∞

∑n=0 (2n)!n! ( ∞
∑m=0 (m+ 2n)!m!n! xm)A2nbtn = ∞

∑n=0 (2n)!n! 1(1− x)2n+1A2nbtn:Therefore, limn→∞
n√ (2n)!n! 1(1− x)2n+1 ‖A2nb‖ < +∞;
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i.e.,  is (A2; b)-holomorphi
.On the other hand, let  be (A2; b)-holomorphi
. Then the power series ∞
∑n=0 (2n)!n! A2nb tn(1−x)2n+1 
onverges if

|t|(1−x)2 < RA2;b( ). Therefore, if R ∈ (0; 1), then the power series u(t; x) = ∞
∑n;m=0 (m+2n)!m!n! A2nbtnxm 
onvergesfor |x| < R, |t| < (1−R)2RA2;b( ), andu(t; x) = ∞

∑n=0 (2n)!n! A2nbtn(1− x)2n+1 ; |t| < T; |x| < R: �A

ording to 2.4 and 2.5, we dedu
e the following 
orollaries from Proposition 3.2.Corollary 3.3. Let dimE < +∞. Then the Cau
hy problem (13) has a solution if and only if b ∈ ker Ak forsome k ∈ N. Moreover, if b ∈ ker A2N+1; then the solution of this problem is of the formu(t; x) = N
∑n=0 (2n)!n! A2nbtn(1− x)2n+1 ; t ∈ R; |x| < 1:Corollary 3.4. Let dimE < +∞. Then the Cau
hy problem (13) has a solution for ea
h ve
tor b ∈ E if andonly if the operator A is nilpotent.Corollary 3.5. Let E be a Hilbert spa
e, let b ∈ E, and let A be a bounded normal operator. Then the Cau
hyproblem (13) has a solution if and only if b ∈ ker A.Now we give an example of a nontrivial expli
it solution of Cau
hy problem (13).Example 3.6. Let E = C[0; 1℄ and let A be the square root from an integration operator:(Ab)(s) = 1√� s

∫0 b(y)√s− ydy:Then  is A2-holomorphi
, and RA2;b( ) = 1=4 (see Example 2.10). A

ording to Proposition 3.2, the solutionof the Cau
hy problem (13) is of the formu(t; x) =  ( tA2(1− x)2 ) b1− x; x ∈ (−1; 1); |t| < 14(1− x)2:Now equality (11) in Example 2.10 shows that[u(t; x)℄(s) = b(s)1− x + 2t s
∫0 b(y)dy((1− x)2 − 4t(s− y))3=2 ; (14)x ∈ (−1; 1), |t| < 14 (1− x)2, s ∈ [0; 1℄.Remark 3.7. Example 3.6 shows that the series sum  (zA2) = ∞

∑n=0 (2n)!n! A2nzn presents impli
itly in a formulafor a solution of the 2-D wave equation with some spe
ial initial 
onditions. Indeed, in this example, the Cau
hyproblem (13) 
an be written in the following form:






















�u�t (t; x; s) = s
∫0 �2u�x2 (t; x; y)dy;u(0; x; s) = b(s)1− x; s ∈ [0; 1℄:
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Thus, the fun
tion u(t; x; s) satis�es the partial di�erential equation:��s(�u�t ) = �2u�x2and the 
onditions u(0; x; s) = b(s)1−x , s ∈ [0; 1℄, and �u�t (t; x; 0) = 0:Now from (14) we 
on
lude that the fun
tionu(t; x; s) = b(s)1− x + 2t s
∫0 b(y)dy((1− x)2 − 4t(s− y))3=2 ; x ∈ (−1; 1); |t| < 14(1− x)2;s ∈ [0; 1℄, is a solution of Eq. (15). If b ∈ C1[0; 1℄, then the fun
tion u(t; x; s) is di�erentiable with respe
t to s.In this 
ase, Eq. (15) may be rewritten in the usual form �2u�t�s = �2u�x2 . By a linear substitution, this equation 
anbe redu
ed to the wave equation.Finally, 
onsider the Cau
hy problem (12) with an arbitrary analyti
 ve
tor-valued fun
tion g, whereg(x) = ∞

