Chapter 8
Systems: Identify Equations, Point of Intersection of Equations

Recall the following equations:

Parabola: \((y - k)^2 = 4p(x - h)\) or \((x - h)^2 = 4p(y - k)\)

Circle: \((x - h)^2 + (y - k)^2 = r^2\)

Ellipse: \(\frac{(x - h)^2}{\text{number}} + \frac{(y - k)^2}{\text{number}} = 1\)

Hyperbola: \(\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1\) or \(\frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1\)

Example 1: Identify each conic.

a. \(12x = y^2\) \hspace{1cm} \text{Parabola}

b. \(\frac{(x - 2)^2}{9} - \frac{(y + 2)^2}{16} = 1\) \hspace{1cm} \text{Hyperbola}

c. \(\frac{(x + 4)^2}{4} + \frac{(y - 1)^2}{9} = 1\) \hspace{1cm} \text{Ellipse}

d. \(\frac{(x - 2)^2}{5} + \frac{(y + 2)^2}{5} = 1\) \hspace{1cm} \text{Circle}

If the equation is written in general form, \(4x^2 + Cy^2 + Dx + Ey + F = 0\), with only minimal work, you can determine if an equation in this form is a circle, an ellipse, a parabola or a hyperbola.

- The conic section is a(n):
 - parabola if \(A = 0\) or \(C = 0\), but never both equal to 0.
 - circle if \(A = C\).
 - ellipse if \(A\) and \(C\) have the same sign, but \(A \neq C\).
 - hyperbola if \(A\) and \(C\) have opposite signs.

Example 2: Identify the following conic: \(2x^2 - 8y^2 - 6x - 16y - 25 = 0\) \hspace{1cm} \text{Hyperbola}
Systems of Second Degree Equations

When we graph two conic sections or a conic section and a line on the same coordinate planes, their graphs may contain points of intersection. We want to be able to find the points of intersection. To do this, we may either graph the system of equations or solve a system of equations.

Example 3: Determine the number of points of intersection by graphing.

a. \(x^2 + y^2 = 36 \) and \(\frac{x^2}{36} + \frac{y^2}{9} = 1 \)

b. Determine the number of points of intersection by graphing.
\(\frac{x^2}{9} - \frac{y^2}{9} = 1 \) and \(y^2 = 4x \)

Example 4: Solve each of the following the systems of equations.

a. \(f(x) = -2x^2 + 8x - 5 \)
 \(g(x) = 6x - 5 \)

\(6x - 5 = -2x^2 + 8x - 5 \)
\(2x^2 + 6x - 8x - 5 + 5 = 0 \)
\(2x^2 - 2x = 0 \)
\(2x(x - 1) = 0 \)
\(x = 0, x = 1 \)

Back sub
\(g(0) = 6(0) - 5 = -5 \)
\((0, -5) \)

\(g(1) = 6(1) - 5 = 1 \)
\((1, 1) \)
b. \[5x^2 + 4y^2 = 9\]
\[4 \left(6x^2 - y^2 = 5\right) \cdot 4\]
\[+ 24x^2 - 4y^2 = 20\]
\[29x^2 = 29\]
\[\sqrt{x^2} = 1\]
\[x = \pm 1\]

\[\text{Back Sub:}\]
\[\text{For } x = 1,\]
\[6(1)^2 - y^2 = 5\]
\[\sqrt{y^2} = 1\]
\[y = \pm 1\]
\[(1, 1) \pm (1, -1)\]

\[\text{For } x = -1,\]
\[6(-1)^2 - y^2 = 5\]
\[y = \pm 1\]
\[(-1, 1) \pm (-1, -1)\]
\[9x^2 + y^2 - 90x + 216 = 0 \]
\[x^2 - y^2 - 16 = 0 \]

\[10x^2 - 90x + 200 = 0 \]
\[\frac{10}{10} \]
\[x^2 - 9x + 20 = 0 \]
\[(x - 5)(x - 4) = 0 \]
\[x = 5, \ x = 4 \]

Back sub

\[5^2 - y^2 - 16 = 0 \]
\[9 = y^2 \]
\[y = \pm 3 \]

\[(5,3) + (5,-3) \]

\[4^2 - y^2 - 16 = 0 \]
\[0 = y^2 \]
\[y = 0 \]

\[(4,0) \]
Degenerate Conic Sections

An example of each follows.

I. \((x - 3)^2 + (y + 1)^2 = 0\) represents a point \((3, -1)\). Looks like it could be a circle equation, but \(r = 0\).

II. \(9x^2 - 4y^2 = 0\) represents 2 lines. Looks like it could be a hyperbola, but right hand-side is 0, not 1.

\[\text{Solve for } y:\]
\[4y^2 = 9x^2\]
\[y^2 = \frac{9x^2}{4}\]
\[y = \pm \frac{3x}{2}\]

III. \((y - 5)^2 = 0\) represents one line.

\[\text{Solve for } y:\]
\[y - 5 = 0\]
\[y = 5\]

Another example would be: \((x + 2)^2 = 0\).

\[\text{Solve for } x:\]
\[x + 2 = 0\]
\[x = -2\]