Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

James West
jdwest@math.uh.edu

Office Hours:
(by appointment and check on CASA)

Class webpage:
www.casa.uh.edu
Derivatives and Integrals for Power Series

\[\sum_{n=0}^{\infty} a_n x^n \]

Expand \(a_n x^n \)

Now, what happens when we take the derivative of this?
Thm – If \(\sum_{n=0}^{\infty} a_n x^n \) converges on (-c, c) then \(\sum_{n=0}^{\infty} \frac{d}{dx}(a_n x^n) \) converges on (-c, c) (you still must check the endpoints for each problem)

Example:

Find the derivative of \(\sum_{n=0}^{\infty} \frac{3nx^n}{n^2 + 1} \)
Integration of Series:

Thm – If \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) converges on \((-c, c)\), then \(g(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} \) converges on \((-c, c)\) and \(\int f(x) \, dx = g(x) + C \)

Find a power series for \(\tan^{-1} x \) using integration.
Integrate $\int \sum_{n=0}^{\infty} \frac{3nx^n}{n^2 + 1} \, dx$
(9.8) Definition of nth degree Taylor polynomial centered at c:

If f has n derivatives at c, then the polynomial

$$P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \ldots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

is called the nth degree Taylor polynomial for f at c.
Give the 8th degree Taylor polynomial approximation to $y = e^x$ centered at $x = 0$.

<table>
<thead>
<tr>
<th>k</th>
<th>$f^k(x)$</th>
<th>$f^k(0)$</th>
<th>$\frac{f^k(0)}{k!}$</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find an n^{th} degree Taylor polynomial approximation for $f(x) = \cos(x)$ centered at $x = 0$.

<table>
<thead>
<tr>
<th>k</th>
<th>$f^k(x)$</th>
<th>$f^k(0)$</th>
<th>$\frac{f^k(0)}{k!}$</th>
<th>term</th>
</tr>
</thead>
</table>
Find an n^{th} degree Taylor polynomial approximation for $f(x) = \sin(x)$ centered at $x = 0$.

<table>
<thead>
<tr>
<th>k</th>
<th>$f^{k}(x)$</th>
<th>$f^{k}(0)$</th>
<th>$\frac{f^{k}(0)}{k!}$</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use the fourth-degree Taylor approximation \(\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \) for \(x \) near 0 to find \(\lim_{x \to 0} \frac{1 - \cos x}{x^2} \).
1. Give the 7th degree Taylor polynomial approximation for
 \(f(x) = e^x \) centered at \(x = 0 \).
2. Give the 7th degree Taylor polynomial approximation for \(f(x) = \sin(x) \) centered at \(x = 0 \).
3. Give the 7th degree Taylor polynomial approximation for $f(x) = \cos(x)$ centered at $x = 0$.

\begin{align*}
a. & x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7} \\
b. & 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} \\
c. & 1 - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^6}{6} \\
d. & x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \\
\end{align*}
4. Give the coefficient of x^{10} for the 11th degree Taylor polynomial approximation to $\sin(x)$ centered at $x = 0$.

a. 0
b. 1
c. $-\frac{1}{10!}$
d. 1
5. Give the coefficient of \((x + 1)^2\) for the 4\(^{th}\) degree Taylor polynomial approximation to \(x^4\) centered at \(x = -1\).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(f^k(x))</th>
<th>(f^k(-1))</th>
<th>(\frac{f^k(-1)}{k!})</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More examples:
1) Find a polynomial of degree $n = 4$ for $f(x) = e^{2x}$ about $x = 0$.

2) Use the Taylor approximation $e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$ for x near 0 to find:

$$\lim_{x \to 0} \frac{e^x - 1}{2x}.$$
3) Use the Taylor approximation $\sin x \approx x - \frac{x^3}{3!}$ for x near 0 to find

$$\lim_{x \to 0} \frac{\sin x}{x}.$$
4) Find the Taylor polynomial of degree \(n = 5 \) for \(f(x) = \ln x \) at \(c = 1 \). Then use \(P_5(x) \) to approximate the value of \(\ln(1.1) \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(f^k(x))</th>
<th>(f^k(0))</th>
<th>(\frac{f^k(0)}{k!})</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = \ln x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f'(x) = x^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f''(x) = -1x^{-2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f'''(x) = 2x^{-3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f''''(x) = -6x^{-4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f'''''(x) = 24x^{-5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5) Suppose that g is a function which has continuous derivatives, and that
\[g(2) = 3, \quad g'(2) = -4, \quad g''(2) = 7, \quad g'''(2) = -5. \]

Write the Taylor polynomial of degree 3 for g centered at $x = 2$.
6) Find $P_6(x)$ for $f(x) = x^2 \cos(5x)$
7) Find $f^{(15)}(0)$ for $f(x) = e^{x^3}$
Lagrange Form of the Remainder
or
Lagrange Error Bound or Taylor’s Theorem Remainder

When a Taylor polynomial is used to approximate a function, we need a way to see how accurately the polynomial approximates the function.

\[f(x) = P_n(x) + R_n(x) \quad \text{so} \quad R_n(x) = f(x) - P_n(x) \]

Written in words:

Function = Polynomial + Remainder

\[f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \ldots + \frac{f^{(n)}(c)}{n!}(x - c)^n + \ldots \]

so

Remainder = Function – Polynomial
Lagrange Formula for Remainder:

Suppose f has $n+1$ continuous derivatives on an open interval that contains 0. Let x be in that interval and let $P_n(x)$ be the nth Taylor Polynomial for f. Then

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

where c is some number between 0 and x.

If we rewrite Taylor’s theorem using the Lagrange formula for the remainder, we have

$$f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \ldots + \frac{f^{(n)}(0)}{n!} x^n + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

where c is some number between 0 and x.
If there is a number M so that $\left| f^{(n+1)}(c) \right| \leq M$

for all c between 0 and x then $\left| f(x) - P_n(x) \right| \leq \frac{M}{(n+1)!} |x|^{n+1}$

or

$\left| R_n(x) \right| \leq \left(\max \left| f^{(n+1)}(c) \right| \right) \frac{|x|^{n+1}}{(n+1)!}$ for c between 0 and x.

We probably will not know the value of c.
Give an error estimate for the approximation of \(\sin(x) \) by \(P_9(x) \) for an arbitrary value of \(x \) between 0 and \(\pi/4 \), centered at \(x = 0 \).

\[
\begin{align*}
 f(x) &= \sin x \\
 f'(x) &= \cos x \\
 f''(x) &= -\sin x \\
 f'''(x) &= -\cos x \\
 f^{(4)}(x) &= \sin x
\end{align*}
\]
Give an error estimate for the approximation of $\cos(x)$ by $P_{10}(x)$ for an arbitrary value of x between 0 and $\pi/4$, centered at $x = 0$.

\[f(x) = \cos x \]
\[f'(x) = -\sin x \]
\[f''(x) = -\cos x \]
\[f'''(x) = \sin x \]
\[f^{(4)}(x) = \cos x \]
6. Assume that \(f(x) \) is a function such that \(|f^{(10)}(x)| < 15 \) for all \(x \) in the interval (0,1). What is the max possible error for the ninth degree Taylor polynomial centered at 0 for this function when approximating \(f(1) \)?

a. 15
b. 15/9!
c. 15/10!
d. 1

e. none of these