Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Reminder:

If $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ has a radius of convergence R > 0 then,

$$f'(x) = \sum_{n=0}^{\infty} na_n (x-c)^{n-1} = \sum_{n=1}^{\infty} na_n (x-c)^{n-1}$$

and

$$\int f(x) dx = C + \sum_{n=0}^{\infty} a_n \frac{(x-c)^{n+1}}{n+1}$$

both have a radius of convergence of R.

when x = 0, f(0) = ln2

Ex: Find a power series for $f(x) = \ln(2-x)$ and determine its interval of

convergence.
$$\frac{f'(x)}{\sqrt{1-x}} = \frac{1}{\sqrt{1-x}} = \frac{\sqrt{x}}{\sqrt{1-x}}$$

$$= -\frac{1}{2} \left(\frac{1}{1 - |X/2|} \right) = -\frac{1}{2} \left(\frac{\chi}{\chi} \right)^{\frac{1}{2}}$$

$$f'(x) = -\sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}$$

$$f(x) = \int -\frac{x^{n}}{2^{n+1}} \frac{x^{n}}{2^{n+1}} dx = -\frac{x^{n}}{n=0} \frac{x^{n+1}}{(n+1) n+1} + C$$

$$f(0) = -\frac{2}{2}0 + C = ln2$$

$$f(x) = -\frac{y}{n-1} \frac{x^{n+1}}{(n+1)^{2^{n+1}}} + ln 2$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$-\frac{1}{7}\sum_{x=0}^{\infty}\left(\frac{x}{x}\right)$$

$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1) 1^{n+1}} + C$$

In
$$2 - \sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)2^{n+1}}$$

Ratio: $\lim_{n \to \infty} \frac{|x|^{n+2}}{(n+2)2^{n+2}} \cdot \frac{(n+1)2^{n+7}}{|x|^{n+1}}$

$$= \lim_{n \to \infty} \frac{|x|}{2} \frac{(n+1)}{(n+2)^{n+1}} = \frac{|x|}{2} < |x| < \frac{1}{2}$$
 $x = -2$: $\ln 2 - \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n+1)2^{n+1}} = \ln 2 - \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(-1)2^{n+1}} = \ln 2 - \sum_{n=1}^{\infty} \frac{(-1)^{$

Popper 29

1. Give the 7^{th} degree Taylor polynomial approximation for $f(x) = e^x$ centered at x = 0.

a.
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7}$$

b.
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!}$$

c.
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

d.
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

2. Give the 7^{th} degree Taylor polynomial approximation for f(x) = sin(x) centered at x = 0.

a.
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7}$$

b.
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!}$$

c.
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

d.
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

3. Give the 7^{th} degree Taylor polynomial approximation for f(x) = cos(x) centered at x = 0.

a.
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7}$$

b.
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!}$$

c.
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

d.
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

4. Give the 7^{th} degree Taylor polynomial approximation for f(x) = ln(x+1) centered at x = 0.

(a)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7}$$

b.
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!}$$

c.
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

d.
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

- 5. Give the coefficient of $(x-1)^3$ for the 8^{th} degree Taylor polynomial approximation to ln(x) centered at x = 1.

- a. $\frac{1}{3}$ b. $\frac{-1}{3}$ c. $\frac{1}{2}$ d. $\frac{-1}{2}$ e. none of these

k	$f^k(x)$	$f^k(1)$	$\frac{f^k(1)}{k!}$	term
0	Inx	0	•	
	1/2			
2	-1/ /X ²	-1		
3.	2/ _X 3	(2)	3! = ?	

$$P_5(x) = (x-1)^{-\frac{1}{2}}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \frac{1}{5}(x-1)^5$$

Find the Taylor polynomial of degree n = 5 for $f(x) = \ln x$ at c = 1. Then use $P_5(x)$ to approximate the value of $\ln(1.1)$.

k	$f^k(x)$	$f^{k}(1)$	$\frac{f^{k}(1)}{k!}$	term ·
0	$f(\mathbf{x}) = \ln \mathbf{x}$	0	D	
	$f'(\mathbf{x}) = \mathbf{x}^{-1}$	1		(x -1)
2	$f''(x) = -1x^{-2}$	-1	- 1/2	$\frac{-1}{2}(\chi-1)^2$
3	$f'''(x) = 2x^{-3}$	2.	2/3!=1/3	$\frac{1}{3}(\chi_{-1})^3$
4	$f^{(4)}(x) = -6x^{-4}$	-6	-6/1 = -1/4	-L (X-1)4
5	$f^{(5)}(x) = 24x^{-5}$	24	24/ 1/5	⊥ (\x-1) ⁶

$$P_{5}(1.1) = (1.1-1)^{2} - \frac{1}{2}(1.1-1)^{2} + \frac{1}{3}(1.1-1)^{3} - \frac{1}{4}(1.1-1)^{4} + \frac{1}{5}(1.1-1)^{5} + \frac$$

Suppose that g is a function which has continuous derivatives, and that

$$g(2)=3$$
, $g'(2)=-4$, $g''(2)=7$, $g'''(2)=-5$. $\leftarrow q^{K}(c)$

Fig. 1. Write the Taylor polynomial of degree 3 for g centered at x = 2.

