A function is said to be **one-to-one** (1-1) if there are no two distinct numbers in the domain of \(f \) that produce the same value. In other words, two different \(x \) values cannot have the same \(y \) value. If a function has an inverse, then we say it’s **invertible**.

If a function is 1-1, then it has an inverse function, denoted as \(f^{-1} \), which reverses what the first function did. The domain of \(f \) is the range of \(f^{-1} \) and the range of \(f \) is the domain of \(f^{-1} \).

Example:
Celsius to Fahrenheit: \(\frac{9}{5}C + 32 = F \)
and
Fahrenheit to Celsius: \(\frac{5}{9}(F - 32) = C \)

Geometrically
Property of Inverse Functions

Let \(f \) and \(g \) be two functions such that \((f \circ g)(x) = x \) for every \(x \) in the domain of \(g \) and \((g \circ f)(x) = x \) for every \(x \) in the domain of \(f \) then \(f \) and \(g \) are inverses of each other.

Given a function whose graph is known or the given the graph of a function, we can use the Horizontal Line Test to determine if the function is 1-1.

Example 1: Is the following graph of \(f(x) = 2x^{\frac{3}{2}} \) 1-1?

Example 2: Is the function, \(f(x) = (x + x^2)^7 \) 1-1?

Example 3: Is \(f(x) = 3 \sin x \) invertible on \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \)?
A function is **monotonic** if it is always increasing or always decreasing on its domain.

Recall:

- If \(f'(x) > 0 \) on its domain, then \(f \) is increasing and; hence, monotonic.
- If \(f'(x) < 0 \) on its domain, then \(f \) is decreasing and; hence, monotonic.

Theorem: If \(f \) is monotonic, then \(f \) is an invertible function.

Example 4: Is the following function 1-1? If so, give the equation of the inverse function.

\[
f(x) = \frac{x - 1}{x + 1}
\]

Try this one: Is the following function 1-1? If so, give the equation of the inverse function.

\[
g(x) = x + \frac{4}{x}
\]
Sometimes it’s too long or too difficult to find the equation of the inverse, yet we may want to know if a function has an inverse or not.

Example 5: Is \(f(x) = x^3 + 3x \) invertible?

Example 6: Let \(f(x) = x^3 - kx^2 + 2x \). For what values of \(k \) is \(f(x) \) one-to-one?

Try this one: Let \(f(x) = \frac{1}{3} x^3 - x^2 + kx \). For what values of \(k \) is \(f(x) \) invertible?
Finding the Derivative of the Inverse Function

Theorem: If $f(x)$ is continuous and invertible then $f^{-1}(x)$ is continuous.

Theorem: If $f(x)$ is differentiable (so must be continuous) and invertible, and $f'(x) \neq 0$, then $f^{-1}(x)$ is differentiable.

If $f(a) = b$ and $f'(a) \neq 0$, then \((f^{-1})'(b) = \frac{1}{f'(a)} \).

Example 7: For $f(x) = x^3$, we know that $f(2) = 8$. Find $(f^{-1})'(8)$.

Example 8: If f is invertible, and $f(1) = 2$, $f(3) = 1$, $f'(1) = 4$, $f'(3) = 5$, $f'(2) = 6$, find $(f^{-1})'(1)$.
Example 9: Given \(f(x) = x^5 + 1 \), find \((f^{-1})'(33) \) if possible.

Example 10: If \(f(x) = \sin x + 5 \cos x, \ x \in \left[0, \frac{\pi}{2} \right] \), find \((f^{-1})'(3\sqrt{2}) \).
Example 11: Let \(f(x) = x^3 + 2x^2 + 2x \). The point \((-5, -1)\) is on the graph of \(f^{-1}(x) \). Find \((f^{-1})'(-5)\), then give an equation for the tangent line to the graph of \(f^{-1}(x) \) at the point \((-5, -1)\).