Section 2.4
An Introduction to Complex Numbers

A complex number is a number that can be written in the form \(a + bi \), where \(a \) is called the real part and \(bi \) is called the imaginary part. The \(a \) and \(b \) are real numbers.

The imaginary unit \(i \) is defined as \(i = \sqrt{-1} \), where \(i^2 = -1 \).

Complex numbers are used in many fields in real life. For example in Electronics: Circuit is mainly based on current and voltage. Those two elements are put together as a single complex number: \(Z = V + iI \) This complex representation shows a circuit having both current and voltage.

Addition or Subtraction of Complex Numbers:
Add or subtract the real parts together and add the imaginary parts together.

Multiplication of Complex Numbers:
Multiply in the same manner as multiplying binomials and remember that \(i^2 = -1 \)

Example 1: Simplify each of the following and write the answer in form \(a + bi \).
\[-3i(2 + i) + (-1 + 2i)^2\]
Example 2: Simplify each expression to $a + bi$. Recall: $i = \sqrt{-1}$

a. $\sqrt{-27} \cdot \sqrt{-4} - \sqrt{-16} + \sqrt{3}$

b. $\frac{\sqrt{-8}}{\sqrt{-36} \cdot \sqrt{-100}}$
Powers of i

$i^2 = -1$

$i^3 = -i$

$i^4 = 1$

In fact, if k is a multiple of 4 then $i^k = 1$.

Example 3: Simplify i^{18}.
Division of Complex Numbers

The **complex conjugate** of the complex number \(a + bi \) is the complex number \(a - bi \).

To simplify the quotient \(\frac{a + bi}{c + di} \), multiply both the numerator and denominator by the complex conjugate of the denominator.

Example 4: Simplify the following expression and write the answer in form \(a + bi \).
\[
\frac{3 - 4i}{1 - 3i}
\]
Complex Roots of Quadratic Equations

Example 5: Find all complex solutions of the following equation. Express your answer in form $a + bi$.

a. $-x^3 - x = 0$

b. $2x^2 + 20x = -84$