$$\frac{3}{0!} (x-2)^{0} + \frac{-4}{1!} (x-2)^{1} + \frac{7}{2!} (x-2)^{2} + \frac{-5}{3!} (x-3)^{2}$$

$$3-4(x-2)+\frac{7}{2}(x-2)^{2}-\frac{5}{6}(x-2)^{3}$$

Find
$$P_{6}(x)$$
 for $f(x) = x^{2}\cos(5x)$

$$\cos(5x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{4}}{6!} + \cdots$$

$$x^{2}\cos(5x) = x^{2}\left(1 - \frac{(5x)^{2}}{2!} + \frac{(5x)^{4}}{4!} - \frac{(5x)^{6}}{6!} + \cdots\right)$$

$$= x^{2} - \frac{5^{2}x^{4}}{2!} + \frac{5^{4}x^{6}}{4!}$$

Find $f^{(15)}(0)$ for $f(x) = e^{x^3}$

$$\int_{15}^{(15)}(0) \chi^{15} = \cot f + \int_{15}^{(15)}(0) \frac{f^{(15)}(0)}{15!}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \cdots$$

$$e^{x^{3}} = 1 + x^{3} + \frac{x^{6}}{2!} + \frac{x^{9}}{3!} + \frac{x^{12}}{4!} + \frac{x^{15}}{5!}$$

$$e^{\chi_3^3} = 1 + \chi^3 + \frac{\chi^6}{2!} + \frac{\chi^9}{3!} + \frac{\chi^{12}}{4!}$$

$$\frac{f^{(15)}(0)}{15!} = \frac{1}{5!} \qquad f^{(15)}(0) = \frac{15!}{5!} \qquad \frac{100 \, \text{lff}}{5!}$$

Lagrange Form of the Remainder or

Lagrange Error Bound or Taylor's Theorem Remainder

When a Taylor polynomial is used to approximate a function, we need a way to see how accurately the polynomial approximates the function.

$$f(\mathbf{x}) = P_{\mathbf{n}}(\mathbf{x}) + R_{\mathbf{n}}(\mathbf{x})$$
 so $R_{\mathbf{n}}(\mathbf{x}) = f(\mathbf{x}) - P_{\mathbf{n}}(\mathbf{x})$

Written in words:

Function = Polynomial + Remainder

$$f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + ... + \frac{f^{(n)}(c)}{n!}(x-c)^n + ...$$

Remainder = Function - Polynomial

Lagrange Formula for Remainder:

Suppose f has n+1 continuous derivatives on an open interval that contains 0. Let x be in that interval and let $P_n(x)$ be the n^{th} Taylor Polynomial for f.

Then

$$R_{n}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

where c is some number between 0 and x.

If we rewrite Taylor's theorem using the Lagrange formula for the remainder, we have

$$f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + ... + \frac{f^{(n)}(0)}{n!} x^n + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

where c is some number between 0 and x.

If there is a number M so that $|f^{(n+1)}(c)| \le M$

$$\left|f^{(\mathsf{n}+\mathsf{1})}(\mathsf{c})\right| \leq \mathsf{M}$$

for all c between 0 and x then
$$|f(x) - P_n(x)| \le \frac{M}{(n+1)!} |x|^{n+1}$$
 or

$$\left| \mathsf{R}_{\mathsf{n}}(\mathsf{x}) \right| \le \left(\max \left| f^{(\mathsf{n}+1)}(\mathsf{c}) \right| \right) \frac{\left| \mathsf{x} \right|^{\mathsf{n}+1}}{(\mathsf{n}+1)!}$$
 for c between 0 and x.

We probably will not know the value of c.

Give an error estimate for the approximation of sin(x) by $P_9(x)$ for an arbitrary value of x between 0 and $\pi/4$, centered at x = 0.

Cos (2x)

Give an error estimate for the approximation of cos(x) by $P_{10}(x)$ for an arbitrary value of x between 0 and $\pi/4$, centered at x = 0.

$$f(x) = \cos x \qquad f^{(4)} = -512 \sin(2x) \qquad f^{(1)}(x)$$

$$f'(x) = -\sin x \qquad f^{(1)}(x) = -1024\cos(2x)$$

$$f'''(x) = \frac{1}{3}\cos x \qquad f^{(1)}(x) = 2048 \sin(2x)$$

$$f^{(4)}(x) = \frac{1}{3}\cos x \qquad f^{(1)}(x) = 2048 \sin(2x)$$

$$f^{(4)}(x) = \frac{1}{3}\cos x \qquad f^{(1)}(x) = 2048 \sin(2x)$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(1)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(1)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(1)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(1)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(1)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(1)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = 2048 - 100$$

$$f^{(4)}(x) = -32 \sin(2x) \qquad f^{(4)}(x) = -1024 \cos(2x)$$

$$f^{(4)}(x) =$$

Poppper

6. Assume that f(x) is a function such that $|f^{(10)}(x)| < 15$ for all x in the interval (0,1). What is the max possible error for the ninth degree Taylor polynomial centered at 0 for this function when approximating f(1)?

- **a.** 15
- **b.** 15/9!
- **c.** 15/10!
- **d.** 1

none of these