∑m=0 bmxm; |x| < R(g):Theorem 3.8. The following 
onditions are equivalent:(1) The Cau
hy problem (13) has an analyti
 solution for ea
h ve
tor b ∈ E;(2) the Cau
hy problem (12) has an analyti
 solution for ea
h ve
tor-valued fun
tion g(x) that is analyti
 in aneighborhood of zero;(3) the operator A is quasinilpotent (i.e., the spe
trum of A 
ontains of the point 0 only), and the Fredholmresolvent (1− zA2)−1 of the operator A2 is an entire fun
tion of exponential type.Moreover, if at least one of these 
onditions is true, then the Cau
hy problem (12) has a unique analyti
solution u(t; x) = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxm;and this series 
onverges for |t| < T0, |x| < R0, where T0 = �0RA2( )R(g)2, R0 = �0�1R(g), and �0; �0; �1 arearbitrary 
onstants satisfying the 
onditions �0; �0; �1 ∈ (0; 1) and �0 < �21(1− �0)2.Proof. A

ording to Proposition 3.2 and Theorem 2.6, 
ondition (1) is equivalent to the fa
t that the powerseries  (�) = ∞

∑n=0 (2n)!n! �n is A2-holomorphi
. Hen
e, 
onditions (1) and (3) are equivalent (see Lemma 2.8and Proposition 2.9). It is obvious that (1) follows from (2). We 
laim that 
ondition (2) follows from theA2-holomorphi
ity of the power series  (�). A

ording to Lemma 3.1,u(t; x) = ∞
∑n;m=0 (m+ 2n)m!n! A2nbm+2ntnxmis the unique formal solution of the Cau
hy problem (12). Now we show that there exist positive T0 and R0su
h that this series 
onverges for |t| < T0; |x| < R0. Consider 
1; 
2; 
3; 
4 ∈ (0; 1) with 
3 < 
1
22(1 − 
4)2 (forexample, 
1 = 9=10, 
2 = 3=4, 
3 = 1=8, and 
4 = 1=2) and r1 = 
1RA2( ). Then the series ∞

∑n=0 (2n)!n! ‖A2n‖rn1
onverges. Therefore, there exists a 
onstant M1 su
h that(2n)!n! ‖A2n‖ ≤ M1rn1 ; n = 0; 1; : : : :Let r2 = 
2R(g). Then there exists a 
onstant M2 > 0 su
h that ‖bm‖ ≤ M2rm2 , m = 0; 1; : : : . Hen
e,(2n)!n! ∞
∑m=0 (m+ 2n)!m!(2n)! ‖A2n‖‖bm+2n‖|x|m ≤ (2n)!n! M2‖A2n‖r2n2 ∞

∑m=0 (m+ 2n)!m!(2n)! ( |x|r2 )m
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= (2n)!M2‖A2n‖n!r2n2 1(1− |x|r2 )2n+1 ≤ M1M2rn1 r2n2 1(1− |x|r2 )2n+1for |x| < r2 and n = 0; 1; : : : .Now let T0 = 
3RA2( )R(g)2 and R0 = 
2
4R(g). If |t| < T0 and |x| < R0, then
|t|r1r22(1− |x|r2 )2 < 
3RA2( )R(g)2
1RA2( )
22R(g)2(1− R0r2 )2 = 
3
1
22(1− 
4)2 < 1;i.e., the series

∞
∑n=0 1rn1 r2n2 |t|n(1− |x|r2 )2n+1and

∞
∑n=0 (2n)!n! ( ∞

∑m=0 (m+ 2n)!m!(2n)! ‖A2n‖‖bm+2n‖|x|m)

|t|n
onverge. Thus, the series
∞
∑n;m=0 (m+ 2n)!m!n! ‖A2n‖‖bm+2n‖|x|m|t|n
onverges for |t| < T0 and |x| < R0. To 
omplete the proof, it is enough to take �0 = 
3, �0 = 
4, and �1 = 
1=21 
2.The theorem is proved. �

4. Solution representation by a Poisson integralIn the 
lassi
 
ase (E = C and A > 0), it is well known that the solution of the Cau
hy problem (12) with abounded 
ontinuous initial fun
tion g(x) 
an be written as the Poisson integral:u(t; x) = 12A√�t +∞
∫

−∞

exp {

− �24A2t}g(x− �)d�:In the ve
tor 
ase, if the operator A is noninvertible, then the expression 12A√�t exp {− �24A2t} has no dire
t sense.On the other hand, if E = C, A > 0, and g ∈ E[�℄, g(�) = 2p
∑m=0 bm�m, then it is easy to 
he
k that+∞

