Bekki George bekki@math.uh.edu 639 PGH

Office Hours (starting next Monday):

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Section 7.2

Average Value (Mean Value Theorem for Integrals)

First Mean Value Theorem for Integrals:

If f is continuous on [a, b], then there is at least one number c in (a, b) for which

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

The number f(c) is called the <u>average</u> (mean) <u>value</u> of f on [a, b].

The area of the region under the graph of *f* is equal to the area of the rectangle

whose height is the average value.

So....

If f is integrable on [a, b], then the average value of f on the interval is:

Average value =
$$f(c) = \frac{1}{(b-a)} \int_a^b f(x) dx$$

1. Find the average value of the function over the interval and find the value(s) of x (the value(s) of c) in the interval for which the function equals its average value:

$$f(x) = x^2 - 2 \quad \begin{bmatrix} 0,2 \end{bmatrix}$$

2. Find the average value of the function over the interval.

$$f(x) = 2x^3 + 3x^2 \quad \begin{bmatrix} 1,4 \end{bmatrix}$$

3. The average value of $\cos x$ over the interval $\frac{\pi}{6} \le x \le \frac{\pi}{2}$ is

4. Find the average value of $y = 4t^3 - 3t^2$ over $-1 \le t \le 2$.

5. Find the average value: $f(x) = e^x - \sin x$, $x \in \left[0, \frac{\pi}{2}\right]$

6. Given that the average value of an **even** function f(x) over the interval $\begin{bmatrix} -2,2 \end{bmatrix}$ is

3, find $\int_{0}^{2} f(x) dx$.

7. Suppose f is an **odd** function with $\int_0^2 f(x) dx = 3$. Give the average value over the interval [-2,2].

8. Suppose that f(1)=6 and that f'(x)=x+1. Find f(3).

9. What is the approximate instantaneous rate of change for

$$f(t) = \int_0^{2t} x \sin x \, dx \text{ at } t = \frac{\pi}{3} ?$$

10. For what values of *k* is the following equation true?

$$\int_{1}^{k} 4x \, dx = 0$$

11. The function f is differentiable and $\int_0^x (f(t)+3t)dt = \cos(x)$. Determine the value of $f'\left(\frac{\pi}{3}\right)$