Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Quiz 4 - 7.4 (Volume) due Sat 2/6 Rev Disc (no holes) x-axis (horizontal axis) V = J r r 2 dx y-axis (vertical axis) V = Satt R2 dy

r = f(x) if x-axis or f = f(x) - axisr = axis -f(x) R=q(y) if yeaksis R=q(y)-axis x=axis-q(y) Wes Washer method (holes) 4-axis (horizontal) $V = \int_{a}^{b} \prod \left[R^2 - r^2 \right] dx$ y-axis (vertical) V= Je IT [R²-r²] dy R = dist from axis to outermost graph r = dest from axis to innermost

Rev

Shell method

X-axis (horizontal) V = Je 21T p(y) hy) dy

y-axis (vertical) $V = \int_{a}^{b} \partial \pi p(x) h(x) dx$ P = dist frm axis (x my)

h = shaded region (top-bottom or Rt-left) Cross Sections cross sections an $V = \int_{a}^{b} A(x) dx \qquad \bot \quad \text{to x axis}$ V = Scaly dy 1 to y-axis A = area of each cross section

Find the volume of the solid formed by rotating about the x – axis using the shell method.

$$a - x \Rightarrow plug in 4$$
 $a - 4 = -a$

$$\int_{-2}^{0} 2iT(-y) (2x) dx$$

$$\lambda(u) = 4 - (a-u)$$

Disc:
$$V = \int_{a}^{4} \pi (-2+x)^{2} dx$$

$$+y) dy = \int_{2}^{3} (2\pi) (2y + y^{2}) dy$$

$$= 2\pi \int_{-2}^{3} 2y + y^{2} dy$$

$$= 2\pi \left(y^{2} + y^{3} \right)_{-2}^{3}$$

$$= 2\pi \left[0 - \left(4 - 8 \right)_{3}^{3} \right]$$

$$- 2\pi \left(- 4 \right)_{3}^{3} = \frac{8\pi}{3}$$

Give the formula for the volume of the solid formed by rotating about the y – axis using the shell method then by the disc method.

$$y = x^2 + 1$$
, $x = 0$, $x = 1$, $y = 0$

$$V = \int_{0}^{1} a \prod_{x} (x) (x^{2}+1) dx$$

$$= \partial \prod_{x} \int_{0}^{1} (x^{3}+x) dx$$

$$= \partial \prod_{x} \left(\frac{x^{4}}{4} + \frac{x^{2}}{2}\right)_{0}^{1}$$

$$= \partial \prod_{x} \left(\frac{x^{4}}{4} + \frac{1}{2}\right) = \frac{3 \prod_{x}}{2}$$

Popper 03

- Which of the following would give the volume of the region bounded by $y = 3x - x^2$ and y = 0 rotated about the x-axis?

 - a. $\pi \int_{0}^{3} (3x x^{2})^{2} dx$ b. $\pi \int_{0}^{3} (9x^{2} + x^{4}) dx$ c. $2\pi \int_{0}^{3} y\sqrt{9 4y} dy$ d. $\pi \int_{0}^{3} (3x x^{2}) dx$ e. $\pi \int_{0}^{9/4} y^{2} dy$

2. Which of the following would represent the length of the inner radius for the volume of the region bounded by $y = 3x - x^2$ and y = x rotated about the x-axis?

b.
$$2x - x^2$$

c.
$$3x - x^2$$

d.
$$x^2 - 2x$$

e. none of these

$$V = \int_0^2 \pi \left(R^2 - r^2 \right) dx$$

$$3x-x^{2} = x$$

$$2x-x^{2} = 0$$

$$x(2-x)=0$$

$$x = 0, 2$$

Mixed examples:

The region bounded by the graph of $f(x) = \frac{1}{\sqrt{1+x}}$ and the x – axis for

 $0 \le x \le 8$ is revolved about the x – axis. Find the volume of the solid that

is generated.

$$V = \int_{0}^{8} \pi \left(\frac{1}{\sqrt{1+x}} \right)^{2} dx$$

$$= \pi \int_{0}^{8} \frac{1}{1+x} dx$$

$$= \pi \ln |1+x| |_{0}^{8}$$

$$= \pi \left[\ln (9) - \ln (1) \right]$$

$$= \pi \ln (9)$$

Find the area bounded by the graphs of $f(x) = \sinh(x)$ and $f(x) = \cosh(x)$ for $0 \le x \le \ln 10$

Find the volume when the region bounded by the graphs of $f(x) = \sinh(x)$ and $f(x) = \cosh(x)$ is revolved around the x -axis for $0 \le x \le \ln 10$

The base of a solid is the region enclosed by $y = e^x$, the x-axis, the y-axis and the line $x = \ln 3$. Cross sections perpendicular to the x-axis are squares. Write an integral that represents the volume of the solid.

$$2\ln 3 = \ln 3^2$$

$$= \frac{1}{2}e^{2\ln 3} - \frac{1}{2}e^{0}$$

$$= \frac{1}{2}e^{\ln 9} - \frac{1}{2} = \frac{9}{2} - \frac{1}{2} = \frac{1}{4}$$

Find the volume of the solid formed by rotating the region bounded by the graph of $y = \sqrt{x+1}$, the y-axis, and the line y = 3 about the line y = 5.

Arc Length

Formula:

$$L = \int_C ds$$

where $ds = \sqrt{1 + (f'(x))^2} dx$ for the curve C traced by $y = f(x), a \le x \le b$ or $ds = \sqrt{1 + (g'(y))^2} dx$ for the curve C traced by $x = g(x), c \le y \le d$

Examples:

Give a formula for the length of the "curve" given by the graph of f(x) = 2x + 1 for $1 \le x \le 3$.

$$\int_{1}^{3} \int_{1}^{3} \int_{1}^{3} dx = \int_{1}^{3} \sqrt{5} dx = \int_{5}^{3} x \Big|_{1}^{3}$$

$$f(x) = \lambda$$

$$= \left| 2\sqrt{5} \right|$$

Give a formula for the length of the curve given by the graph of

$$f(x) = x^2$$
 for $-1 \le x \le 1$.

$$f'(x) = 2x$$
 $L = \int_{-1}^{1} \sqrt{1 + (2x)^2} dx$

Find the length of the curve $x = \frac{2}{3}(y-1)^{3/2}$ for $1 \le y \le 4$

$$x' = (y-1)^{\frac{1}{2}}$$

$$\int_{1}^{4} \sqrt{1 + [(y-1)^{\frac{1}{2}}]^{2}} dy$$

$$= \int_{1}^{4} \sqrt{1 + y-1} dy = \int_{1}^{4} \sqrt{y} dy$$

$$= \frac{2}{3} y^{\frac{3}{2}} \Big|_{1}^{4} = \frac{16}{3} - \frac{2}{3} = \boxed{\frac{14}{3}}$$

Free popper Friday!! Poppers 3-6 all B.