Bekki George bekki@math.uh.edu 639 PGH

Office Hours (starting next Monday):

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

$$\int e^{x} \int e^{x+1} dx \qquad h=e^{x}+1 \\ du=e^{x} dx$$

$$\int \int u du = \int u^{1/2} du = \frac{2}{3}u^{3/2} + C$$

$$\frac{2}{3}(e^{x}+1)^{3/2} + C$$

Welcome to Math 1432 Online Recitations

Use this link to access the online classroom during the times indicated on the calendar below.

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
January 10	January 11	January 12	January 13	January 14	January 15	January 16
January 17	January 18	January 19	January 20	January 21	January 22	January 23
		Classes begin	Lab Week 1	Lab Week 1	TODAY	Lab Week 1
		Lab Week 1 Option 1 (canceled today) Time: 4-5:30pm TA: Junyu Ding Option 2 Time: 6-7:30pm TA: Kayla Bicol	Option 3 Time: 2-3:30pm	Option 4 Time: 4-5:30pm TA: Junyu Ding Option 5 Time: 6-7:30pm TA: Kayla Bicol Notes	Lab Week 1 Option 6 Time: 1-2:30pm TA: Robert Delaney Option 7 Time: 6-7:30pm	Option 8 Time: 1-2:30pm TA: Robert Delaney

January 24	January 25	January 26	January 27	January 28	January 29	January 30
Lab Week 2A Option 1	Lab Week 2A Option 2	Lab Week 2A Option 3	Lab Week 2A Option 5	Lab Week 2B Option 1	Lab Week 2B Option 3	Lab Week 2B Option 5
Time: 6-7:30pm TA: Khanh Nguyen	Time: 2-3:30pm TA: Robert Delaney	Time: 4-5:30pm TA: Junyu Ding	Time: 2-3:30pm TA: Robert Delaney	Time: 4-5:30pm TA: Junyu Ding	Time: 1-2:30pm TA: Robert Delaney	Time: 1-2:30pm TA: Robert Delaney
		Option 4		Option 2	Option 4	
		Time: 6-7:30pm TA: Kayla Bicol		Time: 6-7:30pm TA: Kayla Bicol	Time: 6-7:30pm TA: Khanh Nguye	

pick 1

Proctored Exams Online Assignments Grade Book Assignments EMCF

EMCF (Electronic Multiple Choice Form)

EMCF with Mixed Format

Select An EMCF							
EMCF Name	No Of Questions	No Of Choices	Start Date Time	End Date Time	Select		
OnlineLQ1	10	6	1/22/2016 9:43:00 AM	1/30/2016 11:59:00 PM	Select		

Assignments

Section 7.2

Average Value (Mean Value Theorem for Integrals)

First Mean Value Theorem for Integrals: (Average Value Thm)

If f is continuous on [a, b], then there is at least one number c in (a, b) for which

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

The number f(c) is called the <u>average</u> (mean) value of f on [a, b].

The area of the region under the graph of f is equal to the area of the rectangle

whose height is the average value.

$$\int_{a}^{b} f(x) dx = f(c) (b-a)$$

f(c)

So....

If f is integrable on [a, b], then the average value of f on the interval is:

Average value =
$$f(c) = \frac{1}{(b-a)} \int_a^b f(x) dx$$

1. Find the average value of the function over the interval and find the value(s) of x (the value(s) of c) in the interval for which the function equals

its average value:

Its average value:

$$f(x) = x^{2} - 2 \quad \begin{bmatrix} 0,2 \\ 0,b \end{bmatrix}$$

$$f(c) = \frac{1}{2a-0} \int_{0}^{a} (x^{2}-2) dx$$

$$= \frac{1}{2} \int_{0}^{a} (x^{2}-2) dx = \frac{1}{2} \left[\frac{x^{3}}{3} - 2x \right]_{0}^{a} f(c)$$

$$= \frac{1}{2} \left[(8/3 - 4) - (0 - 0) \right] = \frac{1}{2} \left[\frac{-4}{3} \right] = \frac{1}{3}$$

$$x^{2} = 3 - 2/3$$

$$x^{2}-3=-2/3$$

 $x^{2}=4/3$
 $x=\pm \sqrt{4/3}=\pm 2/\sqrt{3}$

2. Find the average value of the function over the interval.

$$f(x) = 2x^{3} + 3x^{2} \begin{bmatrix} 1,4 \end{bmatrix}$$

$$f(c) = \frac{1}{4-1} \int_{1}^{4} (2x^{3} + 3x^{2}) dx = \frac{1}{3} [x^{4} + x^{3} + x^{3}]_{1}^{4}$$

$$= \frac{1}{3} [(x^{2} + x^{3} + x^{2})]_{1}^{4} + (x^{2} + x^{3}) = \frac{1}{3} ((x^{2} + x^{3} + x^{3})) = \frac{1}{3} ((x^{2} + x^{3})) = \frac{1}{3} (x^{2} + x^{3}) = \frac{1}{$$

