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Reminder:

/ Power Sor e
If f(x)= Zan (x—c)" has aradius of convergence R > 0 then,
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J'f(x)dx= C+ian

both have a radius of convergence of R.
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Ex: Find a power series foi f(x)=In(2 — x)/and determine its interval of
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1. Give the 7™ degree Taylor polynomial approximation for
f(x) =¢" centered at x = 0.




2. Give the 7™ degree Taylor polynomial approximation for
f(x) = sin (x) centered at x = 0.




3. Give the 7" degree Taylor polynomial approximation for
f(x) = cos (x) centered at x = 0.




4. Give the 7" degree Taylor polynomial approximation for
f(x) =In (x+1) centered at x = 0.
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5. Give the coefficient of (x — 1)’ for the 8" degree Taylor polynomial
approximation to /n (x) centered at x = 1.

a. = b -1 C. 1 d. -1 e. none of these
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Find the Taylor polynomial of degree n =5 for f(X)=in X

Then use Py (X) to approximate the valye of/ Iz (1.1).
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e (1) = (11=1) =2 (10-0) + 5 (L1)-5 (bt
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Suppose that g 1s a function which has continuous derivatives, and that
92)=3 g(2)=-4  9')=7. 9"(2)=-5 4@ “c)
- b by K

Write the Taylor polynomial of degree 3 for g centered at x = 2.
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Find %’(x) for f(x)=x"cos(5x)

Lisx = 1= 35
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Find f(l?s')(o.) for f(x)= e
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Lagrange Form of the Remainder
or
Lagrange Error Bound or Taylor’s Theorem Remainder

When a Taylor polynomial is used to approximate a function, we need a
way to see how accurately the polynomial approximates the function.

f(x):Pn (X)+Rn (X) S0 R, (X):f(x)_Pn (X)
Written in words:

Function = Polynomial + Remainder

f(x)=f(c)+f’(c)(x—c)+fnz(!c)(x—c)2+...+ S x4

SO

Remainder = Function — Polynomial



Lagrange Formula for Remainder:

Suppose f has n+1 continuous derivatives on an open interval that contains
0. Let x be in that interval and let P, (X) be the n" Taylor Polynomial for 1.

Then \[ some. L

(n+1) ¥ ~
Rn (X)= J}n+1()') X.n+1

where ¢ 1s some number between 0 and x.

If we rewrite Taylor’s theorem using the Lagrange formula for the
remainder, we have
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where ¢ 1s some number between 0 and x. K
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If there is a number M so that ‘ f (n-+1) (C)‘ <M

for all ¢ between 0 and x then ‘f(x) ~P,(X) ‘ < (n_ltll)l X |n+1
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for ¢ between 0 and x.

We probably will not know the value of c.



Give an error estimate for the approximation of sin (x) by Py(x) for an

arbitrary value of x between 0 and 7|:/4 centered at x = 0.
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Cos (2x)
Give an error estimate for the a@tion of ees=-by P,o(x) for an

arbitrary value of x between 0 and 7/4, rentered at x =0. ~
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6. Assume that f(x) is a function such that ‘f (x )‘ <15 for all x in the

interval (0,1). What is the max possible error for the ninth degree Taylor
polynomial centered at 0 for this function when approximating f(1)?

a. 15 pq

b. 15/9!
c. 15/10!
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y none of these