∫

−∞

12A√�t exp {

− �24A2t}g(�)d� = p
∑n=0 (2n)!n! A2nb2ntn:This equality gives us a basis for the following de�nition of the Poisson integral in the spa
e of formal powerseries.Let E be a Bana
h spa
e and let E[[�℄℄ be the linear spa
e of formal power series with 
oeÆ
ients from E.For r > 0 and g(�) = ∞

∑k=0 bk�k ∈ E[[�℄℄, we set
‖g‖r = ∞

∑k=0 ‖bk‖rk; Er〈�〉 = {g ∈ E[[�℄℄ : ‖g‖r < +∞};and E〈�〉 = ⋃r>0Er〈�〉. Then (Er〈�〉; ‖ · ‖) is a Bana
h spa
e, and E〈�〉 is the linear spa
e of all 
onvergent powerseries with 
oeÆ
ients from E. We furnish E〈�〉 with the topology of indu
tive limit of Bana
h spa
es Er〈�〉(see [20, Chap. 1℄, where the 
ase E = C is 
onsidered in a similar way).
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De�nition 4.1. Let A : E → E be a bounded linear operator. For g ∈ E〈�〉 and g(�) = ∞
∑k=0 bk�k, we de�ne12A√�t +∞

∫

−∞

exp{

− �24A2t}g(�)d� = ∞
∑n=0 (2n)!n! A2nb2ntn (16)(we 
onsider the right-hand side of equality (16) as an element of E[[t℄℄).Remark 4.2 We note that if A = 0, then12A√�t +∞

∫

−∞

exp {

− �24A2t}g(�)d� = g(0):Proposition 4.3. Assume that A is quasinilpotent and that the Fredholm resolvent of A2 is an entire fun
tionof exponential type. Then the series in the right-hand side of equality (16) has a positive radius of 
onvergen
e.Moreover, if we de�ne (HAg)(t) := 12A√�t +∞
∫

−∞

exp{

− �24A2t}g(�)d�; (17)then HA is a 
ontinuous linear map from E〈�〉 to E〈t〉.Proof. If g(�) = ∞
∑k=0 bk�k, then (HAg)(t) = ∞

∑n=0 (2n)!n! A2nb2ntn:A

ording to 2.9, 1RA2( ) = limn→∞
n√ (2n)!n! ‖A2n‖ < +∞:Therefore, limn→∞

n√ (2n)!n! ‖A2n‖ ‖b2n‖ = limn→∞
n√ (2n)!n! ‖A2n‖ n√‖b2n‖ ≤ 1RA2( )R(g)2 :Thus, if |t| < RA2( )R(g)2, then the series in the right-hand side of equality (16) 
onverges, i.e., HAg ∈ E〈t〉. Itis obvious that HA is linear. Let us show that HA is 
ontinuous. To this end, we show that the all restri
tionsHA|Er〈�〉 : Er〈�〉 → E〈t〉, r > 0, are 
ontinuous. Take r0 > 0 and g ∈ Er0〈�〉. A

ording to Proposition 2.9,(2n)!n! ‖A2n‖ ≤Mn, n ∈ N, for some M > 0. Let r1 = r20M . Then

‖HAg‖r1 = ∞
∑n=0 (2n)!n! ‖A2nb2n;k‖rn1 ≤

∞
∑n=0 ‖b2n;k‖r2n0 ≤ ‖g‖r0 :Therefore, HA is a 
ontinuous map from Er0〈�〉 to Er1〈t〉. Hen
e, HA is 
ontinuous as a map from Er0〈�〉to E〈t〉. �Theorem 4.4. Let g be a ve
tor-valued fun
tion that is analyti
 in a neighborhood of zero and g(x) = ∞

∑m=0 bmxm,
|x| < R(g). Assume that A is quasinilpotent and that the Fredholm resolvent of A2 is an entire fun
tion ofexponential type. Consider T0 and R0 whi
h were de�ned in Theorem 3:8. Then the solution of Cau
hy problem(12) 
an be represented as u(t; x) = 12A√�t +∞

∫

−∞

exp{

− �24A2t}g(x− �)d�; (18)
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|t| < T0, |x| < R0, i.e., for ea
h �xed x ∈ (−R0; R0), the right-hand side of equality (17) is a 
onvergent powerseries in t ∈ (−T0; T0) whi
h 
oin
ides with the series in the right-hand side of identity (18).Proof. Let us �x x ∈ (−R0; R0) and show that g(x − �) is a 
onvergent power series with respe
t to �. Letg(�) = ∞
∑m=0 bm�m, |�| < R(g). Sin
e R0 < R(g), R(g)−|x| > 0. Therefore, if |�| < R(g)−|x|, then |x|+|�| < R(g),i.e.,

