Section 8.5
Goodness of Fit Test

Suppose we want to make an inference about a group of data (instead of just one or two). Or maybe we want to test counts of categorical data. **Chi-square** (or χ^2) testing allows us to make such inferences.

Chi-square is a continuous random variable and just like any continuous distribution, probability is represented by the area below the curve and above an interval. It also has the following characteristics:
- Area under the curve is 1.
- χ^2 values are always nonnegative and has no upper bound.
- The graph is skewed right.
- There is a different curve for every different degrees of freedom.
- As the number of degrees of freedom increases, the curve begins to look more like more symmetric.

There are several types of Chi-square tests but in this section we will focus on the goodness-of-fit test. **Goodness-of-fit** test is used to test how well one sample proportions of categories “match-up” with the known population proportions stated in the null hypothesis statement. The Chi-square goodness-of-fit test extends inference on proportions to more than two proportions by enabling us to determine if a particular population distribution has changed from a specified form.
The assumptions for a Chi-square goodness-of-fit test are:

1. The sample must be an SRS from the populations of interest.
2. The population size is at least ten times the size of the sample.
3. All expected counts must be at least 5.

The null and alternative hypotheses do not lend themselves to symbols, so we will define them with words. These are different from what we’re used to seeing.

\[H_0: \text{_____ is the same as _____} \]
\[H_a: \text{_____ is different from _____} \]

For each problem you will make a table with the following headings:

<table>
<thead>
<tr>
<th>Observed Counts (O)</th>
<th>Expected Counts (E)</th>
<th>((O - E)^2 / E)</th>
</tr>
</thead>
</table>

The sum of the third column is called the Chi-square test statistic. \(\sum\) represents the sum.

\[\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}} \]

To find probabilities for \(\chi^2\) distributions:

R command is: \(1 - \text{pchisq(test statistic, df)}\)

Note: degrees of freedom = df = (number of categories – 1)
Example: The Mixed-Up Nut Company advertises that their nut mix contains (by weight) 40% cashews, 15% Brazil nuts, 20% almonds and only 25% peanuts. The truth-in-advertising investigators took a random sample (of size 50 lbs) of the nut mix and found the distribution to be as follows:

<table>
<thead>
<tr>
<th>Cashews</th>
<th>Brazil Nuts</th>
<th>Almonds</th>
<th>Peanuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 lb</td>
<td>11 lb</td>
<td>13 lb</td>
<td>11 lb</td>
</tr>
</tbody>
</table>

At the 1% level of significance, is the claim made by Mixed-Up Nuts true?

The following is how you’ll normally set up your null and alternate hypothesis.

- H_0: The data distribution of nuts is the same as the population.
- H_a: The data distribution of nuts is different from the population.

Let’s first find the expected:

Next, let’s find the test statistic:

$$
\chi^2 = \sum \frac{(observed - expected)^2}{expected}
$$

Find the p-value: