As you saw in several examples in Section 2.1, finding the derivative of a function using the definition is quite tedious. We now introduce some rules that will make our computations much easier.

A constant function is represented by a horizontal line. What is the slope of a horizontal line?

Then the derivative of any constant is zero!

Rule 1: The Derivative of a Constant

\[
\frac{d}{dx}[k] = 0, \text{ where } k \text{ is a constant.}
\]

Example 1: Find the derivative of \(f(x) = -17 \).

Rule 2: The Power Rule

\[
\frac{d}{dx}[x^n] = nx^{n-1} \text{ for any real number } n
\]

Example 2: Find the derivative of each function.

a. \(f(x) = x^5 \)

b. \(g(x) = x^{-10} \)
c. \(j(x) = \sqrt{x} \)

Rule 3: Derivative of a Constant Multiple of a Function

\[
\frac{d}{dx}[kf(x)] = k \frac{d}{dx}[f(x)] \text{ where } k \text{ is any real number}
\]

Example 3: Find the derivative of each function.

a. \(f(x) = -6x^4 \)

b. \(g(x) = \frac{1}{4x^4} \)
Theorem: Let k be any real number. If f and g are differentiable at x, then so are $f + g$ and $f - g$. Moreover, $(f \pm g)'(x) = f'(x) \pm g'(x)$.

Example 4: Find the derivative:
$$f(x) = -\frac{3}{8}x^6 + \frac{3}{x^2} + 9\sqrt[3]{x} - 5$$

Example 5: Find the derivative:
$$f(x) = \frac{x^5 + 10x^3 + 1}{x^2}$$
Derivatives of the Trigonometric Functions

\[(\sin x)' = \cos x\] \[(\cos x)' = -\sin x\]

\[(\tan x)' = \sec^2 x\] \[(\cot x)' = -\csc^2 x\]

\[(\sec x)' = \sec x \tan x\] \[(\csc x)' = -\csc x \cot x\]

Example 6: Find the slope of the tangent line to the function \(f(x) = 6\tan x - \cos x\) at \(x = -\pi\).

In other cases, we may want to find all points for which the tangent line to the graph of \(f\) is horizontal or equal to a specified number. Set the derivative equal to the given number and solve for \(x\).

Example 7: Find all values of \(x\) in \([0, 2\pi]\) where the tangent line is horizontal to \(f(x) = 10\sqrt{3}\sin x - 10\cos x\).
Example 8: Find all x-value(s) on the graph of \(f(x) = x^3 + 5x^2 \) where the tangent line is equal to -3.

Tangent and Normal Lines

We already known what a tangent line is all about.

A normal line to a curve at a particular point is the line through that point and perpendicular to the tangent.

\[\text{Normal Line} \]

\[\text{Tangent Line} \]

Recall from Pre-Algebra the slope of any line perpendicular to a line with slope is the negative reciprocal.

Example 9: Find the equations of the tangent and normal line to \(f(x) = x^3 + 2x \) at \(x = 1 \).
Higher Order Derivatives

\[f'(x), \quad f''(x), \quad f'''(x), \quad f^{(4)}(x) \]

\[\frac{d}{dx} f(x), \quad \frac{d^2}{dx^2} f(x), \quad \frac{d^3}{dx^3} f(x), \quad \frac{d^4}{dx^4} f(x), \]

Example 10: Find \(f''(x) \) for \(f(x) = 6\sin x \).

Now that we know much easier rules for finding derivatives, let’s revisit differentiability with piecewise functions.

Example 11: Is this function differentiable?

\[f(x) = \begin{cases}
2x, & \text{if } x > 1 \\
 x^3 + 1, & \text{if } x \leq 1
\end{cases} \]

Continuity must first be checked…after checking with the 3-step method (see Section 1.4), the function is continuous at \(x = 1 \).
Example 12: Given $f(x) = \begin{cases} Bx + C, & \text{if } x > 1 \\ 8 + x^3, & \text{if } x \leq 1 \end{cases}$. Determine the values of the constants B and C so that f is differentiable.
Try this one:

Let $f(x) = \tan x - x$. Find all values of x in $[0, 2\pi]$ where the tangent line is horizontal.