Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:
http: //www.math.uh.edu/~bekki/Math1432.html




n
Geometric Series Test. é (r) Ly IJJ't\Lﬂ IY'I |

Basic Divergence Test. ,'.]f b % 0 Uun éﬁ.n CQ\\/ Lr ﬂl&

l
p-Series Test. ZW‘ Lon v, \'1£ PBl

, bo
Integral Test. | 'F f' -p(K\AX ﬂalmv' -M/\LY\ é 'P’Cl/l.\ C&G\(\\(.

V- W
Basic Comparison Test. (L3S Wain LRV, @N\VW

qubkf W (v, dk\fb\f L)

Limit Comparison Test. * O : .
&,{Z’g&é /h = 'I:Lyu;f@ POSIJr\\/-f' >

Root Test &%\,/ (n \v“ § Il &5\\!\)/ £6.n d Z![ar\ do Same

Ratio Test QMN ﬂ-'l\+l <| Lanv .

= | = lr‘\c, b -
nCwSW U
N= o L S| d.W



Alternatmg Series Test for Convergence: Z b,>0
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Z a, is absolutely convergent if Z |a, | converges.
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Z a, 1s conditionally convergent if Z a, converges
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but Z |a,| diverges.
n=1

(Note: a non-alternating series can never converge conditionally)
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Notes for series “growth’:

Let p(k) be apolynomialink. (K b & power (c,«ms-l:,\ )
r* forr> 1 gdows much faster than p(k) Y '&K %YD wk 1Ca.s4-€(‘
k! grows much faster than ¥, p(k) P n K 5

k* grows much faster than the others

Hence,
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ALL converge rapidly.



Power Series: b 4+

Suppose that f(x) =1 6 : _a‘—- |- X r (o
X =0 = 1bx
If you divide 1 — x into 6, you get a % ll
“polynomial” that continues forever. vt ley*
(x)=6+6x+6x>+6x>+6 el
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This result is a power series. neo

The word series indicates that there is an infinite number of terms.
The word power tells us that each term contains a power of x.

The series 1s also a geometric series, with [r|=x, so the series will converge
for |x|<1.
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By comparing the graphs of f (x) =7 Ex and P(x) with more and more

terms, you will see that between —1 and 1 (the interval of convergence), the
two graphs converge.

U= = Lo+ ey

'- g+ betb” gw-.—lm%’ -- (
haalDl e8]

aiamis




A Power Series (centered at x=0) is a series of the form

[0 ]

chx" =co+CiXx+C,x* +eax’ o xt 4
n=0
where X 1s a variable and the c,’s are coefficients.
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Note: Z{)x =1 when [x|<1

Using this, we can write functions in this form in sigma notation:
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Ex: Write 4 _ 52 as its power series |"‘[_?)
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For a fixed x, the series is a series of constants and we can check for
convergence/divergence. The series may converge for some values of x
and diverge for others.

The sum of the series is
f(x) =co +C X+ Cyx? +Cax” +ext + e x4
whose domain is the set of all x for which the series converges.

/(x) resembles a polynomial, but it has infinitely many terms.

Let ¢, = 1 for all n, we get the geometric series, centered at x = 0,
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Zx” 1+ x+xl+xd x4
n=0

which converges if | x | < 1 and diverges if | x | > 1.



A Power Series (centered at x=a) is a series of the form

ch(x,—a)" =cygtci(x—a)+c, (x—a)2 +c3(x—a)3 + ...
n=0 .

For notation purposes, (x —a)’ = 1 even when x = a.

When x = a, all the terms are 0 for n = 1, so the power series always
converges when x = a.



Ex. For what values of x is the series convergent? ~ y - ()
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For a given power series 2 c, (x — a)n there are only 3 possibilities.
n=0

1. The series converges only when x = a.
2. The series converges for all x.

3. There is a positive number R such that the Serie?s converges if ,

x —a| <R and diverges if [x —a| > R. DRAMAMIALA ML
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R is the radius of convergence.
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The interval of convergence of a power series is the interval that consists of
all values of x for which the series converges absolutely. Check endpoints
(endpoints may converge absolutely or conditionally)!
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Find the radius of convergence and interval of convergence for
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Find the radius of convergence and interval of convergence for
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Find the radius of convergence and interval of convergence for
n+l
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Find the radius of convergence and interval of convergence for
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2 n!(x— 3)”.
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Power series are continuous functions.

A power series 1s continuous on its interval of convergence.

If a power series centered at x = a has a radius of convergence

R > 0, then the power series can be differentiated and integrated on

(a— R, a + R), and the new series will converge on
(a — R, a + R), and maybe at the endpoints.
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