Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours (starting Monday):

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Reminders:

- Access Code (before this weekend)
- Poppers (start next week)
- Practice Test 1
- Test 1
- Quizzes

Section 7.3 - Area

So, we know that if f(x) is on or above the x-axis over a region from x = a to x = b then

$$A = \int_{a}^{b} f(x) dx$$

Example:

Find the area of the region: $f(x) = x^2 + 4x - 12$, $x \in [2,4]$

What about when f(x) is below the x-axis?

Or part above and part below?

Example:

Find the area of the region bounded by the graph of $f(x) = \sin x, x \in [0, \pi]$

The area between two curves is found by integrating the difference of the larger function minus the smaller function over the region.

$$A = \int_{a}^{b} \left[f(x) - g(x) \right] dx.$$

Sketch the region bounded by the graphs of the equations and determine the area of the enclosed region.

$$f(x) = x^2$$
 and $g(x) = \sqrt{x}$

$$f(x) = -x^2 + 4x + 2$$
, $g(x) = x + 2$

Examples with absolute value.

$$\int_{-1}^{1} |x| dx =$$

$$\int_{-2}^{2} |3x+1| \, dx =$$

$$\int_0^3 \left| x^2 - 4 \right| dx =$$

$$\int_0^4 \left| x^2 - 4x + 3 \right| dx =$$

$$\int_{1}^{4} \left(3 - |x - 3| \right) dx =$$

Summary for the area between two curves:

Basic.

Two non-intersecting curves.

Two curves that intersect.

Two curves that intersect several times.

More Examples:

Find the area bounded by the graphs of $y = x^2 + 2$, y = -x, x = 0 and x = 1.

Find the area of the region bounded by $f(x) = 2 - x^2$ and g(x) = x.

Find the area bounded by $f(x) = \sin x$ and $g(x) = \cos x$ for $x \in [0,2\pi]$

