Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Volumes of Known Cross Sections

* If the cross section is perpendicular to the x-axis and its area is a function of x, say A(x), then the volume of the solid from a to b is given by $V = \int_a^b A(x) dx$

* If the cross section is perpendicular to the y-axis and its area is a function of y, say A(y), then the volume of the solid from c to d is given

by
$$V = \int_{c}^{d} A(y) dy$$

1. Find the volume of the solid whose base is bounded by $f(x) = 1 - \frac{1}{2}x$, $g(x) = -1 + \frac{1}{2}x$ and x = 0 if the solid is formed by squares perpendicular to the x-axis.

2. Find the volume of the solid whose base is bounded by $f(x) = 1 - \frac{1}{2}x$, $g(x) = -1 + \frac{1}{2}x$ and x = 0 if the solid is formed by equilateral triangles perpendicular to the x-axis.

3. Find the volume of the solid whose base is bounded by $f(x) = x^2$, $g(x) = 8 - x^2$ and the solid is formed by squares

perpendicular to the x-axis.

4. Find the volume of the solid whose base is bounded by $y = \frac{1}{8}x^2$ and y = 4 if the solid is formed by semicircles perpendicular to the y-axis.

5. Consider a solid whose base is the region inside the circle $x^2 + y^2 = 4$. If cross sections taken perpendicular to the x-axis are squares, find the volume of this solid.

Volume with the Disc Method:

Revolving about the x-axis: $V = \int_a^b \pi \left[f(x) \right]^2 dx$

Revolving about the y-axis: $V = \int_{c}^{d} \pi \left[g(y) \right]^{2} dy$

Let R be the region bounded by the x-axis and the graphs of $y = \sqrt{x}$ and x = 4. Sketch and shade the region R. Label points on the x and y-axis.

a. Give the formula the area of region R

b. Find the area of region R

c. Give the formula the volume of the solid generated when the region R is rotated about the x-axis.

d. Find the volume for the solid in (c).

Let R be the region bounded by the y-axis and the graphs of $y = \sqrt{x}$ and y = 2. Sketch and shade the region R. Label points on the x and y-axis.

Give the formula the volume of the solid generated when the region R is rotated about the y-axis.

Find the volume for the solid.