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Find a formula for the general term a,, of {%—% 287 ,— ?é } assuming

the pattern of the first few terms continues.
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Consider the sequence defined by a, = (5) . (nstarts at 1)
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a. Write the first five terms of the sequence.

2% 7, 32

32 9901° 91 243

b. Determine the limit of the sequence.
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c. Let b, =" Write the first five terms of this sequence.

_anaz 4 45 %7
b) = 72, "%r 3 bz:@:‘%‘-:&/

d. Determine the limitof b,. J /
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Consider the sequence defined by a, = (_73) . (n starts at 1)

a. Write the first five terms of the sequence.
<3 v a7 8/ -y
Z 7y , 73, an J 78

b. Determine the limit of the sequence.
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c. Letb =-"L Write the first five terms of this sequence.

aﬂ
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/ __5/2- = /2_ - Q/q /Z

d. Determine the limitof 5,. — 3 /2



Are the following increasing, decreasing, or not monotonic?
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Give an upper bound for the set of negatlve real numbers l 0 100 0
('— W, 0)

Give a lower bound for the set of negative real numbers.

None

Give the LUB and GLB for the set of negative real numbers.
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Determine whether | 14 2n—1 1s bounded. %ﬂ-s
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Sequences can be defined recursively: one or more terms are
given explicitly; the remaining ones are then defined in terms of
their predecessors. Give the first six terms

of the sequence and then give the nth term.

a=1,a,1="%2a,+ 1.
VR Y o0V + )= 3
Ry = 720,41 = Y2 (%)) = 7y
by = 1%/3

be = 2y ' Q[QM) )
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With sequences, we are concerned with limits of sequences as n approaches
infinity.

A sequence that has a limit is said to be convergent.
A sequence that has no limit is said to be divergent.

Every convergent sequence 1s bounded and every unbounded sequence 1s
divergent.

“The sequence converges”
means

(44 . 149

The sequence has a limit”.

“The sequence diverges”
means
“The sequence does not have a limit”.



Important Limits:

A. Foreacha >0, —)fo as n— oo
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B. For each real x, :
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C. If x| <1,then x" 50, as n— oo
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D. Inn >0 as n— o
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E. Ifx>0,then x* —1
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F. n” -1 as n—

n
X
G. Foreachrealx,[l+—] — e’ as n— o
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Examples:

Give the fimit of { (~1)" }il 4w Lroe s

2n—=6
Give the limitof | 3n242 ) , 2 O
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Give the limit (if it exists) of { In( n+1 )= In( n ) }nzl
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Give the limit (if it exists) of {1n(2n+1)-1n(n)]

n=1
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. ln( n+1 ) "
Give the limit (if it exists) of - = 0
n=1
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1. Give the limit of the sequence: { 72 +n
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Give the limit (if 1t exists) of {

Give the limit (if it exists) of {
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Note: <(e")" S

. J n=1
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may not go to 1 as n approaches infinity if “stuff” overpowers the exponent.
Be careful!



I ol

Give the limit (if it exists) of { ( - J } ]
n=1
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3. Give the limit of { ——>0 —27+1
1000n* —n>+3 | _
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4. Give the limit of {cos(nr)|
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5. Give the limit (if it exists) of the sequence <
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