Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Geometric Series Test. $(r)^n$ conv. when $|r| \langle 1|$ Basic Divergence Test. if $l_n \not > 0$ then £ an diverges p-Series Test. $2 \frac{1}{NP}$ con v. if $\rho > 1$ Integral Test. if $\int_{1}^{\infty} f(x) dx$ conv. then $\int_{1}^{\infty} f(x) dx$ conv. then $\int_{1}^{\infty} f(x) dx$ conv. Basic Comparison Test. less than conv. converges

Greater than $\int_{1}^{\infty} f(x) dx$ converges

Limit Comparison Test. Limit Comparison Test. $\lim_{h \to \infty} \frac{a_h}{b_h} = \frac{1}{2} \lim_{h \to \infty} \frac{a_h}{b_h} \Rightarrow \frac{1}{2} \lim_{h \to \infty} \frac{a_h}{a_h} \Rightarrow \frac{1}{2} \lim_{$ Alternating Series Test for Convergence: $\sum_{n=1}^{\infty} (-1)^{n-1} b_n > 0$ if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges.

$$\sum_{n=1}^\infty a_n$$
 is conditionally convergent if $\sum_{n=1}^\infty a_n$ converges but $\sum_{n=1}^\infty |a_n|$ diverges.

(Note: a non-alternating series can never converge conditionally)

Popper 26

Popper 26

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n^2} \leftarrow \frac{1}{2n^2} \rightarrow 0 \implies conv.$$
(a.) converges absolutely
b. converges conditionally

CK for $abs: \frac{1}{2n^2} = \frac{1}{2n^2}$

- - diverges

2.
$$\sum_{n=1}^{\infty} \frac{2n+1}{5n^2+2n}$$
 ~ $\frac{1}{2}$

- a. converges
- b. diverges

3.
$$\sum_{n=1}^{\infty} \frac{3n+1}{5n^3+2n} \sim \frac{1}{2} \frac{1}{n^2}$$

- a. converges
- b. diverges

4.
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

- a. converges
- b. diverges

- a. converges absolutely ? $\frac{1}{2}$
- b. converges conditionally
- c. diverges

6.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} arctan(n)}{n^2}$$

$$\frac{2}{N^2} \left(\frac{-1}{N^2}\right)^{n+1}$$

7.
$$\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{2^n}$$

$$\frac{\Lambda}{2^n} \to 0$$

a. converges absolutely
$$\begin{cases} & & & \\ & & \\ & & \\ \end{cases}$$
 b. converges conditionally

$$\frac{1}{2^n}$$

8.
$$\sum_{n=1}^{\infty} \frac{n cos(n\pi)}{n^2 + 1}$$

9.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n} > 2 \frac{1}{n}$$

- a. converges
- b) diverges

10.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n} \longrightarrow 0$$

- a converges
- b. diverges

Notes for series "growth":

Let p(k) be a polynomial in k. (k to a power (const)) r^k for r > 1 grows much faster than p(k) at 2^K grows faster k! grows much faster than r^k , p(k) than k^5 k grows much faster than the others

$$\sum \frac{p(k)}{r_{.}^{k}}$$
, $\sum \frac{p(k)}{k!}$, $\sum \frac{p(k)}{k^{k}}$

$$\sum \frac{r^k}{k!}$$
, $\sum \frac{r^k}{k^k}$, $\sum \frac{k!}{k^k}$

ALL converge rapidly.

Power Series:

Suppose that
$$f(x) = \frac{6}{1-x}$$
. $\frac{1}{1-x}$

If you divide 1 - x into 6, you get a "polynomial" that continues forever.

n=0

This result is a power series.

The word series indicates that there is an infinite number of terms.

The word power tells us that each term contains a power of x.

The series is also a geometric series, with |r|=x, so the series will converge for |x| < 1.

By comparing the graphs of $f(x) = \frac{6}{1-x}$ and P(x) with more and more terms, you will see that between -1 and 1 (the interval of convergence), the two graphs converge.

A Power Series (centered at x=0) is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots$$

where x is a variable and the c_n 's are coefficients.