∞
∑m=0 ‖bm‖(|x|+ |�|)m = ∞

∑m=0 m
∑k=0Ckm‖bm‖|�|k|x|m−k < +∞:From here it follows thatg(x− �) = ∞

∑m=0 bm(x− �)m = ∞
∑m=0 m

∑k=0(−1)kbmCkm�kxm−k = ∞
∑k=0( ∞

∑m=kCkmbmxm−k)�k;
|�| < R(g) − |x|. Thus, if h(�) = g(x − �), then h ∈ E〈�〉, i.e., the right-hand side of identity (18) is de�ned
orre
tly. A

ording to de�nition 4.1,12A√�t +∞

∫

−∞

exp{

− �24A2t}g(x− �)d� = ∞
∑n=0 (2n)!n! A2n( ∞

∑m=2nC2nm bmxm−2n)tn= ∞
∑n=0 (2n)!n! A2n( ∞

∑m=0C2nm+2nbm+2nxm)tn = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxm = u(t; x);and this series 
onverges if |t| < T0, |x| < R0 (see Theorem 3.8). �Remark 4.5. Equalities (17) and (18) show that a solution u(t; x) of the Cau
hy problem (12) 
an be 
onsideredas a \
onvolution" of the initial 
ondition g(x) with the \distribution" HA.

5. Cauchy problem for an inhomogeneous equationLet f(t; x) be a ve
tor-valued fun
tion that is analyti
 in a neighborhood of zero andf(t; x) = ∞
∑n;m=0 fnmtnxm; |t| < T0; |x| < R0:Consider the following Cau
hy problem:






�u�t = A2 �2u�2x + f(t; x);u(0; x) = 0: (19)By a solution of this problem we mean a ve
tor-valued fun
tion of real variables t and x that is analyti
 in aneighborhood of zero, satis�es the equation in this neighborhood, and satis�es the initial 
ondition.Theorem 5.1. Assume that the operator A is quasinilpotent and that the Fredholm resolvent (1 − zA2)−1 ofA2 is an entire fun
tion of exponential type. Then the Cau
hy problem (19) has a unique analyti
 solution,whi
h is de�ned in a re
tangle |t| < T1, |x| < R1, where T1 = min{T0; �(1 − �)2
2RA2( )R02}, R1 = �
R0,and �, �, 
 are arbitrary 
onstants from (0; 1). (Re
all that RA2( ) is the radius of 
onvergen
e of the series (zA2) = ∞
∑n=0 (2n)!n! A2nzn, see Proposition 2:9).Proof. Let us �nd the solution of the Cau
hy problem (19) in the following form:u(t; x) = ∞

∑k=0A2kuk(t; x): (20)
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It is easy to 
he
k that this series formally satis�es the equation�u�t = A2 �2u�x2 + f(t; x)if �u0�t = f(t; x) and �uk+1�t = �2uk�x2 ; k ≥ 1:Taking into a

ount the zero initial 
ondition, we obtain the equalitiesu0(t; x) = t
∫0 f(�0; x)d�0and uk+1(t; x) = t

∫0 �2uk�x2 (�k+1; x)d�k+1 ; k ≥ 1:Hen
e, uk(t; x) = t
∫0 d�k �k

∫0 d�k−1 · · · �1
∫0 �2kf�x2k (�0; x)d�0; k ≥ 0:To prove that the formal sum (20) is an analyti
 solution, we 
onsider the fun
tions f and uk, k = 0; 1; : : : ,as holomorphi
 fun
tions of two 
omplex variables z and w in the polydisk |z| < T0, |w| < R0. Thus,f(z; w) = ∞

∑n;m=0 fnmznwm; u0(z; w) = ∞
∑n;m=0 fnmn+ 1zn+1wm;and uk(z; w) = ∞

∑n;m=0 (m+ 2k)!n!m!(n+ k + 1)!fnmzn+k+1wm;k = 0; 1; :::, |z| < T0, |w| < R0. Now take �, �, 
, ∈ (0; 1), r = 
R0, and s < min{T0; �(1 − �)2
2RA2( )R02}.There exists a 
onstant M1 su
h that ‖fnm‖ ≤ M1snrm , n;m = 0; 1; :::. Hen
e, if |z| < s1 < s and |w| < r1 = �r,then
‖uk(z; w)‖ ≤M1 |z|k+1r2k ∞

