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With sequences, we are concerned with limits of sequences as n approaches
infinity.

A sequence that has a limit 1s said to be convergent.
A sequence that has no limit is said to be divergent.

Every convergent sequence 1s bounded and every unbounded sequence 1s
divergent.

“The sequence converges”
means
“The sequence has a limit”.

“The sequence diverges”
means
“The sequence does not have a limit”.



Important Limits:
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may not go to 1 as n approaches infinity if “stuff” overpowers the exponent.
Be careful!
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