Note:
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ when } |x| < 1$$

Using this, we can write functions in this form in sigma notation:

Ex: Write
$$\frac{x^2}{4-x^2}$$
 as its power series
$$= \chi^{a} \left(\begin{array}{c} \frac{1}{4-x^2} \\ \frac{1}{4-x^2} \end{array} \right) = \frac{\chi^{2}}{4} \left(\begin{array}{c} \frac{1}{1-x^2} \\ \frac{1}{1-x^2} \\ \frac{1}{4} \end{array} \right) = \frac{\chi^{2}}{4} \left(\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \end{array} \right)$$

$$= \frac{\chi^{2}}{4} \left(\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \end{array} \right) = \frac{\chi^{2}}{4^{n+1}} \left(\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \end{array} \right)$$

For a **fixed** x, the series is a series of constants and we can check for convergence/divergence. The series may converge for some values of x and diverge for others.

The sum of the series is

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + ... + c_n x^n + ...$$

whose domain is the set of all x for which the series converges.

f(x) resembles a polynomial, but it has infinitely many terms.

Let $c_n = 1$ for all n, we get the geometric series, centered at x = 0,

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \dots$$

which converges if |x| < 1 and diverges if $|x| \ge 1$.

A Power Series (centered at x=a) is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$$

For notation purposes, $(x-a)^0 = 1$ even when x = a.

When x = a, all the terms are 0 for $n \ge 1$, so the power series always converges when x = a.

Ex. For what values of x is the series convergent?

$$\sum_{n=0}^{\infty} n! x^n$$

$$2 \frac{1}{2^n}$$

$$1 \times x = \frac{1}{2}$$

$$3 \times x = \frac{1}{2}$$

Same thing

For a given power series
$$\sum_{n=0}^{\infty} c_n (x-a)^n$$
 there are only 3 possibilities.

- 1. The series converges only when x = a.
- 2. The series converges for all x.
- 3. There is a positive number R such that the series converges if $|x-a| \le R$ and diverges if |x-a| > R.

R is the radius of convergence.

The interval of convergence of a power series is the interval that consists of all values of x for which the series converges absolutely. Check endpoints (endpoints may converge absolutely or conditionally)!

Find the interval of convergence for
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$$
.

$$\sum_{n=1}^{\infty} \frac{\left(x-3\right)^n}{n}$$

$$\lim_{N\to\infty} \left(\frac{|x-3|^n}{N}\right)^{y_n} = \lim_{N\to\infty} \frac{|x-3|}{N^{y_n}} \rightarrow \frac{|x-3|}{N}$$

Conv. if
$$\frac{|x-3|}{|x-3|}$$

(3) CK endpts:

plug endpts into original
$$\xi$$
.

 $|x-3| < |k=1|$
 $|x-3| <$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x-5)^n}{n2^n} \cdot w^{2n} \cdot \sqrt{\frac{1}{2}} = \lim_{n \to \infty} \frac{|x-5|}{n^{2n}} = \lim_{n \to \infty$$

$$\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^{n}.$$

$$\frac{\text{Dyphyphan}}{-3 \quad 0 \quad 3}$$

$$\left(-3,3\right)$$

$$\text{Root: } \lim_{n \to \infty} \left(\frac{|x|^{n}}{3^{n}}\right)^{1/n} = \lim_{n \to \infty} \frac{|x|}{3} = \frac{|x|}{3}$$

$$\frac{|x|}{3} < |\Rightarrow|x| < 3$$

endpts:

$$x = -3$$
 $\frac{1}{2} \left(\frac{-3}{3} \right)^n = \frac{1}{2} \left(\frac{-1}{1} \right)^n$ duv
 $\frac{1}{2} \left(\frac{3}{3} \right)^n = \frac{1}{2} \left(\frac{1}{1} \right)^n$ div.

$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n+1} x^{2n+1}}{\left(2n+1\right)!}.$$

$$\sum_{n=0}^{\infty} n!(x-3)^n.$$

Power series are continuous functions.

A power series is continuous on its interval of convergence.

If a power series centered at x = a has a radius of convergence R > 0, then the power series can be differentiated and integrated on (a - R, a + R), and the new series will converge on (a - R, a + R), and maybe at the endpoints.