3. The average value of
$$\cos x$$
 over the interval $\frac{\pi}{6} \le x \le \frac{\pi}{2}$ is
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^$$

$$= \frac{3}{11} \left[sin \frac{\pi}{2} - sin \frac{\pi}{2} \right] = \frac{3}{11} \left[1 - \frac{1}{2} \right] = \frac{3}{11} \left(\frac{1}{2} \right) = \frac{3}{21}$$

4. Find the average value of
$$y = 4t^3 - 3t^2$$
 over $-1 \le t \le 2$

4. Find the average value of
$$y = 4t^3 - 3t^2$$
 over $-1 \le t \le 2$.

$$f(c) = \frac{1}{2 - (-1)} \int_{-1}^{2} (4t^3 - 3t^2) dt = \frac{1}{3} (t^4 - t^3)_{-1}^{2} dt = \frac{1}{3} ((t^4 - t^3)_{-1}^{2}) dt = \frac{1}{3} ((t^4 - t^4)_{-1}^{2}) dt = \frac{1}{3} ((t^4 - t^4$$

5. Find the average value:
$$f(x) = e^x - \sin x$$
, $x \in \left[0, \frac{\pi}{2}\right]$

$$f(c) = \frac{\int_{0}^{\pi} \int_{0}^{\pi/2} (e^{x} - \sin x) dx}{\int_{0}^{\pi} \left[e^{x} + \cos x \right]_{0}^{\pi/2}} = \frac{2}{\pi} \left[\left(e^{\pi/2} + 0 \right) - \left(e^{0} + 1 \right) \right] = \frac{2}{\pi} \left[\left(e^{\pi/2} - 2 \right) \right]$$

- 6. Given that the average value of an **even** function f(x) over the interval $\begin{bmatrix} -2,2 \end{bmatrix}$ is
- 3, find $\int_{0}^{2} f(x) dx$.

AV. =
$$f(c) = 3 = \frac{1}{2(-a)} \int_{-a}^{a} f(x) dx$$

$$3 = \frac{1}{4} \int_{-2}^{2} f(x) dx$$

$$1 \partial_{x} = \int_{0}^{a} f(x) dx$$

$$- \partial_{x} = \int_{0}^{a} f(x) dx = (a)$$

7. Suppose
$$f$$
 is an **odd** function with $\int_{0}^{x} f(x) dx = 3$. Give the average value over the

interval [-2,2].

$$\int_{-2}^{2} f(x) dx = 0$$

$$50 f(c) = 0$$

8. Suppose that f(1)=6 and that f'(x)=x+1. Find f(3).

$$\int_{a}^{b} f_{1}(x) dx = f(x) \Big|_{a}^{b} = f(b) - f(a)$$

$$\int_{1}^{3} (x+1) dx = f(3) - f(1)$$

$$\left[\frac{x^{2}}{a} + x \right]_{1}^{3} = \left(\frac{9}{a} + 3 \right) - \left(\frac{1}{a} + 1 \right) = f(3) - 6$$

$$\frac{9}{2} + 3 - \frac{1}{2} - 1$$

$$\frac{6}{12} = f(3) - 6$$

9. What is the approximate instantaneous rate of change for

$$f(t) = \int_0^{2t} x \sin x \, dx$$
 at $t = \frac{\pi}{3}$?

$$f'(t) = \frac{d}{dt} \int_{0}^{2t} x \sin x dx \bigg|_{t=\sqrt{2}}$$

10. For what values of *k* is the following equation true?

$$\int_{-1}^k 4x \, dx = 0$$

$$\frac{\partial x^2}{\partial x^2}\Big|_{-1}^{K} = \frac{\partial K^2}{\partial x^2} - \frac{\partial x}{\partial x^2} = 0$$

11. The function f is differentiable and $\int_0^x (f(t)+3t)dt = \cos(x)$. Determine the value of $f'(\frac{\pi}{3})$

$$\frac{d}{dx} \int_{0}^{x} (f(t) + 3t) dt = \frac{d}{dx} \cos x$$

$$f(x) + 3x = -8inx$$

$$f(x) = -8inx - 3x$$

$$f'(x) = -6inx - 3x$$

$$f'(x) = -6inx - 3$$

$$f'(\pi/3) = -6inx - 3$$