∑n;m=0 (m+ 2k)!n!m!(n+ k + 1)!( |z|s )n( |w|r )m=M1(2k)! |z|k+1r2k ∞
∑m=0 (m+ 2k)!m!(2k)! ( |w|r )m ∞

∑n=0 n!(n+ k + 1)!( |z|s )n=M1(2k)! |z|k+1r2k 1(1− |w|r )2k+1 ∞
∑n=0 n!(n+ k + 1)!( |z|s )n

≤M1(2k)!sk+1r2k 1(1− |w|r )2k+1 1(1− |z|s )(k + 1)! = M1(2k)!sk+1(1− s1s )(k + 1)!(1− r1r )2k+1r2ksin
e
∣

∣

∣

∣

∞
∑n=0 n!(n+ k + 1)! tn∣

∣

∣

∣

= ∣

∣

∣

∣

t
∫0 d�k �k

∫0 d�k−1 : : : �1
∫0 d�01− �0 ∣

∣

∣

∣

≤ 1(1− |t|)(k + 1)! :Now set l = �RA2( ). Then the series ∞
∑k=0 (2k)!k! ‖A2k‖lk 
onverges (see Proposition 2.9). Therefore, there existsa 
onstant M2 > 0 su
h that ‖A2k‖ ≤M2 k!(2k)!lk , k = 0; 1; :::. Hen
e,

‖A2kuk(t; x)‖ ≤ ‖A2k‖ ‖uk(t; x)‖ ≤ M1M2sk+1(1− s1s )(k + 1)(1− r1r )2k+1r2klk
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for all |z|≤s1, |w|≤r1, and sl(1− r1r )2 = s�(1− �)2
2RA2( )R02<1:Thus, the series ∞
∑k=0A2kuk(z; w) 
onverges uniformly at |z| ≤ s1, |w| ≤ r1 for all s1 < s and r1 < �R0, and thefun
tion u(z; w) = ∞

∑k=0A2kuk(z; w) is holomorphi
 in the polydisk |z| < T1; |w| < R1, whereT1 = min{T0; �(1− �)2
2RA2( )R02} and R1 = �
R0:Therefore, the fun
tion u(t; x), whi
h is the sum of the series (20), is analyti
 in the re
tangle |t| < T1, |x| < R1,and is a solution of the Cau
hy problem (19). The uniqueness of the solution follows from Lemma 3.1. Thetheorem is proved. �Remark 5.2. Assume that the fun
tion f from the Cau
hy problem (19) does not depend on t, i.e., f(t; x) =g(x), where g is a ve
tor-valued fun
tion that is analyti
 in a neighborhood of zero. If u(t; x) is a ve
tor-valuedfun
tion that is analyti
 in a neighborhood of zero and v = �u�t , then it is easy to 
he
k that u(t; x) is a solutionof the Cau
hy problem (19) if and only if v(t; x) is a solution of the Cau
hy problem (12):






�v�t = A2 �2v�x2 ;v(0; x) = g(x):Therefore, the impli
ation (3) ⇒ (1) in Theorem 3.8 
an be dedu
ed from Theorem 5.1. Moreover, the methodof solution �nding for the inhomogeneous equation in the form of a series with respe
t to degrees of a \smallparameter" 
an be used to solve the Cau
hy problem (12):






�u�t = A2 �2u�x2 ;u(0; x) = g(x):In this 
ase, it is natural to �nd a solution in the formu(t; x) = g(x) + ∞
∑n=1 tnn!A2ngn(x): (21)Here gn+1 = g′′n(x), i.e., gn(x) = g(2n)(x), n ≥ 1. If the 
ondition of Proposition 2.9 is ful�lled, then the
onvergen
e of series (21) 
an be proved in the same way as in Theorem 5.1.Example 5.3. Assume that the operator A satis�es the 
ondition of Theorem 5.1 and that b ∈ E. Consider theCau
hy problem:







�u�t = A2 �2u�x2 + b1− x;u(0; x) = 0:If v = �u�t , then v is a solution of the Cau
hy problem (13):










�v�t = A2 �2u�x2 ;v(0; x) = b1− x :Therefore, v(t; x) =  ( tA2(1−x)2) b1−x (see Proposition 3.2). Hen
e,u(t; x) = ∫ t0  ( �(1− x)2A2) b1− xd� = ∞
∑k=0 (2k)!(k + 1)!A2kb tk+1(1− x)2k+1 ;

811
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