Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

James West
jdwest@math.uh.edu

Office Hours:
(by appointment and check on CASA)

Class webpage:
www.casa.uh.edu
1. The polar plot of $r = 2 + 2 \cos \theta$ is a
2. The polar plot of $r = 5 - 2 \cos \theta$ is a
3. The polar plot of $r = 7 - 12 \cos \theta$ is a
4. The polar plot of $r = 2 \cos 5\theta$ is a
5. The polar plot of $r = 4 \cos \theta$ is a
6. Give the formula for the area of the region that is enclosed by the polar curve \(r = 1 + 2\sin(\theta) \) and lies \textbf{below the x-axis.}
7. Re-write \((x - 3)^2 + y^2 = 9\) in polar form
Parametric Curves

Parametric equations are sets of equations that are used to express quantities explicitly in terms of another variable.

So, instead of using \(y = f(x) \) (defining \(y \) in terms of \(x \)), we let \(x(t) \) and \(y(t) \) be functions where \(t \) is the parameter.

Then \((x(t), y(t))\) is the point that traces out the curve.

If \(t \) is restricted to lie on an interval \([a, b]\) then \(x(t) \) and \(y(t) \) would have an initial point \((x(a), y(a))\) and a terminal point \((x(b), y(b))\). So a parametric curve has an orientation given by the parameterizing variable.
Ex. 1: Plot \((\cos(t), \sin(t))\) for \(0 \leq t \leq 2\pi\) and express the curve by an equation in \(x\) and \(y\).
Ex. 2: Sketch the curve and eliminate the parameter.

\[x(\theta) = 3 \cos (\theta) \quad y(\theta) = 4 \sin (\theta) \quad 0 \leq \theta \leq 2\pi \]
Ex. 3: Give a parameterization of the PORTION of the line $y = -2x + 5$ between (1, 3) and (-2, 9)
To parameterize a line SEGMENT from \((x_0, y_0)\) to \((x_1, y_1)\):

\[
x(t) = x_0 + t(x_1 - x_0) \\
y(t) = y_0 + t(y_1 - y_0)
\]

\(0 \leq t \leq 1\)

For a LINE: \(-\infty < t < \infty\)

Ex. 4: Parameterize the line segment from (3, 6) to (−2, 5).
Ex. 5: Express the curve by an equation in x and y; then sketch the curve.

$$x(t) = 3t - 1 \quad y(t) = 5 - 2t \quad t \in (-\infty, \infty)$$
Ex. 6: Express the curve by an equation in x and y

\[
x(t) = 3\tan t \quad y(t) = 5 - \sec^2 t
\]

Ex. 7: Express the curve by an equation in x and y

\[
x(t) = 4 + e^t \quad y(t) = 2e^{2t}
\]
8. The parametric curve given by \((2\cos(t), 2\sin(t))\) is a(n)
9. The parametric curve given by \((3\cos(t), 5\sin(t))\) is a(n)
10. Eliminate the parameter and find a corresponding rectangular equation: \(x = 3t^2 \) and \(y = 2t + 1 \)